
AUTHOR ET AL.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 1

A Generative Human-Robot Motion Retargeting

Approach using a Single RGBD Sensor

SEN WANG1,2,Student Member, IEEE, XINXIN ZUO2,1,Student Member, IEEE, RUNXIAO WANG1, and

RUIGANG YANG2,3,4, Senior Member, IEEE

Abstract—The goal of human-robot motion retargeting is
to let a robot follow the movements performed by a human
subject. Typically in previous approaches the human poses are
precomputed from a human pose tracking system, after which
the explicit joint mapping strategies are specified to apply the
estimated poses to a target robot. However, there is not any
generic mapping strategy that we can use to map the human joint
to robots with different kinds of configurations. In this paper, we
present a novel motion retargeting approach that combine the
human pose estimation and the motion retargeting procedure in
a unified generative framework without relying on any explicit
mapping.

First, a 3D parametric human-robot (HUMROB) model is
proposed which has the specific joint and stability configurations
as the target robot while its shape conforms the source human
subject. The robot configurations including its skeleton propor-
tions, joint limitations, and DoFs are enforced in the HUMROB

model and get preserved during the tracking procedure. Using
a single RGBD camera to monitor human pose, we use the
raw RGB and depth sequence as input. The HUMROB model is
deformed to fit the input point cloud, from which the joint angle
of the model are calculated and applied onto the target robots
for retargeting. In this way, instead of fitted individually for each
joint, we will get the joint angle of the robot fitted globally so
that the surface of the deformed model is as consistent as possible
to the input point cloud. In the end, no explicit or pre-defined
joint mapping strategies are needed.

To demonstrate its effectiveness for human-robot motion
retargeting, the approach is tested under both simulations and on
real robots which have quite different skeleton configurations and
joint Degree of Freedoms (DoFs) as compared with the source
human subjects.

Index Terms—motion retargeting, human robot interaction,
RGBD sensor

I. INTRODUCTION

Nowadays with the advancement of object detection and

recognition as well as the development in speech understand-

ing, social robots [1] have become more intelligent. However,

there are still lots of issues that need to be concerned before

getting it into daily usage. Among them, one major problem is

how to get the robot perform specific movements in a natural

way and interact with its surrounding objects. At present the

motion generating strategies are very limited which makes it

still an active research topic for which many approaches have

been proposed [2]–[4]. One effective way of generating motion

for the robots is to let a robot mimic the movement of a human,

i.e., human-robot motion retargeting. The goal is to drive a

humanoid robot to move in a natural way as provided with

the joint movements or positions of human subjects. In this

paper, we pay our attention on how to make robots imitate

the human motion. It can be widely used in areas like robot

simulation [5] and also virtual characters animation [6].

Previously, the joint position obtained from a motion capture

(Mocap) system [7], [8] or Kinect skeleton tracking algo-

rithm [9] is always considered as the input for the motion

retargeting problem. Starting from that, the joint movements or

the end-effector positions are applied onto robots via some pre-

defined mapping strategies between the human subjects and

robots. One straightforward way is to apply Inverse Kinematics

(IK) to end-effector positions given the joint positions of

human subjects [2]. Another kind of solution is to define

specific mapping criteria which tries to preserve the angle of

body joint [10].

These kinds of methods can perform well in some cases,

however they lack the ability to generalize across various

robots. The mapping between the robot and source human

subjects need to be redefined whenever we want to drive

a robot that has different configurations in the proportion

of limbs or Degree of Freedoms (DoFs) for the joint. An-

other drawback for these methods is that it is difficult, if

not impossible, to simultaneously enforce constraints of both

joint angle and end positions. This will probably result in

dissimilarity for the movements performed by the target robot

and the human subjects. Moreover, the very different joint

limitations and DoFs of each joint have to be taken into

consideration when designing the mapping criteria, which is a

tedious work and there is not any generic way to enforce these

configurations into the mapping function. Stability is another

essential problem that needs to be dealt with for the robots

while imitating human motion. These requirements pose more

challenges for human-robot motion retargeting.

To tackle the above problems, in this paper we propose a

generative human robot motion retargeting approach which

doesn’t rely on pre-defined or explicit mapping strategies.

Also, instead of dealing with the motion tracking and retar-

geting in two separate procedures, we intend to combine them

in a unified framework using a single RGBD sensor.

In detail, for the robot model representation, it is usually

modeled as joint or skeleton; in contrast we propose to

use a parametric human-robot template to represent the joint

together with 3D surface shape. More specifically, we propose

a HUMROB model that has the joint configurations of the

target robot while preserves the 3D shape of source human

subject. The robot is modeled as 3D mesh with bones and joint

embedded inside the surface. Given this HUMROB model,

our goal of motion tracking and retargeting can be realized

simultaneously by optimizing the HUMROB template model
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so that its surface fits as close as possible to the point cloud

output by the RGBD sensor. Besides, the stability and joint

limitations are enforced in the objective function naturally

during the deformation. After that, we will get the joint angle

of the deformed HUMROB model which can be applied to

the robot directly since they share the same skeleton config-

urations. In the meantime, the deformed surface shows great

pose and shape similarity with respect to the human subject.

Since we do not need an explicit joint or position mapping

strategies, our method can be applied to robots with different

configurations quite conveniently. We classify our approach

as a generative motion retargeting approach as compared with

previous methods which focus on developing various skeleton

mapping strategies.

As far as we know, we are the first that uses a generative

unified framework to achieve motion retargeting with a single

RGBD sensor. We propose a HUMROB model for the motion

retargeting which bridges the gaps between the human subject

and target robot.

This paper extends our previous work in paper [11]. Specif-

ically, to build up the parametric human-robot template, we

exploit a generative human model called Skinned Multi-Person

Linear (SMPL) model, which is generated by a base mesh

together with the body shape and pose parameters. The SMPL

model is optimized to closely fit the body shape and poses of

the human subject by conforming with the input RGBD image.

In this way, we do not need any pre-scanned personalized

3D model of the human source subjects. Besides, instead of

relying on any specific pose to start with, like A-pose or T-

pose, we adopt the ability of deep learning based joint esti-

mation techniques to initialize our retargeting system. Right

now, our retargeting framework can work all automatically and

get started immediately for any human subject in any poses.

Furthermore, we exploit the facial landmarks contained in the

color image to get a better estimation for the head pose.

Our algorithm is validated with both simulation and on

real robots having quite different skeleton configurations from

human. Satisfactory and stable motions have been generated

even under extreme poses. Some examples are shown in Fig. 1.

II. RELATED WORK

As a hot topic in robotics, motion retargeting has been

widely used in areas such as gaming and motion generation.

Previously, for the motion retargeting methods, two separate

procedures are always involved: motion capture of the source

subject and then motion retargeting to the target. In this

section, we will briefly review previous work focusing on

human-robot motion retargeting that is most related to ours.

For a more detailed review of pose estimation and human-

robot motion retargeting, we refer the reader to the survey [12]

and [13] respectively.

A. Human Pose Estimation

Human pose estimation can be categorized into marker

based and marker-less methods regarding to the different

equipments and setups that have been used.

(a)

(b) (c)

Fig. 1: Motion retargeting results of various poses. The RGBD

images are captured by Kinect V2. The meshes are generated

by back-projecting the depth images. We show the retargeting

results on a NAO V5 robot using our proposed method.

Marker based systems. The user is required to wear a

special suit with markers attached to fixed body anchors. For

example, Vicon systems [7] has been widely used in motion

capture. More recently Xsens MVN motion capture system is

introduced [8], [10], which consists of inertial sensors attached

to the individual body segments so that we can get the marker

positions more precisely. Although it can offer high accuracy

and a rate of frames, the huge cost is an obstacle from letting

it to get widespread used. And they are often used in lab

environment.

Marker-less systems. Motion capture from color images

have been studied for decades, and more recently it has got

great development thanks to the deep learning techniques [14].

However, it is still an unsolved problem for computer vision

community considering the inherent ill-posed condition [15].

Luckily, with the availability of consumer depth sensors,

it has become easier to acquire the human skeleton. For

example, the Kinect SDK [16], [17] has provided the interface

to output the human skeleton, which has demonstrated its

superior performance with more accurate joint estimation than

the methods exploiting purely color images. Later on, apart

from the default use with original SDK, researchers have

focused on how to get the human pose more precisely. Lots of

methods have been developed, which can be partitioned into

discriminative and generative approaches. Existing discrimi-

native approaches have either performed body part detection

by identifying salient points of the human body [18], or relied

on classifiers or regression machines trained offline to infer

the joint locations [19]. The generative approaches intend to

fit a human template to the observed data. For example, Ye et

al. [20] have exploited the Gaussian Mixture Model to drive

the human template to conform the observed data, without

building explicit point correspondences.
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B. Motion Retargeting

The challenge for motion retargeting can be summarized

into two aspects: 1) Source and target has similar or same

topology but with different geometry, which means the

source/target is expressed as similar or even the same hierarchy

link of joint, but the ratio length of bones is different from

each other. 2) Source and target has different topology and

also different geometry, which is a more complex situation.

Different geometry. For the different geometry but same

topology, it is common to employ IK solvers integrated

with soft constraints enforced in an object function. Also,

some hard constraints are employed to define specific rules

for the motion that must be maintained [8]–[10], [21]. For

example, Ayusawa [4] proposed a method by solving the

geometric parameter identification, motion planning, and the

IK of the human motion-capture data problem simultaneously.

The method can morphs the human model to the robot model

according to some pre-defined virtual joints. Van de Perre et

al. [44] proposed a generic method, which implements IK with

a cost function for natural posture and validates on several

different robots, to generate gestures.

Different topology. Source and target are identified as

topologically different if they do not have the similar skeleton

structure. Some methods have been proposed, among which

exampled-based methods [22], [23] are commonly used. These

methods are established from several typical mappings of the

motion, from which some key poses and correspondences are

pre-defined. Sel [28] introduce Golaem skeleton based on a

hierarchy of bone chains which defines the beginning and

the end of important kinematics parts of the input skeleton,

however, this method still needs pre-defined limb attributes.

Besides, Jin et al. [27] have preserved the spatial relationships

between two characters to maintain the interactive motion. Re-

cently, some deep learning methods have been proposed [24].

For example, Villegas [25] proposed an unsupervised model

based on adversarial training with kinematics. The method

utilizes cycle consistency to learn to solve the IK problem.

Peng [45] and Rajeswaran [46] use deep reinforcement learn-

ing to control complex dynamical systems such as whole body

or hand with the use of a small number of demonstrations.

These kinds of methods are designed for character motion

retargeting without considering the stability or physical con-

straints, therefore they cannot get applied to real robot systems

directly.

Unlike the traditional motion retargeting systems which

take the pose estimation and mapping procedure separately, in

this paper we propose a unified framework which combines

the two procedures using a single RGBD sensor. We can

handle motion retargeting for both the different geometry and

different topology without special treatment.

III. BACKGROUND

In this section, we would like to introduce some background

knowledge that is essential for our approach.

A. SMPL model

The SMPL model [29] is a skinned vertex-based model

which is able to realistically represent a wide range of human

body shapes and posed with natural pose-dependent defor-

mations. SMPL parametrizes a triangulated mesh by pose

θ ∈ R
72 and shape parameters β ∈ R

10. Optionally a global

translation parameter γ ∈ R
3 can be taken into account as

well. SMPL incorporates a skeleton with K = 24 joints

and for each joint it has 3 rotational Degrees of Freedom.

Therefore, the 72 dimensional pose parameters represent the

72 joint angle in an axis-angle representation of the relative

rotation between body parts. The shape parameters β are

coefficients of a low-dimensional shape space, learned from a

training set of thousands of registered 3D human body scans.

Basically, we have a base template mesh Tµ with M =
6890 vertices. Shape BS(β) and pose dependent deformations

BP (θ) are first applied to the base template Tµ by the

following equation,

TP (β,θ) = Tµ +BS(β) +BP (θ) (1)

where BS(β) is a blend shape function that takes as input

a vector of shape parameters β and outputs a blend shape

sculpting the subject identity. Similarly, BP (θ) is a pose-

dependent blend shape function that accounts for the effects

of pose-dependent deformations.

Finally, a standard blend skinning function W (·) is applied

to rotate the vertices around the estimated joint centers with

smoothing defined by the blend weights. The posed body

model is formulated as below with Ω denotes the skinning

weights and J(β) are the joint location which also depends

on the body shapes,

M (β,θ) = W (TP (β,θ), J(β),θ,Ω) (2)

To be different from the purely rigged model as used

in our previous paper [11], with the SMPL model we are

able to represent human subjects with various shapes more

conveniently using the extra shape parameters.

B. Gaussian Mixture Model

We briefly introduce the GMM model here and its solution

using EM algorithm, which are the basic techniques for our

retargeting system. More details can be found in [30].

Now suppose that we have N captured points denoted

as SN∗D = (s1, . . . , sN )T and M model points, TM∗D =
(t1, . . . , tM )T , where D is the dimensionality of the point set

and it equals 3 in this paper. The basic assumption is that the

captured points follows the GMM distribution whose centroids

depend on the model points. Therefore, the probability of each

captured point sn can be expressed as,

p(sn) = (1− µ)

M
∑

m=1

1

M
p(s|tm) + µ

1

N
(3)

where

p(sn|tm) =
1

(2πσ2)
3

2

exp(−
||sn − tm||2

2σ2
) (4)
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where µ is the approximation for the percentage of outliers,

which is considered to be evenly distributed.

Next the GMM centroids are re-parametrized with a set of

parameters φ and get estimated by minimizing the negative

log-likelihood function,

E(φ, σ2) = −

N
∑

n=1

log

M+1
∑

m=1

p(tm)p(sn|tm(φ))

= −
N
∑

n=1

log(

M
∑

m=1

1− µ

M
p(sn|tm(φ)) +

µ

N
)

(5)

The energy function is usually solved iteratively using the

EM algorithm, as described in [31]. We briefly summarize the

E-step and M-step here.

During the E-step, using the parameters estimated from the

previous M-step, we can then use the Bayes’ rules to calculate

the posterior probability distribution for the model points given

the captured data,

pold(tm(φ)|sn) =
exp(−

||sn−toldm (φ)||2

2(σold)2
)

∑M
i=1 exp(−

||sn−told
i

(φ)||2

2(σold)2
) + c

, (6)

where c =
(

2π(σold)2
)

3

2 1−µ
µ

M
N

.

To simplify the expression, we let pold stand for

pold(tm(φ)|sn) in the following sections.

During the M-step, we update the parameters φ and σ

by minimizing the following complete negative log-likelihood

function.

Q(φ, σ2) =
1

2σ2

N,M
∑

n,m=1

pold||sn − tm(φ)||2 +
3

2
NP logσ2,

(7)

where NP =
∑N,M

n,m=1 p
old. The optimization has been vali-

dated to get converged after several iterations.

C. Joint and Vertex transformation

To better represent overall pose of the human body, we

adopt the classical twists exponential map for joint transfor-

mation and skeleton-subspace deformation for vertex transfor-

mation.

1) Joint transformation: For articulated models such as

humans and robots, their poses can be represented by a set

of twists ξ̂φ ∈ SO(3), which is the exponential mapping that

can be generalized to the Euclidean group (SE(3)) [32]. More

details are given in the following.

In general, an articulated body transformation is expressed

as the exponential of the twist T ∈ SE(3),

T = exp(ξ̂φ) (8)

In homogeneous coordinates, the twist ξ̂ ∈ se(3) can be

represented as follows,

ξ̂ =

[

ω̂ v

0 0

]

∈ R
4×4, (9)

where ω̂ ∈ so(3) is 3× 3 skewed-symmetric matrix converted

from a 3D vector ω ∈ R
3, which is the direction of the rotation

axis. The 3D vector v determines the location of the rotation

axis and the amount of translation.

Suppose that robot has P joints and the whole body

movement, namely the body posture, is controlled by these

parameters Φ := (φ0, φ1 . . . , φP ). Under the expression of

the exponential map, the final transformation for each joint k

is represented as,

Tk =

P
∏

p=0

exp(κpk ξ̂pφp), (10)

where ξ̂0φ0 is the global transformation and rotation for the

root. κpk = 1 if p is the hierarchical parent of the joint k,

otherwise κpk = 0 .

2) Vertex transformation: With the joint transformation

under any pose Φ in hand, the position of each vertex v in

template mesh is calculated by skeleton-subspace deformation

method (also known as ”LBS”) [33],

vi(Φ) =

P
∑

p=1

ωipTp(Φ)v
0
p, (11)

where ωip is the skinning parameters which we use to relate

the ith vertex to the underlying joint p, and v0i stands for the

position of each vertex in its reset pose.

IV. APPROACH

In this paper, we want to retarget the motion performed

by the source human subjects to target robots in a generative

way without using any pre-defined joint mapping. The overall

pipeline is shown in Fig. 2 and we have mainly two steps in

our framework. First, we develop a novel approach to create a

parametric HUMROB model in section IV-A. The parametric

model is assumed to keep the body shapes as close as possible

to the source human subject and embedded with the specific

skeleton configurations of the target robot. In this way, the

parametric model bridges the gaps between the human subject

and target robot to realize our goal for human-robot motion

retargeting. As for the second step, the parametric model is

deformed to fit the captured RGBD image of the source human

subject as described in section IV-B. We have enforced joint

limitations and stability constraints of the target robot during

the optimization. Finally, the joint angle computed after the

deformation can be applied directly onto the robots for the

motion retargeting purpose.

A. HUMROB Model

In this section, we will describe our method of building

up the HUMROB model, which is essential for our retarget-

ing system. As a personalized 3D Human-Robot model, the

HUMROB model is supposed to closely fit to the source human

subject in body shapes for the tracking purpose. In the mean-

time, for the retargeting purpose, the model is parametrized by

the skeleton of the target robot, which is usually different from

the humans. As a parametric model, the HUMROB model is

able to deform according to the joint angle and positions.

At the first step, we need to build a personalized 3D human

model for the source human subject. Instead of relying on the
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Output 

pose

Robot

Observed RGBD data

HUMROB Model

Fig. 2: System Pipeline of our approach. We use captured

images from a single RGBD sensor as input. First, we build

up the HUMROB model, which is a parametric model that

has same skeleton configurations as the target robot and also

fits closely to the source human subject in 3D shapes. This

parametric model is deformed to fit the captured RGBD image,

from which the joint angle of the target robots are computed.

Finally, the joint angle can be easily applied onto the robot

to get the final retargeting results with the robots performing

similar motion with respect to the human subject.

fusion system which uses multiple depth sensors or a depth

sequence [34] as in our previous paper [11], we exploit the

SMPL model and try to build up a parametric human model

for the human subject from a single RGBD image, which is

more efficient and convenient for our retargeting system. This

is achieved in the following two steps.

1) Model initialization: First, we take advantage of the

information contained in the color image to optimize the

human body shape and pose directly, so that we could get

an approximate estimation for human body. To be more

specific, we estimate 2D joint from the input color image

using a deep learning based joint detection approach called

OpenPose [35]. Then an objective function is formulated to

get the projected joint of the SMPL model to be close to the

2D joint output from the network by optimizing the pose θ

and shape parameters β in the SMPL model. Mathematically,

the objective function is defined as below,

Edata(β,θ) =
∑

i∈|J|

ωiρ(ΠK(f(J(β)i,θ))− Ĵest,i) (12)

where Ĵest is the estimated joint positions in 2D space with

its confidence represented by ω. f(·) is the function that

transforms the joint from its rest pose to current positions

as controlled by the pose parameters θ using the chain rule

defined by the human skeleton. ΠK is the projection operation.

A differentiable Geman-McClure penalty function ρ is used

here to be more robust to noisy estimates.

However, it is not sufficient to constrain the 3D human

body only by its 2D joint as lots of configurations could

result in the exact same 2D joint. Most methods for 3D pose

estimation use some sort of pose priors to favor probable poses

over improbable ones. We adopt the pose prior trained from

the CMU dataset to constrain the poses. The pose prior is

defined by a mixture of Gaussians, and the objective function

is formulated to minimize the negative logarithm of a sum

[36],

Ep(θ) = −log
∑

j

(gjN(θ;µθ,j,Σθ,j)) (13)

We put those both data and pose prior terms together and

minimize the objective function as below,

Ecolor(β,θ) = Edata(β,θ) + λpEp(θ) (14)

More details on how to solve the objective function can be

found in paper [36].

2) Model refinement: After the above step, we will get an

approximated human body that fits the 2D joint in the input

color image. However, due to the inherent ambiguity caused by

the perspective projection, the recovered 3D model still haven’t

fitted very well to the real surface as shown in Fig. 3(b). To

deal with this problem, we further optimize the shape and

pose of the SMPL model to let it conform with the depth

image. Using the approximated 3D model from the previous

step as a starting point, we propose an EM based optimization

framework to finally get our personalized 3D human model as

in Fig 3(d).

The overall objective function is defined as,

E(β,θ, σ2) = −

N
∑

n=1

log(

M
∑

m=1

1− µ

M
p(sn|Mm(β,θ)) +

µ

N
)

(15)

p(sn|Mm(β,θ)) =
1

(2πσ2)
3

2

exp(−
||sn − Mm(β,θ)||2

2σ2
),

(16)

where sn is a sampled vertice from the captured depth data

and Mm(β,θ) is a vertice of the deformed SMPL model as

controlled by the shape and pose parameters. The vertices of

the SMPL model are taken as the centroids of GMM model

and they are optimized to fit the observed depth image.

To be noticed, we haven’t enforced any priors here as the

current approximation is already relatively close to the real

surface, and the depth image provides sufficient constraints to

resolve the ambiguity.

The above function is minimized under the EM based opti-

mization framework. In the E-step, we compute the posteriors

with the following equation,

pmn(Mm(β,θ)|sn) =
exp(− ||sn−Mm(β,θ)||2

2σ2 )
∑M

i=1 exp(− ||sn−Mi(β,θ)||2

2σ2 ) + c
,

(17)

In the above equation, σ2 is the updated value from the

previous M-step and it is initialized to be 0.05 at the first

iteration.

During the M-step, the shape and pose parameters of the

SMPL model as well as σ2 get updated by minimizing the

following equation,

Q(β,θ, σ2) =
1

2σ2

N,M∑

n,m=1

pmn||sn − Mm(β,θ)||2 +
3

2
NP logσ

2
,

(18)
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(a) input RGBD images
(b) Optimized SMPL model 

using only Color image

(d) The final SMPL model 

after our EM optimization
(e) depth + d)(c) depth + b)

Fig. 3: Generating a personalized model with single RGBD image. (a) shows the input RGBD image. (b) is the optimized

SMPL model using only the joint information in the color image. In (c), we put the optimized model from (b) together with

the captured surface. (d) and (e) shows our optimized SMPL model after the EM optimization which aligns well to the real

surface.

Finally, we will get a SMPL model(as shown in Fig. 3(e))

that fits well to the input surface when the optimization

converges after several iterations.

To better validate the reconstruction accuracy of the result

SMPL model, in Fig. 4 we have compared the generated mod-

els with 3D models reconstructed by some fusion system [34].

The mean error distance from our generated models to the 3D

models is 18.9mm for the Male and 15.5mm for the Female,

which is relatively small with respect to the current state-

of-art human tracking system. Therefore, we believe that the

generated SMPL model is sufficient for the following tracking

and retargeting system.

3) Parametric model retargeting: Right now, we have got a

personalized 3D human model for the source human subject.

To realize our goal of human-robot motion retargeting, the

next step is to embed the skeleton configurations of the target

robot to this 3D model to finally get our HUMROB model.

For the limbs, we relocate the joint positions according to

the limb proportion of the robot. The skinning weights are

recomputed and the joint limitations are redefined based on

the target robot as shown in Fig. 5. The DoFs of the robot

might also be different from the human subject, so they are

also adjusted with respect to the robot. For the joint of the

upper torso, the robot we are using has not any DoFs, therefore

they are locked.

B. Motion Retargeting

Now we have the HUMROB model, we can then perform

the motion retargeting by fitting this parametric model to the

captured RGBD data. Some of the basic techniques used in

the tracking or retargeting framework has been described in

Sec. III-B and Sec. III-C.

1) Initialization: Instead of making additional constraints

of specifying the initial starting pose, like T-pose or A-pose,

of our tracking and retargeting system, we have exploited the

deep learning based pose estimation techniques for initializa-

tion. In detail, we detect the 2D joint in the color image

using the OpenPose and back-project the 2D joint into 3D

space using the corresponding depth value. We take those 3D

joint positions as the end-effect constraints and use Inverse-

Kinematics(IK) to compute the joint angle of the target robot.

For the NAO ROBOT used in this paper, we only use the joint

positions of the left/right shoulders, left/right waists, left/right

hips, left/right ankles.

After the initialization, the poses will get refined by our

following retargeting method.

2) Energy formulation: Before delving into our approach,

we want to clarify that in this paper the tracking and motion re-

targeting is conducted continuously along the sequence rather

than selecting keyframes and performing retargeting frame by

frame, which is often used in some previous work.

Now suppose that the robot has J joints and we have got

the pose (the joint angle in our case) at time t, expressed as

Θt := (θt0, θ
t
1 . . . , θ

t
J), and we intend to compute the changes

for the pose ∆Θ from time t to t+ 1,

Θt+1 = Θt +∆Θ (19)
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(a) input RGBD images
(b) Reconstructed Model

from Fusion system[34]

(c) Optimized 

SMPL model
(d) Error Map

Unit: mm

Unit: mm

Fig. 4: Validation of the optimized SMPL model. (a) are the input RGBD images. (b) are the 3D models recovered from fusion

system [34]. (c) shows our optimized SMPL models. (d) is the error map showing the distance from our optimized SMPL

model to the reconstructed 3D models in (b).

(a) SMPL model with default skeleton

(b) HUMROB model with NAO robot skeleton

Fig. 5: Parametric model retargeting.

Under twist-based parametrization, the transformation for

any joint k at time t+ 1 can be expressed as,

T t+1
k =

J
∏

j=0

exp(κjk ξ̂k(θ
t
j +∆θj)) (20)

To compute the pose expressed by Θ, we formulate the

energy function as below,

E = E(Θ, σ2) + λ⊥E⊥(Θ, σ2) + λrEr(∆Θ) (21)

The first term is the fitting term that penalizes the distance

of deformed HUMROB template model from the captured

depth map, which is enforced to maintain pose similarity. In

details, suppose we have the observed points from the capture

human pose which are denoted as (SN∗3 = (s1, . . . , sN )T ),

and also the template points sampled from the HUMROB

model which are represented as a vertex set (VM∗3 =
(v1, . . . ,vM )T ). As similar to the GMM model described in

Sec.III-B, SN∗3 can be considered as the observed data which

is supposed to be generated from the GMM centroids VM∗3.
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Therefore, we formulate the fitting cost between the de-

formed template model and captured depth map as below,

E(Θ, σ2) =
1

2σ2

N,M
∑

n,m=1

pmn||sn − vm(Θ)||2 +
3

2
NP logσ2,

(22)

Similar to pold in Eq. 6, the pmn can be seen as the

probability of sn relating to vm, we give more details in

section IV-B4. vm(Θ) is calculated by substituting the Tj(Θ)
in Eq. 11 with Eq. 20, and then we get the position for each

vertex computed as,

vm(Θ) =

J
∑

j=1

ωmj

(

J
∏

j=0

exp(κjk ξ̂k(θ
t
j +∆θj))

)

v0m, (23)

The second term in Eq. 21 is another fitting term that

ensures the normal consistency between deformed template

model and the observed depth data. The cost function for this

term is given as,

E⊥(Θ, σ2) =
1

2σ2

N,M
∑

n,m=1

pmn||s
⊥
n − v⊥

m(Θ)||2 +
3

2
NP logσ2,

(24)

where s⊥n and v⊥
m(Θ) are the normal vector for the sn and

vm(Θ) respectively.

To reduce the computation cost, we use same σ2 for Eq. 22

and Eq. 24.

In addition to the above two fitting terms, we also have

the third term in Eq. 21 that penalizes big changes of the

poses between neighboring frames. This term is incorporated

to preserve temporal consistency and smooth motion transition

along the sequence.

Er(∆Θ) =
∑

||∆Θ|| (25)

Another important constraint we must consider while per-

forming motion retargeting is the joint limitation with respect

to the target robot. The joint limitation for the robots usu-

ally differs from humans, which is handled naturally in our

framework by specifying the lower (θmin) and upper bound

(θmax) for each joint while performing the optimization for

Eq. 21. It can be seen as a hard constraint on the cost function.

Mathematically, the overall energy function is defined as

below,

E = E(Θ, σ2) + λ⊥E⊥(Θ, σ2) + λrEr(∆Θ)

Θ ∈ [Θmin,Θmax]
(26)

We present two examples in Fig. 6 showing the deformation

results. As in the left column of Fig. 6, the HUMROB model

under the initial poses with respect to the first frame is

overlaid with the captured meshes. And the right column

shows our deformed HUMROB template achieved from the

above optimization.

3) Robot stability: In this paper we assume that the robot

is motionless as it is driven at a very low motor speed.

This indicates that it only experiences gravitational forces.

Therefore instead of using the complex ZMP criteria, we turn

to use floor projection of center of mass (FCoM ) criteria to

Fig. 6: Deformed HUMROB model results after applying our

framework.

ensure the stability of the robot. Next we will show how to

integrate this stability constraint into our framework.

Suppose the robot has L links or bones and the vectors

pl are the vectors pointing from the CoM of each individual

bones to coordinate origin. The CoM for the whole body,

which denoted as pCoM , is computed by,

pCoM =

∑L
l=1 mlpl

∑L
l=1 ml

, (27)

where ml is the mass of each bone.

The floor projection of the CoM (pFCoM ) is calculated by

taking x and y component of vector pCoM as its x and y

component respectively and setting its z component to be zero.

The main criteria is: the motionless humanoid should be

able to maintain its balance if pFCoM is in the support polygon

(SP ), which is formed by the convex hull about the floor

support points. In this paper, we use the inscribed circle of

SP as the more strict support polygon, denoted as C SP .

Therefore, we introduce another term Eb to express the robot

stability, which is computed as,

Eb =







0 ifpFCoM inside C SP

∞ ifpFCoM outside SP

o− pFCoM otherwise

(28)

where o is center of C SP .

For each frame we will first find the optimal pose con-

figuration by minimizing Eq. 26. Then we can compute Eb

which reflects the current stability status. If Eb equals zero,

it means we can safely apply the current pose into the robot

with stability already maintained. However, if Eb equals ∞,

we will give the opposite offset (0.3 rad) to the hips’ pitch/roll

angle. Otherwise, we will record the −→opt = o−pFCoM for the

current frame t. Suppose for the the next frame t+1, we have
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got the vector −→opt+1. Then if cos(−→opt,
−→opt+1) > cos(30◦) &

||−→opt+1|| > ||−→opt||, which indicates that the stability violation

will probably occur in successive frame, we will give an

opposite offset (0.05 rad) to the hips’ pitch/roll angle in this

case.

4) Implementation details: Alg. 1 shows the overall pro-

cedure to compute pose parameters Θ and σ2 of the current

frame. First, we adopt a linearized surface deformation strategy

[37] to simplify the constrained nonlinear optimization into a

linear one. Since the normal fitting term Eq. 24 cannot be

linearized easily, it is neglected in this stage. The computed

linear solution is then used to initialize the overall nonlinear

optimization. We choose to use trust-region-reflective algo-

rithm to find a optimal solution for the nonlinear minimization

of function Eq. 26.

In more details, in the Linear solver part, we only consider

the fitting term with respect to the vertex position of the

template mesh(Eq. 22), and the the posteriors pmn is computed

as,

pmn =
exp(−

||sn−vold
m (Θ)||2

2(σold)2
)

∑M
i=1 exp(−

||sn−vold
i

(Θ)||2

2(σold)2
) + c

, (29)

In the Nonlinear solver part, the constraints of both the

vertex position of the template mesh and its surface normal

are incorporated together (Eq. 22 and Eq. 24), and we have

the the posteriors pmn computed as below,

pmn =
exp(−

||sn−vold
m (Θ)||2+λf ||s

⊥

n −v⊥old
m (Θ)||2

2(σold)2
)

∑M
i=1 exp(−

||sn−vold
i

(Θ)+λf ||s⊥
n −v⊥old

m (Θ)||2

2(σold)2
) + c

,

(30)

And c in Eq. 29 and Eq. 30 can be computed by Eq. 6.

initial pose: linear third order auto-regression

begin Step One: Linear solver for initialization

while Pose not converged do
E-step: Compute posteriors via Eq. 29.

M-Step:

• Minimize the linearized cost function of

Eq. 22 for (Θ, σ2)
• Update template vertices via Eq. 23

• parameters are adjusted by enforcing

robot stability

end

end

begin Step Two: Nonlinear solver for global solution
E-step: Compute posteriors via Eq. 30.

M-Step:

• Minimize Eq. 26 using trust-region-reflective

algorithm

• Apply stability to adjust the parameters

end

Algorithm 1: Our pose optimization and retargeting pro-

cedure.

The parameters are further adjusted in every M-step to

satisfy the stability constraints as described in section IV-B3.

Finally, in order to speed up the convergence speed and

reduce the computation cost, we have performed sub-sampling

on both the HUMROB template and the captured point cloud.

We have tested different numbers of sampled points. Without

losing key components and good performance, we identified

the template and point maps sample number should be 6890

and 3000 respectively.

5) Head pose estimation: As compared to the limbs and

torso of the human body, the head is more difficult to track

with only depth information, especially when the human is

standing relatively far way from the camera and there is not

much detailed geometry captured in the depth image. Also

there is great noise around the head in the depth image

as affected by the hair. Therefore, in this paper we exploit

the facial landmarks in the color image to overcome those

difficulties. We assume the facial expressions haven’t changed

much during this procedure.

First, we detect the facial landmarks in the color image

using the method [38]. Given those detected landmarks, we

find their corresponding depth values in the depth image.

We neglect the landmarks around the boundary of face as

they probably fall outside the face part as caused by the

displacement between the color and depth sensor. In this way,

we can get 3d correspondences between the current frame

and the previous frame around the head part. We compute the

transformations of the head with those correspondences with

a RANSAC based technique to filter out possible outliers. In

Fig. 7 we show the comparison results with and without using

the color information for the head pose estimation.

V. EXPERIMENTS

A. Data Preprocessing

In this paper, the RGBD sequences of the source human

subject are captured using Microsoft Kinect V2. For the depth

image, it has the resolution at 512× 424 and 1920× 1080 for

color image. The time resolution is 30fps. The RGBD sensor is

first calibrated so that the depth and color images are aligned

to the same coordinates. We use background subtraction to

have the human subject segmented from the images.

The pose parameters (Θ) are all computed as rad to be con-

sistent with the real NAO robot. The algorithm is implemented

in Matlab and takes about 3 seconds per frame on a regular

PC with an Intel i7 3.6 GHz processor and 32GB RAM. The

target pose is enforced on the real robot with Python interface

through Choregraphe™.

B. Parameter settings

In Eq. 22 and Eq. 24, the initial σ2 = 0.022. In Eq. 30,

λf = 0.5. In Eq. 26, λ⊥ = 0.5 and λr = 1000. In Alg. 1, the

pose converges when the maximum movements for all joints

are less than 0.002rad since the precision for the real NAO

robot sensor is 0.1◦.

We have tuned those parameters empirically, which then

remain fixed for all the experiments.
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(a) Input RGBD images (b) W/O face landmarks 

(c) Face landmarks (d) With face landmarks (e) Robot retarget

Fig. 7: Head pose estimation.

C. Robot test

We have verified our method on a real robot, namely a

NAO V5 robot which is manufactured by Softbank. The robot

is 58cm tall and weighs 5.2kg. The robot has 23 DoFs in total

for its whole body (excluding the open/close hands DoFs),

which is quite different from the generic human skeleton that

has 72 DoFs overall.

We have validated our approach on both male and female

human subjects performing various and even some extreme

poses. We demonstrate our retargeting results on the NAO

robot under several different kinds of postures in Fig. 8.

As we can see in Fig. 8a, the human subjects are waving

his/her hands and the robot can mimic the hands up postures

successfully showing great resemblance to the human pose.

In Fig. 8b, we show the retargeting results of bow and squat

postures which involve both hands and upper body motion.

As we can see, they can also be executed by the robot

with its poses very similar to the source human subjects.

These postures mainly focus on upper/lower body posture with

limited stability constraints.

We present more challenging cases in Fig. 8c and Fig. 8d

with the human subjects leaning forward and kicking. In those

cases, in addition to maintaining the pose similarity, stability

needs to be considered as well. Especially in one foot support,

stability has the highest priority to prevent the robot from

falling down. As we can see from Fig. 8c and Fig. 8d, although

some postures are not executed exactly as same as the human

subjects, they still have large pose similarities on a global

scale.

D. Stability

While we try to let the robot mimic the posetures performed

by the human subjects, we have to take its stability into

consideration. We want to prevent the robot from falling down

especially when performing any extreme poses. In this section,

we would like to further demonstrate the effectiveness of our

method in terms of stability, as the stability check plays an

important role in the motion retargeting. We present two cases

in Fig. 9 showing our retargeting results with and without our

stability constraints. The middle columns of Fig. 9 are the

simulation results without the stability constraints enforced,

which means they are not subjected to gravity force. In this

case, the robot acts just like the human subjects. However, if

we apply those poses directly onto the real NAO robot, it will

actually fall down. After the stability constraints are enforced,

we will get the results as shown in the right columns of Fig. 9.

As you can see, we are able to achieve the most similar posture

while maintaining stability.

When testing on the real NAO robot, we also restrict that at

least one foot fully touches the ground. Besides, the supporting

leg of the NAO robot needs to bend a little when it reaches

the maximum motor torque, as shown in the third posture of

Fig. 8d.

E. Comparison

1) Compare with poses from Kinect SDK: In this section,

we show some qualitative comparisons (shown in Fig. 10) that

we have conducted on motion tracking between our methods

and using Kinect SDK [40] .

We show the skeletons computed from our approach and

output by Kinect SDK. In order to show the results more

clearly, we have colored the skeletons of the left and right

part of the body in green and magenta respectively. In the

first case, the human subject leans forward with one leg

severely occluded. As demonstrated in Fig. 10a, the skeleton

we obtained from Kinect SDK is obviously wrong for the

leg, while we can still get reasonable results through our

tracking system. For the second case as shown in Fig. 10b,

when the human subject turns around, the Kinect SDK cannot

distinguish the front and back of the human body, resulting in

the flipping of left and right sides of the body. Instead, we are

able to handle these situations, since instead of frame-by-frame

tracking we have taken the depth sequence into consideration

and prevented any abrupt pose changes in successive frames.

2) Quantitative evaluation on tracking: We have compared

with some traditional state-of-the-art algorithms on human

pose tracking. In this section, we show the quantitative eval-

uation of our algorithm on the SMMC-10 dataset [47] and

Personalized Depth Tracker(PDT) dataset [48] with mean joint

distance metrics. First, we give a brief introduction to the two

datasets in Table I.

The datasets and their corresponding groundtruth are used

for joint tracking evaluation, all the procedures and parameters

are same as real data. For the two datasets, We select 11 joints
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(a) Hands up
(b) Bow and Squat

(c) Roatation and Lean forward (d) Kick

Fig. 8: Results in different kinds of postures. For each case, the first row shows the original mesh and image, and the second

row shows the robot executing the pose computed with our proposed approach.

Fig. 9: The effect of stability check. The leftmost column

shows the original mesh from the depth map. The middle

column is simulation result without enforcing stability con-

straints. Finally, the rightmost column displays the retargeting

result on real NAO robot with stability check executed.

SMMC-10 PDT

subject one female Three males, one female
Data 28 sequences 100 or 400

frames for each
4 sequences per subject,
around 1500 frames per se-
quence

Posture simple motion jumping, sitting on floor,
dancing, etc.

Groudtruth markers Joints + Transformations

TABLE I: Brief introduction to SMMC-10 and PDT dataset

Algorithms distance error

Ganapathi et al. [47] 73.10
Baak et al. [50] 62.15

Helten et al. [48] 61.15
Ye et al. [37] 34.02

ours 32.67

TABLE II: Comparison of joint distance errors (unit = mill-

meter) on SMMC-10 dataset

(head, waist, left/right shoulders, left/right elbows, left/right

wrist, left/right knees and left/right ankles) to calculate the

accuracy. As shown in the Table II and III, we can see that

with our EM based tracking method which is more robust on

handling outliers, we have achieved better results with small

errors on the joint than other approaches.
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(a) Lean forward

(b) Rotation

Fig. 10: Visual comparisons of our approach and the results

from Kinect SDK on two cases. In each case, the leftmost

is the captured image, the middle left is the pose captured

from the Kinect SDK and the middle right one is result using

our framework. The rightmost one is our simulation result for

motion retargeting.

Algorithms distance error

KinectSDK V1 87.03
Andriluka et al. [49] 71.04

Helten et al. [48] 61.32
Ye et al. [37] 46.42

ours 42.23

TABLE III: Comparison of joint distance errors (unit = mill-

meter) on PDT dataset

3) Compare with IK on motion retargeting: We also

have done some qualitative comparisons with IK based mo-

tion retargeting approaches. We use Naoqi IK solver [41],

which writes the generalized inverse kinematics problem as a

quadratic program and solved using the qpOases library [43].

The simulation are worked on Webots [42] platform.

As shown in Fig. 11, the motion around the elbow is not

quite similar to the human subject for the IK approach, since

it has only considered the end-effectors position. In contrast,

we are able to take both end positions and joint angle into

account which makes our retargeting results more similar to

the source human subject.

VI. CONCLUSION

In this paper, we have presented a novel generative approach

for human-robot motion retargeting from which we have

motion tracking and retargeting performed in an unified frame-

work. A parametric HUMROB template has got proposed and

built up by taking advantage of the SMPL model using a single

RGBD image. The robot configurations are embedded with the

template. Next, we have developed an energy function which

a input RGBD images (b) IK result (c) our result

Fig. 11: Visual comparisons of our approach and the results

from IK on two cases. In each case, the leftmost are the

captured RGBD images, the middle ones are the results from

the IK approach and the rightmost are the results from our

framework.

penalizes the distance between deformed template model and

the captured data from a RGBD sensor. In this way, we

have considered the similarity of both joint angle and the

end position simultaneously. The joint limitation of the target

robots and stability constraints have also got enforced in the

optimization. Our method has been verified on both simulated

and real robots to demonstrate its ability of motion retargeting

under a variety of posture.

Limitations: As a future work, we would like to incorporate

interaction constraints into our system. Right now, for some

self-interacting actions, such as touching the head by hand, our

system may not be able to maintain the interaction because we

have not explicitly enforced the interaction constraints in our

formula.
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