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Abstract

The truth predicate for the language of first order arithmetic is definable in
the language of second order arithmetic. Whereas ACA0 proves the Tarski
schema, ACA0 does not prove the Tarski rule of negation. However, Π1

1-CA0

does prove all the Tarski rules. In particular, Π1
1-CA0 proves the consistency

of ACA0.
Analogous results hold for set theory. The truth predicate for the language of
ZF is definable in the language of BG. Whereas BG proves the Tarski schema,
BG does not prove the Tarski rule of negation. However, BG + Σ1

1Ind does
prove all the Tarski rules. In particular, BG+Σ1

1Ind proves the consistency of
ZF.
These results must all be pretty old. The author does not know

whom to give the credit, though. In any event, he doesn’t claim

credit for anything exposed in this note.

Let us commence with set theory. The intended model of ZF, (V ;∈), has a class
rather than a set as its underlying universe. This paper discusses the semantics of
ZF.

We let LZF denote the language of ZF. We may enrich LZF by adding a class
of constants, {ẋ|x ∈ V }, where ẋ is intended to denote x. We let LZF denote the
enriched language. A formula of LZF comes from a formula of LZF by replacing free
occurences of variables by constants. If ϕ is a formula, if v is a variable, and if
x ∈ V , then by ϕv

x we denote the result of replacing all free occurences of v by ẋ.
We shall also use notations like ϕ(0), ϕ(n), and ϕ(n+ 1). The reader will easily

figure out how these are to be understood.
If M is a model, ϕ is a formula in which each free variable is in {v0, · · · , vn}, and

if {y0, y1, · · · , yn} ⊂ |M| (the underlying universe of M) then we write

M |= ϕ(y0, y1, · · · , yn)

to express that ϕ holds true in M with an assignment that maps vk to yk for k ≤ n.
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In what follows we tacitly make use of the fact that we can in ZF represent the
relevant syntactical concepts of LZF and of LZF. If ϕ is a formula of LZF then we
shall write pϕq for its Gödel number.

The language of LBG of BG has two sorts of variables, lower case ones for sets
and upper case ones for classes. If ϕ is a formula of LBG then we say that ϕ is Σ1

n,
where n ∈ ω, if and only if ϕ is provably in BG equivalent to a formula of the form

∃X1∀X2 · · ·QXnψ,

where Q = ∃ / ∀ if and only if n is even / odd and ψ does not contain any class
quantifiers.

Definition 0.1 We abbreviate by t(n,X) the following Σ1
0 formula of LZF.

n ∈ ω ∧ ∀x ∈ X(x is a sentence of LZF of rank at most n)∧

∀x∀y(px ∈ yq ∈ X ↔ x ∈ y)∧

∀ sentences pϕq of LZF of rank at most n− 1

∀ sentences pψq of LZF of rank at most n− 1

∀ variables v

[(p¬ϕq ∈ X ↔ pϕq /∈ X) ∧

(pϕ ∧ ψq ∈ X ↔ pϕq ∈ X ∧ pψq ∈ X) ∧

(p∀vϕq ∈ X ↔ ∀xpϕv
xq ∈ X)].

Definition 0.2 We abbreviate by T (x) the following Σ1
1 formula of LZF.

∃n∃X(t(n,X) ∧ x ∈ X).

Lemma 0.3 BG ` ∃Xt(0, X).

Lemma 0.4 BG ` ∀n ∈ ω(∃Xt(n,X) → ∃Xt(n+ 1, X)).

Corollary 0.5 BG ` ∀pϕq ∈ LZF∀pψq ∈ LZF(T (pϕ ∧ ψq) ↔ T (pϕq) ∧ T (pψq)).

Corollary 0.6 BG ` ∀pϕq ∈ L
ZF
∀v(T (p∀vϕq) ↔ ∀xT (pϕv

xq)).

Lemma 0.7 For all n ∈ ω, BG ` ∃Xt(n,X).

Lemma 0.8 BG ` ∀n∀X∀Y (t(n,X) ∧ t(n, Y ) → X = Y ).
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Lemma 0.9 For all sentences ϕ of LZF, BG ` T (pϕq) ↔ ϕ.

Lemma 0.10 BG /̀ ∀n ∈ ω∃Xt(n,X), unless ZF is inconsistent.

Proof. Suppose ZF to be consistent, and let M = (M ;E) be a model of ZF

where M is a set and E ⊂ M ×M . Let the well-founded part of M be transitive.
We may and shall assume that M contains non-standard integers, in other words
that E restricted to the integers in the sense of M is ill-founded. That is, ω $ ω

�

.
Let K denote the set of all

{x ∈M | M |= ϕ(x, y1, · · · , yn)},

where ϕ is a formula of LZF in which each free variable is in {v0, · · · , vn} and where
{y1, · · · , yn} ⊂M . I.e., K is the set of all subsets of M which are boldface definable
over M by a formula of LZF. Then N = (M,K;E) is a model of BG.

Let n ∈M and X ∈ K be such that

N |= t(n,X).

Let m ∈ ω be least such that X is boldface definable over M by a Σm formula of
LZF. It is easy to see that we must have

M |= n ≤ m.

That is, n must be a standard integer.
Now let n ∈ ω

�

\ ω be a non-standard integer of M. We have shown that

N |= ¬∃Xt(n,X).

�

Corollary 0.11 BG /̀ ∀pϕq ∈ LZF(T (p¬ϕq) ↔ ¬T (pϕq)), unless ZF is inconsis-

tent.

Definition 0.12 We let Σ1
1Ind denote the schema which asserts that for every Σ1

1

formula Φ of LBG with free variables in {v0, v1, · · · , vn}
a,

∀v1 · · · ∀vn[(Φ(0) ∧ ∀n ∈ ω(Φ(n) → Φ(n+ 1)) → ∀n ∈ ωΦ(n)].

Lemma 0.13 BG + Σ1
1Ind ` ∀n ∈ ω∃Xt(n,X).

aIn particular, all free variables are set variables.
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Corollary 0.14 BG + Σ1
1Ind ` ∀pϕq ∈ LZF(T (p¬ϕq) ↔ ¬T (pϕq)).

If T is a (recursively enumerable) theory then BewT denotes the formal repre-
sentation of the provability predicate.

Lemma 0.15 BG + Σ1
1Ind ` ∀pϕq ∈ LZF(BewZF(pϕq) → T (pϕq)).

Proof. Let us work in BG + Σ1
1Ind.

Let us first prove that every axiom of ZF satisfies T . Let us consider an instance
of the separation schema as a typical example where (for notational convenience)
the separating formula ϕ doesn’t allow parameters. As we have the Tarski rules at
hand (cf. Corollaries 0.5, 0.6, and 0.14), our task quickly reduces to having to show:

∃y∀z(z ∈ y ↔ z ∈ x ∧ T (pϕv
xq)).

Let n be the rank of ϕ, and let X be unique such that t(n,X). Then

T (e) ↔ e ∈ X

for all e of rank ≤ n. However,

∃y∀z(z ∈ y ↔ z ∈ x ∧ pϕv
xq ∈ X)

holds by the separation axiom of BG.
Now let (ϕn|n ≤ N) be a proof in ZF. By Σ1

1Ind we may assume that T (pϕnq)
for every n < N . If ϕN is an axiom of ZF then T (pϕNq) holds by the preceding
paragraph. Otherwise there are j, k ≤ n− 1 such that

ϕk ≡ ϕj → ϕN .

But then an application of the Tarski rules given by Corollaries 0.5 and 0.14 readily
implies that T (pϕNq) holds. �

Corollary 0.16 BG + Σ1
1Ind ` Con(ZF).

We finally want to study the relation of BG + Σ1
1Ind with “Tr(ZF).” We consider

the Feferman-style “ordinary truth theory” for ZF which we call Tr(ZF). To get
Tr(ZF), we extend the language LZF by adding constants for all elements of V , plus
we add a primitive truth predicate Ṫ (v) governed by Tarski’s four axioms:

TAtom ∀px ∈ yq ∈ LZF(Ṫ (px ∈ yq) ↔ x ∈ y),
TNeg ∀pϕq ∈ LZF(Ṫ (p¬ϕq) ↔ ¬Ṫ (pϕq)),
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TConj ∀pϕq ∈ LZF∀pψq ∈ LZF(Ṫ (pϕ ∧ ψq) ↔ Ṫ (pϕq) ∧ Ṫ (pψq)),
TQuant ∀pϕq ∈ LZF∀v(Ṫ (p∀vϕq) ↔ ∀xṪ (pϕv

xq))

(cf. Corollaries 0.5, 0.6, and 0.14), and we replace the separation and replacement
schemas of ZF by the following separation and replacement axioms:

TSep ∀pϕq ∈ LZF∀x{y ∈ x | Ṫ (pϕv
yq)} is a set, and

TRepl ∀pϕq ∈ L
ZF

, if Ṫ (pϕq) defines a function then
∀x∃y∀u ∈ x∃u′ ∈ yṪ (p(ϕv

u)
v′

u′q).

Lemma 0.17 BG+Σ1
1Ind and Tr(ZF) prove the same sentences in the language LZF.

Proof. The above results clearly imply that if Tr(ZF) ` ϕ, where ϕ is a sentence
of the language LZF, then BG + Σ1

1Ind ` ϕ as well.
To prove the converse, let M = (M ;∈, T ) be a model of Tr(ZF). Let K denote

the set of all X ⊂M such that for some pϕq ∈M ,

∀x ∈M(x ∈ X ⇔ M |= Ṫ (pϕv
xq).

It is straightforward to verify that N = (M,K;∈) is then a model of BG+Σ1
1Ind. �

Let us now turn to arithmetic. The situation here is entirely analogous. We may
leave the details to the reader. We may define predicates t(n,X) (saying that X is a
set of integers containg exactly the Gödel numbers of true first order statements of
arithmetic which have rank at most n) and T (x) (saying that ∃n∃X(t(n,X) ∧ x ∈
X)) in much the same way as in the case of set theory. Let LPA denote the language
of first order arithmetic. We get:

Lemma 0.18 ACA0 ` ∃Xt(0, X).

Lemma 0.19 ACA0 ` ∀n ∈ ω(∃Xt(n,X) → ∃Xt(n+ 1, X)).

Corollary 0.20 ACA0 ` ∀pϕq ∈ LPA∀pψq ∈ LPA(T (pϕ∧ψq) ↔ T (pϕq)∧T (pψq)).

Corollary 0.21 ACA0 ` ∀pϕq ∈ LPA∀v(T (p∀vϕq) ↔ ∀xT (pϕv
xq)).

Lemma 0.22 For all n ∈ ω, ACA0 ` ∃Xt(n,X).

Lemma 0.23 ACA0 ` ∀n∀X∀Y (t(n,X) ∧ t(n, Y ) → X = Y ).

Lemma 0.24 For all sentences ϕ of LPA, ACA0 ` T (pϕq) ↔ ϕ.
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Lemma 0.25 ACA0 /̀ ∀n ∈ ω∃Xt(n,X), unless PA is inconsistent.

Corollary 0.26 ACA0 /̀ ∀pϕq ∈ LPA(T (p¬ϕq) ↔ ¬T (pϕq)), unless PA is incon-

sistent.

Lemma 0.27 Π1
1-CA0 ` ∀n ∈ ω∃Xt(n,X).

Corollary 0.28 Π1
1-CA0 ` ∀pϕq ∈ LPA(T (p¬ϕq) ↔ ¬T (pϕq)).

Lemma 0.29 Π1
1-CA0 ` ∀pϕq ∈ LPA(BewPA(pϕq) → T (pϕq)).

Corollary 0.30 Π1
1-CA0 ` Con(PA).

Finally, let Tr(PA) denote the theory which comes from PA in exactly the same
way as Tr(ZF) comes from ZF.

Lemma 0.31 Π1
1-CA0 and Tr(PA) prove the same sentences in the language LPA.
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