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Abstract. Outlier mining is to find exceptional behaviors of objects that deviate from the rest of the dataset or do 

not satisfy the common patterns. This paper introduces a density definition using the minimum hyper sphere and 

proposes an outlier mining algorithm based on neighbor-density-deviation. First, the definition of local space-density 

of an object is proposed by using the minimum hyper sphere. Second, the nearest neighbor sequence (NNS) based on 

the distance between an object and the neighbors of the object is established. After getting the space-density and the 

NNS of the object, the neighborhood density deviation (NDD) in NNS can be calculated based on the sum of density 

difference between the object and its neighbors. Finally, the neighbor-density-deviation-based outlier factor (NDDOF) 

is obtained to indicate the degree of the object being an outlier. To evaluate the effectiveness and the performance of 

the novel definition of space density and the NDDOF algorithm, we experiment on a synthetic dataset and three real 

UCI datasets. The results verify that the space-density is meaningful and the NDDOF algorithm has higher quality in 

outlier mining. 
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1. Introduction 

Outlier detecting is an important procedure in 

data processing. Hawkins describes an outlier 

intuitively as :“An outlier is an object that deviates so 

much from other objects as to be suspected that it 

was generated by a different mechanism”[1]. Outlier 

mining refers to the problem of finding characters in 

data that are very different from the rest of the data. 

Outlier mining could be used in lots of practical 

areas, such as for cleaning the clusters for machine 

learning method[2] , finding the abnormal usage of 

risk detection in finance [3], diagnosing illnesses 

from health care databases [4], strengthening the 

ability of extreme learning machine [5], improving 

the adaptability and the robustness in image matching 

[6], and identifying the network anomaly in 

supervisory system [7], etc. 

In the researches of detecting outliers, most 

methods are developed based on statistics[8, 9]. 

These statistical-based methods need the distribution 

of the dataset as the prior knowledge[10-12], and the 

outliers should have different characters with respect 

to the distribution. Following the outlier definition, 

many works consider that outliers do not belong to 

any cluster and the object in clusters shall not be an 

outlier [13, 14]. The outlier mining is dependent on 

the quality of clustering algorithm used [15]. Knorr 

and Ng proposed the distance-based definition of 

outliers, which is simple and intuitive [16], and Knorr 

et al. discussed the usefulness of the definition 

detailedly [17]. The object is regarded as an outlier 

by the distance-based outlier mining methods 

according to the distance between the object and its 

nearest neighbors [18]. These methods differ in the 

distance functions of the nearest-neighbors. The 

outlier mining methods based on distance are used 

conveniently, but they are sensitive to parameters the 

users choose and could not work well in dataset with 

different density regions. 

In the methods based on density, objects in 

regions of very low density are viewed as outliers. 

The density-based methods depend on the degree of 

the object isolating from its surrounding 

neighborhoods. Breunig et al. propose the outlier 

mining algorithm based on density [19], and present a 

value named the local outlier factor (LOF) to indicate 

how outlying of an object is. The density-based 

outlier mining methods give a quantitative measure to 

judge an object being an outlier or not [20-25]. 

Nevertheless, Jiang et al. pointed out that the density-
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based methods have a disadvantage that how to 

choose the parameters to define the neighborhood of 

an object [26]. As the algorithms are density-based, 

so how to define the density of an object reasonably 

is also difficult. 

This paper proposes a density definition of an 

object named space-density and proposes an outlier 

mining algorithm based on density, and the outlying 

degree of an object is indicated by the neighborhood- 

density-deviation-based outlier factor (NDDOF). 

First, the k-nearest neighbors series(NNS) is 

established, and the novel concept of space-density of 

an object is presented using the minimum hyper 

sphere algorithm. Second, the neighborhood density 

deviation (NDD) in NNS can be calculated based on 

the sum of density difference between the object and 

its k-nearest neighbors. Finally, the NDDOF value is 

obtained by using the NDD to indicate the outlying 

degree of the object. The rest of this paper is 

organized as follows. In Section 2, we discuss the 

related outlier mining algorithms based on density. In 

Section 3, the density concept and the outlier mining 

algorithm are explained in detail. After proposing the 

algorithm, we analyze the time complexity of the 

algorithm. In Section 4, experiments results are 

discussed. Section 5 concludes the paper. 

2. RELATE WORK 

In this section, we review some definitions of 

density and classical density-based outlier mining 

algorithms. 

2.1. Density definitions 

The common definitions of the density are shown 

as follows [15]: 

Definition 2.1. Given a positive number d, the 

density of an object is equal to the number  

of objects whose distance from the object is less 

than d. 

Definition 2.2. The density of an object equals to 

the reciprocal of the average distance between the 

object and its k neighbors, and the k is a positive 

integer.  

To improve the density definition, the k-density is 

proposed [27]. 

Lemma 2.1. The k-distance of object p, denoted as k-

distance(p), is defined as the distance 

d(p, o) between p and an object of D 

such that: 

a) for at least k objects o'∈ D \ {p}, it 

holds that d(p, o') <= d(p, o), and 

b) (ii) for at most k − 1 objects o'∈ D \ 

{p}, it holds that d(p, o') < d(p, o). 

 where D is the dataset and p is fall into 

D. 

Lemma 2.2. An object whose distance from p is not 

greater than the given k-distance is one 

of the k-distance neighbors of p. 

 Let Nk(p) represent the k-distance 

neighborhood of p and it is used for 

defining the k-median-distance of p. 

Lemma 2.3. Given any positive integer k, the k-

median-distance of p, kmdist(p)is equal 

to the average of the distances between p 

and the k-distance neighbors and is 

formulated as: 

 kmdist(p) =median{dist(p, o)|o ∈ 

Nk(p)}, where dist is the distance 

between two objects. 

Definition 2.3. The k-density is the quotient of the 

number of the k-distance neighbors and the k-

median-distance of p and is formulated as: 

kden(p) = |Nk(p)|/kmdist(p), where |Nk(p)| is the 

size of Nk(p). 

2.2. Density-based outlier mining algorithms 

The LOF in [19] is firstly used to quantify the 

outlying degree of an object. The value of LOF is 

obtained based on the average of the ratio of the local 

reachability density of p and those of its k-nearest 

neighbors. A parameter named MinPts is needed to 

determine the minimum size of the neighborhood of 

the object. It is clear that the larger the local 

reachability density of p is, and the lower the local 

reachability densities of MinPts-nearest neighbors of 

p are, the lower the LOF value of p is. This algorithm 

has only one parameter k, which is equal to MinPts, 

and the parameter strongly affects the outlierness of 

an object. If the parameter k is set to be too low, LOF 

does not detect outliers which are close to a dense 

cluster; on the contrary, the small clusters may be 

regarded as outliers. A modification of the LOF 

algorithm is LOF’, LOF" and GridLOF [21]. LOF’ 

simplifies the formula of LOF which is understanding 

easily, LOF" distinguishes between the neighbors for 

computing the density and the neighbors for 

comparing the densities of the neighbors of an object. 

The GridLOF reduces normal objects by using the 

grid based method and then computes LOF score. 

INFLuenced Outlierness (INFLO) is outlier 

mining method proposed in [24]. The paper takes the 

nearest neighbors and the reverse nearest neighbors 

into account to estimate the density distribution of the 

neighborhood. Tang et al. figured that the objects are 

“connected” to the neighbors and presented an outlier 

factor based on connectivity between objects, named 

COF in [23]. The COF of an object is the ratio of the 

average chaining distance from the object and the 

average of chaining distances from k-distance 

neighbors to its own k-distance neighbors. The COF 

algorithm can be applied to the dataset of which the 
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neighborhood density is similar to that of an outlier. 

Cao (2010) proposed a density-similarity-neighbor-

based outlier mining algorithm(DSNOF) for outlier 

mining [27]. DSNOF constructs similar density 

neighbor (SDS) of each object, and the earlier objects 

in SDS influence greater to the object. 

As Cao et al. explained, the LOF algorithm, the 

INFLO algorithm and the COF algorithm can not 

distinguish between the outliers and the normal 

objects in the special dataset. Moreover, the value of 

k directly influences the outlier mining results of the 

LOF algorithm, the INFLO algorithm, and the COF 

algorithm. For a given object p, the k-neighbors of p 

may not have p as one of their own k-neighbors. 

Although the DSNOF algorithm has some effect on 

outlier mining, its density definition only takes the k- 

neighbors of the object p into account and ignores the 

objects whose k-neighbors contain p. So the outlier 

mining algorithm could be improved on density 

definition and some other aspects. 

In the next section, we present a new definition of 

the density of an object and propose a novel density-

based outlier mining algorithm. 

3. The algorithm 

In this section, we introduce the definition of the 

space density. In addition, we propose the outlier 

mining algorithm based on the space density and 

analyze the time complexity of the algorithm. 

3.1. Space-density of an object 

Definition 3.1. The smallest enclosing hyper 

sphere. An n-sphere is the extension of an 

ordinary sphere surface to n-dimensional space. 

As n being a natural number, an n-sphere is 

defined as the set of objects in (n+1)-dimensional 

Euclidean space which are at a certain distance 

from a central object, where the certain distance is 

the radius R which may be any positive real 

number. 

Particularly: 

a 0-sphere is the pair of points at the ends of a 

(one-dimensional) line segment, 

a  1-sphere is the circle(two-dimensional), 

a 2-sphere is the two-dimensional surface of a 

(three-dimensional) ball in three-dimensional space. 

Spheres of dimension n > 2 are called hyper-

spheres[28]. 

The smallest enclosing hyper-sphere is containing 

the neighborhood of p with the smallest radius R. 

Definition 3.2. The NNk and RNNk of p. The NNk is 

the set of the k-nearest neighbors of p. The reverse 

nearest neighbors (RNNk) of p are essentially 

objects that have p as one of their k nearest 

neighbors [24]. 

Figure 1 shows the constructing of RNNk. We 

assume that a dataset A = {p, q1, q2,q3, q4, q5}. For 

k=3, the nearest neighborhoods of the points in A are 

NNk(p) = {q1, q2, q3, q4}, NNk(q1) = {p, q2, q4}, 

NNk(q2) = {p, q1, q3}, NNk(q3) = {q1, q2, q5}, 

NNk(q4) = {p, q1, q2, q5} and NNk(q5) = {q1, q2, q3}, 

respectively. During the search of NNk of p, q1, q2, 

q3, q4 and q5, RNNk(p) = {q1, q2, q4} is built. 

Similarly, RNNk(q1), RNNk(q2), RNNk(q3), RNNk(q4), 

and RNNk(q5) are found. It is obvious that the 

RNNk(p) may not be equal to NNk(p). 

 

Figure 1. Constructing of RNN 

Definition 3.3. The effective neighbor points in the 

neighbors of p. For any positive integer k, the 

effective neighbor points exist in both the NNk and 

the RNNk of p, namely, ENP(p) = NNk(p)∩
RNNk(p). ENP(p) may be empty. 

In Figure 2, D = {a, b, c, d, e, f, g, h, i, j, k}, when 

k = 4, the k-neighbors of point d, NNk(d), is {e, g, h, 

j}, and its RNNk(d) is {e, j}. NNk(g) = {e, f, h, i} and 

RNNk(g) = {e, f, h, i, k}. The effective neighbor points 

ENP(p) = {e, j} and ENP(g) = {e, f, h, i}, respectively. 

 

Figure 2. The effective neighbor points 

Definition 3.4. The space-density of an object p. 

Given any positive integer k, the space-density of p 

is inversely proportional to R(p) and proportional 

to |ENP(p)|, which is the size of ENP(p), so the 

space-density is defined as spden(p) 

=|ENP(p)|/R(p). 



Y. Yuan, H. Cao, Y. Zhang, Q. Xie, R. Yao 

270 

In order to calculate the minimum hyper-sphere 

of the neighborhood, the number of points must be 

larger than the dimension of the points. In other 

words, the value of k should be greater than the 

dimension of the points. 

It is obvious that the density of g should be larger 

than that of d in Figure 2. Following the definition, 

we can calculate the space-densities of d and g. 

spden(d) =|ENP(d)|/R(d) = 2/R(d) and spden(g) = 

|ENP(g)| /R(g) = 4/R(g). The radiuses of the two 

hyper-spheres are R(d) and R(g), respectively. As it is 

shown that R(d) > R(g), thus spden(d) < spden(g). 

 

Figure 3. The space-density of each object for k=3 

An example is shown in Figure 3. The point o is 

an outlier from a point set which is uniformly 

distributed. The distance between a and b is 1, and 

the distance between o and b is 2. The NNk(a) = {b, f, 

g}, NNk(b) = {a, d, g}, NNk(c) = {h, i, j, k}, NNk(o) = 

{a, b, d} and RNNk(a) = {b,  f}, RNNk(b) = {a,  d,  g}, 

RNNk(c) = {h, i, j, k} and RNNk(o) = ∅. R(a) = 0.707, 

R(b) = 1, R(c) = 1 and R(o) = 1.25. We can calculate 

the densities, respectively. spden(a) = 2.828, spden(b) 

= 3, spden(c) = 4 and spden(o) = 0. 

When the density definition is confirmed, we will 

introduce our outlier detecting algorithm based on the 

new density. 

3.2. The NDDOF algorithm 

In this subsection, the NDDOF algorithm is 

discussed detailedly.  

Given a dataset D and a positive integer k, the 

NDDOF algorithm is constructed as the following 

steps. 

Step1. Calculate the distance between any two 

objects and find the k-distance neighbors of 

each object in D. 

Step2. Construct the NNS of each object in D. 

 Let p∈D and NNk(p) be the k-distance 

neighborhood of p. The nearest neighbor 

sequence of p is NNS(p),  and NNS(p) = {p, 

c1, c2, …  ,cr }, where r = |NNk(p)| and ci ∈ 

Nk(p),  i = 1, 2,… ,r. 

 Construct the NNS is an iterative process. In 

each iteration, the nearest neighbor of p in 

the remaining objects of NNk(p), is picked up 

and added to the NNS(p) sequentially. If 

there are more objects have the same 

distance with p, they would be picked up in 

sequential order. Then the NNS(p) and 

NNk(p) are updated. When all of the objects 

in NNk(p) are picked up, Step2 is finished 

and the NNS(p) is constructed. Using the 

same method, the NNS of each object in D 

can be constructed. 

Step3. According to Definition 3.4, compute the 

space-density of each object in D. 

Step4. Define the space-density difference between 

two objects. 

 The space-density difference between x and 

y, named △spden(x, y), is defined as: 

 △spden(x, y) = |spden(y) − spden(x)|,  

 so that △spden(x, y) = △spden(y, x). 

Step5. According to the definition of △spden(x, y), 

calculate the neighborhood density deviation 

(NDD) of each object in D based on the 

NNS. NDD(p) is viewed as the neighborhood 

density deviation of p in NNS, and the earlier 

objects in NNS contribute more in the NND. 

Let p be an object in D, and the 

neighborhood density deviation of p defined 

as:  

 
1

( ) ( , ) / ,
r

ii
NDD p spden p c i


   

 where r = NNk(p). 

Step6. Compute the NDDOF value of each object in 

D. 

 For any object p in D, the neighborhood-

density-deviation-based outlier factor, 

NDDOF(p),  is expressed as: 

 

( )
( ) ( ) ( ) / ( )

k
k o NN p

NDDOF p NN p NDD p NDD o


    

The NDDOF value of p is the ratio of the NDD of 

p and the average of the NDD of k-distance neighbors 

of the object. NDDOF indicates the degree of the 

object being an outlier, that is to say, the smaller the 

NDDOF value is, the lower the outlierness of p is. 

3.3. The time complexity of the algorithm 

We assume that D consists of n objects and each 

object is n-dimensional, k is a positive integer, and  

r (r ≥ k) is maximum number of the k-distance 

neighbors of the objects in D. 

For the first step, the time complexity of 

computing the distances between any two objects is 

O(n2d). The second step constructs NNS, and the time  
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Table 1. Outlier detecting results 

rank index LOF index spLOF index INFLO index spINFLO index DSNOF index spDSNOF 

1 o2 29.2 o1 50 o2 10 o1 10 o2 8.2 o1 50 

2 o1 15.1 o2 50 o3 10 o2 10 o1 6.5 o2 50 

3 o3 14.1 o3 50 o4 10 o3 10 o3 5.4 o3 50 

4 o5 6.0 o4 50 1089 1.4 o4 10 o7 2.9 o4 50 

5 o7 4.9 o7 49.3 1054 1.3 1291 3.5 o5 2.8 o7 3.0 

6 o6 4.7 o6 22.6 1689 1.3 1379 3.3 o6 2.7 o5 2.3 

7 o4 3.6 o5 19.7 1193 1.3 1080 2.7 438 2.3 o6 2.2 

 

complexity is O(ndk2), The third step of the 

NDDOF algorithm is calculating the space-density of 

each object. Since computing smallest enclosing 

hyper sphere takes the most time of this step, the time 

complexity of Step3 is considered as the smallest 

enclosing hyper sphere complexity, which is less than 
2 3/ 2[ / ( / )(1/ ) lg(1/ )]O nd d d      [29], where   is 

0.001. The forth step is calculating the space-density 

difference between any two objects, and the time 

complexity is O(n(n−1)/2). The fifth step and the 

sixth step are calculating NDD and NDDOF values of 

each object, respectively, and the complexities of 

them are both O(nk). Hence, the time complexity of 

the NDDOF algorithm is 

2 2 2 3/ 2[ / ( / )(1/ ) lg(1/ )].O n d ndk nd d d        

4. Experiments results 

In this section, we will experiment on a synthetic 

dataset to test the effectiveness of the space-density 

and experiment on three real datasets to estimate the 

performance of the NDDOF algorithm. The synthetic 

dataset is similar to the dataset in [19]. The real 

datasets are real UCI datasets. To evaluate the 

effectiveness of the space-density, we will adopt our 

space-density definition to the LOF method, INFLO 

method and the DSNOF method to form spLOF 

method, spINFLO method, and spDSNOF method. 

After getting the new methods with space density, we 

compare the results between the LOF method with 

spLOF method, the INFLO method with spINFLO 

method, the DSNOF method with spDSNOF method, 

respectively. To evaluate the performance of the 

NDDOF algorithm, we compare the NDDOF 

algorithm with the LOF algorithm, the INFLO 

algorithm, the COF algorithm, and the DSNOF 

algorithm. All the outlier detecting algorithms are 

implemented by MATLAB R2010a and the 

performance environment is a 2.9 GHZ Intel 

processor, with 8G of main memory, under 

Windows7 operating system. 

4.1. Experiments on density 

The dataset in Figure 4 shows a two-dimensional 

synthetic dataset. 

The dataset consists of a small Gaussian cluster of 

200 points named C1 with low density and three 

large clusters of 500 points each. Among these three 

clusters, C2 is a Gaussian distribution cluster with 

dense density and C3 and C4 are uniform clusters 

with different densities. There are 1700 normal 

objects in the dataset totally. Furthermore, it contains 

seven outliers which are o1, o2, o3, o4, o5, o6 and 

o7. 

 

Figure 4. Synthetic dataset 

Table 1 lists the top-7 outliers established by each 

algorithm for k = 40. The rank lists the top 7 outliers 

each algorithm detects. The index represents the 

positions of objects. By visual comparison, the most 

outstanding outliers o1, o2, o3 and o4 can be 

recognized by each measure with new density 

definition while INFLO can not pick out o1 and 

DSNOF can not find o4. Even more, although LOF 

can find the top 7 outliers, the outliers found by the 

spLOF are more meaningful. Even for the same 

objects appearing in top-n lists of each measure, their 

positions could be different and new density-based 

results are obvious more reasonable. The points o1, 

o2, o3 and o4 do not belong to any cluster, so the 

outlier factors of spLOF, spINFLO, and spDSNOF 

are always the top 4 outliers while LOF, INFLO and 

DSNOF can not list them in the top 4. For spINFLO, 

the outlier factors of o5, o6 and o7 are not in the 

top7, because these three points are treated as a small 

cluster instead of three outliers. When these points 

belong to a cluster, their outlier factors get smaller so 

that those points on the edge of a cluster are detected 

as outliers, such as 1089, 1054 and 1080, etc. 
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When k is increased, the results are similar. So the 

new density definition with minimum hyper sphere 

algorithm is of better effectiveness and more 

meaningful. 

4.2. Precision, recall and rank power metrics 

In this part, three important metrics, namely, 

precision, recall and rankpower are introduced for 

estimating the performance of an outlier detecting 

algorithm[25, 27]. 

It is assumed that a dataset D = DO ∪ Dn.  DO is 

the set of all outliers and Dn is the rest of the dataset 

D. For any integer m ≥ 1, Om denotes the set of 

outliers detected by an algorithm in the top m objects. 

The precision and recall with respect to m as follows: 

  | | / ,    | | / | | .m m oprecision O m recall O D   

Precision is the ratio of outliers among the top m 

ranked objects detected by the algorithm, while recall 

is the ratio of the outliers included within the top m 

ranked objects and the total outliers. Precision and 

recall only evaluate the accuracy of the algorithm but 

can not reflect the true positions of the outliers. For 

example, three outliers located in the top three 

positions have the same values of precision and 

recall with three outliers located in the bottom three 

positions among m objects returned while we are 

interested in the top ranked three outliers. To deal 

with the problem, rankpower is introduced to reflect 

the positions of the outliers among the results 

returned by an outlier algorithm [30]. Tang et al. 

revise the definition of rankpower. The rankpower 

value ranges from 0 to 1. The larger rankpower value 

is, the better the performance of the algorithm can be 

[23]. Assume that the algorithm returns n outliers in 

m objects, the rankpower is expressed as: 

1
( )  (   1) / 2 ,

n

ii
RankPower m n n L


    

where n ≤ m, 1 ≤ i < n and Li represents the 

position of the ith outlier. 

It is clear that the larger precision, recall and 

rankpower are, the more accurate and effective the 

outlier detection algorithm is. 

4.3. Results on real datasets 

To achieve a comprehensive understanding on the 

effectiveness of the NDDOF measure, we test the 

effectiveness of NDDOF algorithm on some real 

datasets with different sizes and dimensions to 

discover rare classes as pointed out by Yu and 

Aggrawal [31]. The method has been used in  [15, 26, 

32, 33]. Three real datasets, Pima Indians diabetes 

dataset, image segmentation dataset, and Johns 

Hopkins university ionosphere dataset, respectively, 

are adopted in the experiments. Because the number 

of the data that the minimum enclosing hyper-sphere 

algorithm needs should be more than that of the data 

dimension, so k must be larger than d. In addition, we 

also test the influence of different k values on the 

three datasets. Nrc, Pr, Rc and RP are the 

abbreviations of the number of outliers detected, 

precision, recall and rankpower, respectively. 

4.3.1. Pima Indians diabetes dataset 

The first UCI dataset is Pima Indians diabetes 

dataset. The dataset has 768 instances with 8 

attributes and is divided into two classes. There are 

500 instances in Class 0 and 268 instances in class 1. 

To test the extreme case, we delete 488 instances 

in the denser class 0 randomly to generate a rare class 

using the same experimental methods as used in  [15, 

26, 32, 33]. The class distribution we get is shown in 

Table 2. 

Table 2. The class distribution of Pima Indians diabetes 

Case 
Class 

code 

Percentage of 

instances 

Commonly occurring 

class 
1 95.71 

Rare class 0 4.29 

 

For the NDDOF algorithm, the number of k-

neighbor of an object should be larger than the 

number of the attributes of the dataset, so we select k 

equaling 8. For testing the performance of the 

algorithms with different k values, we also run these 

algorithms with k equaling 14, 28 and 42, which are 

the 5%, 10% and 15% of the number of instances in 

the dataset, respectively. We would not select k to be 

too large, which will be meaningless for the outlier 

mining algorithms. 

The value of k is 8, which is the size of the 

attributes, and Table 3 shows the values of recall, 

precision and rankpower to measure the performance 

of the algorithms. The value of m indicates the top m 

ranked objects returned by the algorithms. For m = 

10, the LOF algorithm, the INFLO algorithm, the 

COF algorithm, and the DSNOF algorithm can not 

find any objects in rare classes while the NDDOF al-

gorithm can find one. From m = 20, the NDDOF al-

gorithm detects much more outliers than other algori-

thms. Moreover, in the top 90 ranked instances, only 

the NDDOF algorithm mines all instances in the rare 

class, and the three metrics are always the largest. 

For k = 14, the experiment results are shown in 

Table 4. The LOF algorithm, COF algorithm, INFLO 

algorithm and DSNOF algorithm become worse than 

these algorithms with k = 8, while NDDOF algorithm 

becomes better. For each m, the NDDOF algorithm 

with k = 14 detects more outliers than it does with 

k=8. For m = 80, the NDDOF algorithm detects all 

outliers while it detects 11 outliers with k = 8, and 

other algorithms also can not detect all the outliers. 
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Table 3. Detected rare classes in Pima Indians diabetes dataset for k=8 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0.1 0.3 

20 0 0 0 0 1 0.1 0.1 0.1 1 0.1 0.1 0.1 0 0 0 0 6 0.3 0.5 0.3 

30 1 0.1 0.1 0.1 2 0.1 0.2 0.1 3 0.1 0.1 0.1 0 0 0 0 6 0.2 0.5 0.3 

40 1 0.1 0.1 0.1 2 0.1 0.2 0.1 3 0.1 0.3 0.1 2 0.1 0.2 0.1 7 0.2 0.6 0.2 

50 2 0.1 0.2 0.1 4 0.1 0.3 0.1 3 0.1 0.3 0.1 3 0.1 0.3 0.1 7 0.1 0.6 0.2 

60 3 0.1 0.3 0.1 5 0.1 0.4 0.1 3 0.1 0.3 0.1 3 0.1 0.3 0.1 9 0.2 0.8 0.2 

70 4 0.1 0.3 0.1 5 0.1 0.4 0.1 3 0.1 0.3 0.1 3 0.1 0.3 0.1 10 0.1 0.8 0.2 

80 4 0.1 0.3 0.1 5 0.1 0.4 0.1 4 0.1 0.3 0.1 3 0.1 0.3 0.1 11 0.1 0.9 0.2 

90 4 0.1 0.3 0.1 6 0.1 0.5 0.1 4 0.1 0.3 0.1 3 0.1 0.3 0.1 12 0.1 1 0.2 

 

Table 4. Detected rare classes in Pima Indians diabetes dataset for k=14 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0.4 0.3 0.3 

20 1 0.1 0.1 0.1 1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 8 0.4 0.7 0.4 

30 1 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.1 0.1 0.1 0 0 0 0 9 0.3 0.8 0.4 

40 3 0.1 0.3 0.1 2 0.1 0.2 0.1 2 0.1 0.2 0.1 0 0 0 0 10 0.3 0.8 0.4 

50 3 0.1 0.3 0.1 2 0.1 0.2 0.1 2 0.1 0.2 0.1 0 0 0 0 10 0.2 0.8 0.4 

60 3 0.1 0.3 0.1 2 0.1 0.2 0.1 2 0.1 0.2 0.1 1 0.1 0.1 0.1 10 0.2 0.8 0.4 

70 3 0.1 0.3 0.1 2 0.1 0.2 0.1 2 0.1 0.2 0.1 1 0.1 0.1 0.1 11 0.2 0.9 0.3 

80 3 0.1 0.3 0.1 2 0.1 0.2 0.1 3 0.1 0.3 0.1 1 0.1 0.1 0.1 12 0.2 1 0.3 

 

Table 5. Detected rare classes in Pima Indians diabetes dataset for k=28 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

10 1 0.1 0.1 0.1 2 0.2 0.2 0.3 2 0.2 0.2 0.3 2 0.2 0.2 0.3 3 0.3 0.3 0.4 

20 3 0.2 0.3 0.2 4 0.2 0.3 0.3 3 0.2 0.3 0.2 3 0.2 0.3 0.2 6 0.3 0.5 0.3 

30 3 0.1 0.3 0.2 5 0.2 0.4 0.2 4 0.1 0.3 0.2 5 0.2 0.3 0.2 8 0.3 0.8 0.3 

40 4 0.1 0.3 0.1 5 0.1 0.4 0.2 4 0.1 0.3 0.2 6 0.2 0.5 0.2 10 0.3 0.8 0.3 

50 4 0.1 0.3 0.1 7 0.1 0.6 0.2 5 0.1 0.4 0.2 7 0.1 0.6 0.2 10 0.2 0.8 0.3 

60 5 0.1 0.4 0.1 7 0.1 0.6 0.2 7 0.1 0.6 0.1 8 0.1 0.7 0.2 12 0.2 1 0.3 

 

Table 6. Detected rare classes in Pima Indians diabetes dataset for k=42 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

10 0 0 0 0 0 0 0 0 1 0.1 0.1 0.1 2 0.2 0.2 0.3 2 0.2 0.2 0.4 

20 1 0.1 0.1 0.1 0 0 0 0 1 0.1 0.1 0.1 2 0.1 0.2 0.3 5 0.3 0.4 0.2 

30 1 0.1 0.1 0.1 1 0.1 0.1 0.1 3 0.1 0.3 0.1 3 0.1 0.3 0.2 7 0.2 0.6 0.2 

40 1 0.1 0.1 0.1 2 0.1 0.2 0.1 4 0.1 0.3 0.1 4 0.1 0.3 0.2 10 0.3 0.8 0.2 

50 2 0.1 0.2 0.1 3 0.1 0.3 0.1 4 0.1 0.3 0.1 6 0.1 0.5 0.1 12 0.2 1 0.3 

 

Table 7. The Image segment dataset class distribution 

Case Class code Percentage of instances 

Commonly occurring class Brickface, sky 78.95 

Rare class Window, path, grass 7.89 

Small cluster class Foliage, cement 13.16 
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Table 8. Detected rare classes in Image segment dataset for k=19 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.7 0.9 2 0.4 0.3 0.8 0 0 0 0 2 0.4 0.3 0.8 1 0.2 0.2 0.5 

10 5 0.5 0.8 0.7 2 0.2 0.3 0.8 1 0.1 0.2 0.7 3 0.3 0.5 0.6 3 0.3 0.5 0.3 

15 5 0.3 0.8 0.7 5 0.3 0.8 0.4 3 0.2 0.5 0.2 4 0.3 0.7 0.5 6 0.4 1 0.4 

 

Table 9. Detected rare classes in Image segment dataset for k=23 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.7 1 2 0.4 0.3 1 1 0.2 0.2 0.3 2 0.4 0.3 0.5 4 0.8 0.7 1 

10 5 0.5 0.8 0.6 3 0.3 0.5 0.2 3 0.3 0.5 0.3 3 0.3 0.5 0.3 5 0.5 0.8 0.8 

15 5 0.3 0.8 0.6 5 0.3 0.8 0.4 4 0.2 0.5 0.3 5 0.3 0.7 0.4 6 0.4 1 0.4 

 

Table 10. Detected rare classes in Image segment dataset for k=30 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.7 1 2 0.4 0.3 1 3 0.6 0.5 0.6 2 0.4 0.3 0.4 5 1 0.8 1 

10 5 0.5 0.8 0.6 5 0.5 0.8 0.5 3 0.3 0.5 0.4 3 0.3 0.5 0.3 5 0.5 0.8 1 

15 5 0.3 0.8 0.6 5 0.3 0.8 0.5 4 0.3 0.7 0.5 4 0.3 0.7 0.3 6 0.4 1 0.8 

 

For k = 28 and k = 42, the experiment results are 

shown in Table 5 and Table 6 which are almost 

consistent with Table 3 and Table 4. The algorithms 

perform better than those with k equaling 8 and 14.  

For each m, the Nrc, Pr, Re and RP returned by 

NDDOF are larger than those returned by other algo-

rithms. As the extreme case is tested, the values of 

Pr, Re and RP returned by the algorithms are small, 

but the NDDOF algorithm performs better on this 

dataset. 

4.3.2. Image segment dataset 

The second real UCI dataset is Image segment 

dataset. A total of 210 instances with 19 attributes is 

divided into seven classes with the same size. The 

seven classes are named sky, brickface, foliage, win-

dow, cement, grass, and path, respectively.  

Following the same approach as in [15, 26, 32, 

33] , we randomly select 2 classes to form rare 

classes and other 2 classes as small cluster classes. 

The rest of 3 classes form the commonly occurring 

classes. Table 7 lists the class distribution of the 

dataset. 

We perform the LOF algorithm, the INFLO 

algorithm, the COF algorithm, the DSNOF algorithm 

and the NDDOF algorithm on this dataset to find the 

rare classes. The values of k are 19, 23 and 30, which 

are the size of the attribute, the 30% and 40% of the 

number of the instances, respectively. The experiment 

results are listed in Tables 8 to 10. 

For k = 19, in the top 5 ranked objects detected by 

each algorithm, all of the algorithms except the 

INFLO algorithm are more effective than the 

NDDOF algorithm in terms of the Nrc, Re, Pr, and 

RP. For m=10, the Nrc of NDDOF algorithm is 3 

which is smaller than that of LOF algorithm and 

equal to that of DSNOF algorithm. But the Nrc of 

NDDOF algorithm is larger than the Nrc of the COF 

algorithm and that of INFLO algorithm. Among the 

top 15 ranked records, only the NDDOF algorithm 

finds all the outliers. Although the RP of NDDOF 

algorithm is 0.4 which is smaller than that of LOF 

algorithm and that of DSNOF algorithm, Re and Pr 

returned by NDDOF algorithm are always the largest. 

For k = 23, both the NDDOF algorithm and the 

LOF algorithm can detect the top 4 objects as 

outliers. For m = 10, the NDDOF algorithm and the 

LOF algorithm can find 5 outliers, but the RP 

returned by NDDOF algorithm is larger. When m = 

15, only the NDDOF algorithm can detect 6 outliers. 

For k = 30, the top 5 objects ranked by NDDOF 

algorithm are outliers, while LOF algorithm detects 

the top 4 objects as outliers. For m = 10, both the 

NDDOF algorithm and the LOF algorithm can detect 

5 outliers, but the RP returned by LOF algorithm is 

smaller. When m = 15, only the NDDOF algorithm 

can detect 6 outliers, which is similar to the results 

for k = 23. 

4.3.3. Ionosphere dataset 

We still increase the attributes of the dataset to 

test NDDOF algorithm. The third dataset has 351 

records with 34 attributes. These records form two 

classes labeled as good and bad. We delete some 

records to get a distribution with 225 records forming 

a normal class and 10 records forming a rare class 

following the same method as used in [15, 26, 32, 

33].  
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Table 11 shows the class distribution of the data-

set. We run the LOF algorithm, the INFLO algorithm, 

the COF algorithm, the DSNOF algorithm and the 

NDDOF algorithm on the dataset to find the rare 

class. We chose k being 34, 47 and 59, which are the 

size of the attributes, 20% and 25% size of the data-

set, respectively. The results are shown in Tables 12 

to 14. 

Table 11. The Ionosphere class distribution 

Case Class code 
Percentage of 

instances 

Commonly occurring class Good 95.74 

Rare class Bad 4.26 

 

For k = 34, among the top 5 ranked instances 

detected by the algorithms, the NDDOF algorithm 

can detect 4 rare instances which is only one less than 

that detected by the COF algorithm and the RP is 

smaller than the RP of LOF algorithm. However, for 

m being from 10 to 15, the NDDOF algorithm perfor-

ms better than the other algorithms, although the rank 

power of NDDOF algorithm is smaller than that of 

COF algorithm. For m = 20 the NDDOF algorithm 

can detect all 10 rare instances while the LOF algo-

rithm can detect 9 rare instances and the INFLO only 

detects 6 rare instances. The RP of NDDOF is 0.8 

which is larger than that of other algorithms. 

For k = 47, the LOF algorithm performs better 

than the NDDOF algorithm when m = 5, because 

although the LOF algorithm and the NDDOF algori-

thm can detect 4 outliers in top 5 ranked objects, the 

RP returned by LOF is 1 which is larger than that of 

NDDOF algorithm. Even more, the COF algorithm 

can detect the top 5 objects as outliers, which is also 

better than the NDDOF algorithm. With the value of 

m increasing from 10 to 20, the NDDOF algorithm 

detects more outliers than other algorithms do. Such 

as for m = 15, the NDDOF algorithm can detect 9 

outliers while DSNOF algorithm detects 6 outliers. 

For k = 59, the LOF algorithm, the COF algo-

rithm and the NDDOF algorithm can detect 4 outliers 

when m = 5, and the RP returned by NDDOF algo-

rithm is smaller than that returned by the LOF algo-

rithm and by the COF algorithm. For m = 10, both 

the NDDOF algorithm and the COF algorithm can 

detect 7 outliers, and the RP returned by NDDOF 

algorithm is smaller. However, for m being 15 to 20, 

the NDDOF algorithm could detect more rare instan-

ces than the LOF algorithm, the INFLO algorithm, 

the COF algorithm and the DSNOF algorithm do. 

Furthermore, among top 20 ranked instances returned 

by the algorithms, only the NDDOF algorithm 

detects all instances in rare class. 

From the experiments on the three real datasets, 

the NDDOF algorithm performs better than the LOF 

algorithm, the INFLO algorithm, the COF algorithm, 

and the DSNOF algorithm with different k values. 

For convenience, we could choose k being equal to 

the number of dimensions d. The results of experi-

ments also show that the NDDOF algorithm could be 

adopted in practice. 
 

Table 12. Detected rare classes in Ionosphere dataset for k=34 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.4 0.9 5 1 0.5 1 3 0.6 0.3 0.8 2 0.4 0.2 1 4 0.8 0.4 0.8 

10 6 0.6 0.6 0.8 6 0.6 0.6 1 6 0.6 0.6 0.6 5 0.5 0.5 0.6 8 0.8 0.8 0.9 

15 7 0.5 0.7 0.7 6 0.4 0.6 1 6 0.4 0.6 0.6 6 0.4 0.6 0.6 9 0.6 0.9 0.8 

20 7 0.4 0.7 0.7 9 0.5 0.9 0.4 6 0.3 0.6 0.6 7 0.4 0.7 0.5 10 0.5 1 0.8 

 

Table 13. Detected rare classes in Ionosphere dataset for k=47 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.4 1 5 1 0.5 1 4 0.8 0.4 0.7 3 0.6 0.3 1 4 0.8 0.4 0.9 

10 5 0.5 0.5 0.8 6 0.6 0.6 0.9 5 0.5 0.5 0.7 4 0.4 0.4 0.8 7 0.7 0.7 0.8 

15 6 0.4 0.6 0.7 6 0.4 0.6 0.9 5 0.3 0.5 0.7 6 0.4 0.6 0.5 9 0.6 0.9 0.8 

20 7 0.4 0.7 0.6 9 0.5 0.9 0.6 6 0.3 0.6 0.5 7 0.4 0.7 0.5 10 0.5 1 0.7 

 

Table 14. Detected rare classes in Ionosphere dataset for k=59 

m 
LOF COF INFLO DSNOF NDDOF 

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP 

5 4 0.8 0.4 1 4 0.8 0.4 1 3 0.6 0.3 0.7 3 0.6 0.3 0.7 4 0.8 0.4 0.8 

10 6 0.6 0.6 0.8 7 0.7 0.7 0.9 4 0.4 0.4 0.6 4 0.4 0.4 0.6 7 0.7 0.7 0.7 

15 6 0.5 0.7 0.8 7 0.5 0.7 0.9 5 0.3 0.5 0.5 7 0.5 0.7 0.5 8 0.5 0.8 0.7 

20 7 0.4 0.7 0.6 8 0.4 0.8 0.7 6 0.3 0.6 0.4 8 0.4 0.8 0.5 10 0.5 1 0.7 
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Figure 5. Running time of the algorithms with instances 

changing for k=16 

 

 

Figure 6. Running time of the algorithms with different 

attributes for k=16 

4.4. Time performance and scalability 

In this section, we evaluate the time performance and 

the scalability of the LOF algorithm, the INFLO 

algorithm, the COF algorithm, the DSNOF algorithm 

and the NDDOF algorithm with the same method as in 

[27]. The test dataset is also a UCI dataset, named 

letter-recognition dataset. The dataset has 20000 

instances with 16 attributes. 

With increasing number of instances from 2000 to 

10000, Figure 5 shows the running time of each 

algorithm on the dataset with 16 attributes and k = 16. 

Obviously, the time complexity of NDDOF algorithm 

is higher than that of others. It is because getting the 

minimum hyper sphere is an iterative process that the 

density calculating progress costs much time. 

When the number of instances becomes larger than 

8000, the running times of these algorithms are 

similar, namely, the time growth rate of NDDOF is 

smaller than others. 

To evaluate the scalability of the algorithms about 

the dimension of the dataset, we run the five 

algorithms on the letter-recognition dataset with 8000 

instances and the number of attributes increasing from 

2 to 16. The results are exhibited in Figure 6. The 

running time of five algorithms doesn’t change much. 

In other words, the number of attributes has little 

effect on the scalability of the algorithms. 

5. Conclusions 

This paper presents a neighbor-density-deviation 

based outlier detecting algorithm. 

For verifying the effectiveness of the new density 

definition, we conducted experiments on a synthetic 

dataset. Furthermore, we also experiment with the 

NDDOF algorithm on real UCI datasets. The results 

demonstrate some advantages of our algorithm. First, 

the parameter k of NDDOF algorithm could be chosen 

easily, and is generally equal to the number of 

dimension of the dataset. The value of k will reduce 

the subjective influence to the algorithm. Second, our 

density definition of an object is more proper and 

meaningful than the existing definitions. Third, the 

NDDOF algorithm can deal with a dataset with 

different density clusters. Fourth, the NDDOF 

algorithm could distinguish outliers from the objects 

in the small cluster correctly. Even more, the proposed 

outlier detecting algorithm is more accurate than the 

existing algorithms. 

Because the time complexity of NDDOF is high, 

the future research work will focus on improving the 

time performance of our algorithm by using the R-tree 

and distributed computing. 
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