18-th Austrian Mathematical Olympiad 1987

Final Round

First Day - June 2

- 1. The sides *a*, *b* and the bisector of the included angle γ of a triangle are given. Determine necessary and sufficient conditions for such triangles to be constructible and show how to reconstruct the triangle.
- 2. Find the number of all sequences (x_1, \ldots, x_n) of letters a, b, c that satisfy $x_1 = x_n = a$ and $x_i \neq x_{i+1}$ for $1 \le i \le n-1$.
- 3. Let x_1, \ldots, x_n be positive real numbers. Prove that

$$\sum_{k=1}^{n} x_k + \sqrt{\sum_{k=1}^{n} x_k^2} \le \frac{n + \sqrt{n}}{n^2} \left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \left(\sum_{k=1}^{n} x_k^2\right)$$

Second Day - June 3

- 4. Find all triples (x, y, z) of natural numbers satisfying $2xz = y^2$ and x + z = 1987.
- 5. Let *P* be a point in the interior of a convex *n*-gon $A_1A_2...A_n$ $(n \ge 3)$. Show that among the angles $\beta_{ij} = \angle A_i P A_j$, $1 \le i \le n$, there are at least n-1 angles satisfying $90^\circ \le \beta_{ij} \le 180^\circ$.
- 6. Determine all polynomials $P_n(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ with integer coefficients whose *n* zeros are precisely the numbers a_1, \dots, a_n (counted with their respective multiplicities).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com