*.png
In this brief,
- Categories:
The network attacks are increasing both in frequency and intensity with the rapid growth of internet of things (IoT) devices. Recently, denial of service (DoS) and distributed denial of service (DDoS) attacks are reported as the most frequent attacks in IoT networks. The traditional security solutions like firewalls, intrusion detection systems, etc., are unable to detect the complex DoS and DDoS attacks since most of them filter the normal and attack traffic based upon the static predefined rules.
- Categories:
The data provided corresponds to the open-source codes and reference images from a computer interface for real-time gait biofeedback using a Wearable Integrated Sensor System for Data Acquisition.
This data is the supplmementary material of the publication I. Sanz-Pena, J. Blanco and J. H. Kim, "Computer Interface for Real-Time Gait Biofeedback Using a Wearable Integrated Sensor System for Data Acquisition," in IEEE Transactions on Human-Machine Systems, https://doi.org/10.1109/THMS.2021.3090738
- Categories:
This dataset contains three benchmark datasets as part of the scholarly output of an ICDAR 2021 paper:
Meng Ling, Jian Chen, Torsten Möller, Petra Isenberg, Tobias Isenberg, Michael Sedlmair, Robert S. Laramee, Han-Wei Shen, Jian Wu, and C. Lee Giles, Document Domain Randomization for Deep Learning Document Layout Extraction, 16th International Conference on Document Analysis and Recognition (ICDAR) 2021. September 5-10, Lausanne, Switzerland.
This dataset contains nine class lables: abstract, algorithm, author, body text, caption, equation, figure, table, and title.
- Categories:
The dataset is divided into two sub-folders - 'source' and 'target'. The 'source' folder has a total of 4,080 images of Chest X-rays. The 'target' folder has a total of 4,080 Dual-Energy subtracted images corresponding to the images present in 'source' folder.
- Categories:
We have developed this dataset for the Bangla image caption. Here, we have recorded 500 images with one caption of each. Basically the lifestyle, festivals are mainly focused in this dataset. We have accomplished rice/harvest festivals, snake charming, palanquin, merry-go-round, slum, blacksmith, potter, fisherman, tat shilpo, jamdani, shutki chash, date juice, hal chash, tokai, pohela falgun, gaye holud, etc.
- Categories:
Crowds express emotions as a collective individual, which is evident from the sounds that a crowd produces in particular events, e.g., collective booing, laughing or cheering in sports matches, movies, theaters, concerts, political demonstrations, and riots. Crowd sounds can be characterized by frequency-amplitude features, using analysis techniques similar to those applied on individual voices, where deep learning classification is applied to spectrogram images derived by sound transformations.
- Categories:
The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.
- Categories:
Accurate and efficient anomaly detection is a key enabler for the cognitive management of optical networks, but traditional anomaly detection algorithms are computationally complex and do not scale well with the amount of monitoring data. Therefore, this dataset enables research on new optical spectrum anomaly detection schemes that exploit computer vision and deep unsupervised learning to perform optical network monitoring relying only on constellation diagrams of received signals.
- Categories: