[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Integral Gauss

Teorema

Integral Gauss, juga dikenal dengan nama integral Euler–Poisson, merupakan integral dari fungsi Gauss di sepanjang garis riil. Integral ini dinamai dari matematikawan Jerman Carl Friedrich Gauss, dan dituliskan secara matematis sebagai

Grafik dari fungsi f(x) = ex2 dan luas di antara fungsi tersebut dan sumbu x (yakni, di sepanjang garis), sama dengan .

Jenis integral ini awalnya ditemukan oleh Abraham de Moivre pada tahun 1733, tetapi Gauss menerbitkan bentuk integral yang rinci pada tahun 1809.[1] Integral ini dapat diaplikasikan untuk berbagai macam hal. Contohnya, dengan sedikit perubahan dalam variabel, integral ini digunakan untuk menghitung konstanta normalisasi dari distribusi normal. Bentuk integral yang sama dengan limit terbatas memiliki kaitan yang erat dengan fungsi galat dan fungsi distribusi kumulatif dari distribusi normal. Dalam ilmu fisika, jenis fungsi ini sering muncul, sebagai contoh: dalam mekanika kuantum, untuk mencari kepadatan peluang dari keadaan dasar osilator harmonik; dalam mekanika statistika, untuk mencari fungsi partisi.

Cara menghitung

sunting

Menggunakan koordinat polar

sunting

Salah satu cara umum menghitung integral Gauss, berdasar pada ide yang dapat ditelusuri kembali ke Poisson,[2] adalah menggunakan sifat: Selanjutnya, pertimbangkan fungsi  pada bidang  , yang integralnya dapat dihitung menggunakan dua cara:

  1. Di ruas kiri, menggunakan integral lipat dua di sistem koordinat Kartesius, yang hasilnya adalah sebuah kuadrat:  
  2. Di ruas kanan, menggunakan metode kulit (sautu bentuk integral lipat dua dalam koordinat polar), hasil integralnya sama dengan  

Integral Gauss dapat dihitung dengan menggabungkan kedua cara tersebut, walau perhatian khusus diperlukan saat berurusan dengan bentuk integral takwajar: Faktor   yang ada di ruas kanan berasal dari nilai determinan Jacobi, yang muncul akibat transformasi ke koordinat polar (  adalah ukuran standar pada bidang, yang dinyatakan dalam koordinat polar). Teknik subtitusi juga dilakukan dengan mengambil   sehingga  

Menggabungkan semua yang telah didapatkan, dihasilkan bentuk  sehingga 

Bukti lengkap

sunting

Penggunaan integral lipat dua takwajar dan menyamakan bentuk kedua ekpresi dapat dijustifikasi sebagai berikut. Pertimbangkan fungsi hampiran Jika hasil dari integral   konvergen absolut, maka integral tersebut memiliki nilai utama Cauchy; dengan kata lain limit dari   akan sama dengan hasil integral tersebut. Untuk melihat itu memang terjadi, pertimbangkan bahwa Ini mengartikan integral  dapat dihitung cukup dengan menghitung limit dari Menghitung kuadrat dari   akan menghasilkan bentuk Menggunakan teorema Fubini, integral lipat dua di atas dapat dianggap sebagai integral luas  yang dilakukan di petak persegi dengan sudut-sudut   pada bidang-  Karena fungsi eksponesial bernilai positif untuk sebarang bilangan riil, dapat disimpulkan integrasi yang dilakukan pada daerah lingkaran singgung dalam persegi akan bernilai kurang dari   sedangkan integrasi pada daerah lingkaran singgung luar persegi akan lebih besar dari   Kedua integrasi tersebut dapat mudah dihitung dengan mengubah sistem koordinat dari Kartesius ke polar: Transformasi ini memiliki determinan Jacobi   dan elemen luas Dengan demikian, kedua integrasi tadi dapat ditulis sebagai Mengintegrasi ruas kiri dan ruas kanan, Akhirnya, dengan menggunakan teorema apit didapatkan  , sehingga integral Gauss

 

Dengan koordinat Kartesius

sunting

Teknik berbeda, yang berasal dari Laplace (1812),[2] juga dapat digunakan untuk menghitung integral Gauss. Karena fungsi  merupakan fungsi genap, hasil integrasi di sepanjang garis riil sama saja dengan dua kali lipat hasil integrasi dari nol sampai takhingga; secara matematis  Selanjutnya, dengan menggunakan subtitusi dan memperhatikan variabel   dan   memiliki limit yang sama pada selang integrasi ( ), bentuk kuadrat dari   dapat dijabarkan seperti berikut Menggunakan teorema Fubini untuk menukar urutan integrasi: Alhasil, terbukti  .

Kaitan dengan fungsi gamma

sunting

Integran dalam integral Gauss merupakan fungsi genap, mengartikan Jadi, setelah variabel   diubah menjadi  , bentuk integral tersebut berubah menjadi integral Euler dengan   adalah fungsi gamma. Hal ini memperlihatkan alasan faktorial dari setengah-bilangan-bulat adalah kelipatan rasional dari  . Dengan mensubtitusi   di integran, dapat dihasilkan bentuk integral yang lebih umum, 

Perumuman

sunting

Integral dari fungsi Gauss

sunting

Integral dari sebarang fungsi Gauss adalah

 

Integral di atas mempunyai bentuk alternatif, yaitu

 

Bentuk ini berguna dalam menghitung ekspektasi dari beberapa distribusi probabilitas kontinu yang berkaitan dengan distribusi normal; seperti distribusi log-normal, sebagai contoh.

Perumuman fungsional dan dimensi-n

sunting

Misalkan   adalah matriks presisi n × n yang simetrik dan definit positif, yang dihasilkan dari invers matriks kovarians. Dapat ditunjukkan Dengan melengkapi kuadrat, bentuk di atas dapat diperumum menjadi  Fakta ini diterapkan dalam studi terkait distribusi normal multivariat. Selain itu,  dengan   menyatakan permutasi dari   dan faktor tambahan di ruas kanan adalah hasil penjumlahan atas semua pasangan kombinatorik   dari   salinan  .

Alternatif lain,[3] Untuk suatu fungsi analitik  , mengasumsikan pertumbuhan fungsi tersebut memenuhi suatu batasan yang masuk akal, dan beberapa kriteria lainnya. Perpangkatan pada operator diferensial dipandang sebagai bentuk deret pangkat.

Perumuman dimensi-n dengan suku linear

sunting

Jika   merupakan matriks simetrik definit-positif, maka (dengan asumsi bahwa semuanya adalah vektor kolom): 

Integral dengan bentuk yang serupa

sunting

Misalkan   adalah bilangan bulat positif dan   menyatakan faktorial ganda. Beberapa integral berikut memiki bentuk yang mirip dengan integral Gauss:     

Sebuah cara mudah untuk menghasilkan bentuk-bentuk tersebut adalah dengan mendiferensialkannya terhadap variabel integrasi:

 

Cara lain untuk mendapatkannya adalah dengan menggunakan integral parsial dan menemukan relasi pengulangan.

Polinomial tingkat tinggi

sunting

Menerapkan perubahan basis linier memperlihatkan bahwa integral dari eksponensial dari polinomial homogen pada   variabel hanya dapat bergantung pada invarian-SL(n) dari polinomial. Salah satu invarian tersebut adalah diskriminan, akar fungsi yang menandai singularitas integral. Sayangnya, integral tersebut juga dapat bergantung pada invarian lainnya.[4]

Lihat pula

sunting

Referensi

sunting
  1. ^ Stahl, Saul (April 2006). "The Evolution of the Normal Distribution" (PDF). MAA.org. Diakses tanggal May 25, 2018. 
  2. ^ a b Lee, Peter M. "The Probability Integral" (PDF). 
  3. ^ "Reference for Multidimensional Gaussian Integral". Stack Exchange. March 30, 2012. 
  4. ^ Morozov, A.; Shakirove, Sh. (2009). "Pengantar diskriminan integral". Journal of High Energy Physics. 12: 002. arXiv:0903.2595alt=Dapat diakses gratis . doi:10.1088/1126-6708/2009/12/002. 

Daftar pustaka

sunting