Teorema di scomposizione
Il teorema di scomposizione, anche detto teorema di Pellegrini[1], è un teorema delle reti lineari che permette di trasformare una generica rete N in un'altra N' che ne renda più semplice l'analisi e che evidenzi le sue proprietà principali.
Enunciato
modificaSiano e, h, u, w, q=q', e t=t' sei nodi arbitrari della rete N e sia un generatore indipendente di tensione o corrente posizionato tra e e h, mentre è la grandezza di uscita, sia essa una tensione o una corrente, relativa al ramo di immittenza[2] connesso tra u e w. Venga adesso tagliata la connessione qq' e venga inserito un circuito a tre terminali ("TTC"[3]) tra i due nodi q e q' e il nodo t=t' come nella figura b ( e sono quantità omogenee, tensioni o correnti, relative alle porte qt e q't=q't' del TTC).
Affinché le due reti N e N' siano equivalenti per ogni , devono valere i due vincoli e , dove la barra sopra la lettera indica la quantità duale.
Il circuito a tre terminali sopracitato si può implementare, ad esempio, connettendo un generatore ideale indipendente di tensione o corrente tra q' e t' , e un'immittenza tra q e t.
Funzioni di rete
modificaCon riferimento alla rete N', si definiscono le seguenti funzioni di rete:
; ;
; ;
dalle quali, per il principio di sovrapposizione degli effetti, si ha:
.
Pertanto, il primo vincolo per l'equivalenza delle reti è soddisfatto se .
Inoltre,
quindi il secondo vincolo per l'equivalenza delle reti vale se [4]
Funzione di trasferimento
modificaConsiderando l'espressione delle funzioni di rete e , il primo vincolo per l'equivalenza delle reti, e che, per il principio di sovrapposizione degli effetti, , la funzione di trasferimento è data da
.
Nel caso in cui il circuito in esame sia un amplificatore reazionato, le funzioni di rete , e tengono conto delle non idealità di tale amplificatore. In particolare:
- tiene conto della non idealità della rete di confronto in ingresso
- tiene conto della non unidirezionalità della catena di reazione
- tiene conto della non unidirezionalità della catena di amplificazione.
Se possiamo considerare ideale tale amplificatore, ovvero se , e , la funzione di trasferimento si riduce alla nota espressione derivante dalla teoria classica della reazione:
.
Calcolo dell'impedenza e dell'ammettenza tra due nodi
modificaTramite il teorema di scomposizione il calcolo dell'impedenza (o dell'ammettenza) tra due nodi risulta abbastanza semplificato.
Impedenza
modificaInseriamo un generico generatore tra i nodi j=e=q e k=h tra i quali vogliamo calcolare l'impedenza . Effettuando un taglio come in figura, notiamo che l'immittenza risulta in serie con ed è percorsa dalla stessa corrente erogata da . Se scegliamo una sorgente di tensione in ingresso e, come conseguenza, una corrente , e un'impedenza , possiamo fare le seguenti considerazioni:
.
Considerando che , dove è l'impedenza vista tra i nodi k=h e t togliendo e cortocircuitando i generatori di tensione presenti, si ottiene l'impedenza tra i nodi j e k nella forma:
Ammettenza
modificaSi procede in maniera analoga alla precedente, solo che stavolta si effettua un taglio come nella figura a lato, notando che risulta ora in parallelo a . Considerando un generatore di corrente in ingresso (conseguentemente si ha una tensione ) e un'ammettenza , l'ammettenza tra i nodi j e k si calcola come segue:
.
Considerando che , dove è l'ammettenza vista tra i nodi k=h e t togliendo e aprendo i generatori di corrente presenti, si ottiene l'ammettenza nella forma:
Osservazioni
modificaLa realizzazione del TTC mediante una generatore indipendente e una immittenza è utile e intuitiva per il calcolo della immittenza tra due nodi ma presenta, come per le altre funzioni di rete, la difficoltà del calcolo di dalla equazione di equivalenza che si può evitare con l'uso di un generatore dipendente in luogo di e impiegando, per quanto riguarda , la formula di Blackman[5]. Tale realizzazione del TTC, come esempio eclatante di reazione, consente anche di considerare in reazione una rete costituita da un generatore di tensione e due impedenze in serie.
Note
modifica- ^ Bruno Pellegrini, primo laureato in Ingegneria Elettronica a Pisa, e probabilmente tra i primi tre in Italia, è stato professore emerito dell'Università di Pisa.
- ^ Immittenza è un termine che combina il concetto di impedenza e ammettenza. Può essere conveniente usare tale termine quando ci riferiamo a un numero complesso che potrebbe essere tanto un'impedenza quanto un'ammettenza.
- ^ "TTC" è l'acronimo del termine inglese three terminal circuit.
- ^ Si noti che, per il calcolo di Xp, sono necessarie funzioni di rete che dipendono a loro volta da Xp. Per andare avanti coi calcoli è pertanto necessario effettuare un taglio tale per cui si abbia ρ=0, in modo da avere Xp=Xi.
- ^ R. B. Blackman, Effect of Feedback on Impedance, Bell System Tech. J. 22, 269 (1943).
Bibliografia
modifica- B. Pellegrini, Considerations on the Feedback Theory, Alta Frequenza 41, 825 (1972).
- B. Pellegrini, Improved Feedback Theory, IEEE Transactions on Circuits and Systems 56, 1949 (2009).