[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

View Source Typespecs reference

Typespecs are not set-theoretic types

Elixir is in the process of implementing its own type system based on set-theoretic types. Typespecs, which are described in the following document, are a distinct notation for declaring types and specifications based on Erlang. Typespecs may be phased out as the set-theoretic type effort moves forward.

Elixir is a dynamically typed language, and as such, type specifications are never used by the compiler to optimize or modify code. Still, using type specifications is useful because:

  • they provide documentation (for example, tools such as ExDoc show type specifications in the documentation)
  • they're used by tools such as Dialyzer, that can analyze code with typespecs to find type inconsistencies and possible bugs

Type specifications (most often referred to as typespecs) are defined in different contexts using the following attributes:

  • @type
  • @opaque
  • @typep
  • @spec
  • @callback
  • @macrocallback

In addition, you can use @typedoc to document a custom @type definition.

See the "User-defined types" and "Defining a specification" sub-sections below for more information on defining types and typespecs.

A simple example

defmodule StringHelpers do
  @typedoc "A word from the dictionary"
  @type word() :: String.t()

  @spec long_word?(word()) :: boolean()
  def long_word?(word) when is_binary(word) do
    String.length(word) > 8
  end
end

In the example above:

  • We declare a new type (word()) that is equivalent to the string type (String.t()).

  • We describe the type using a @typedoc, which will be included in the generated documentation.

  • We specify that the long_word?/1 function takes an argument of type word() and returns a boolean (boolean()), that is, either true or false.

Types and their syntax

The syntax Elixir provides for type specifications is similar to the one in Erlang. Most of the built-in types provided in Erlang (for example, pid()) are expressed in the same way: pid() (or simply pid). Parameterized types (such as list(integer)) are supported as well and so are remote types (such as Enum.t()). Integers and atom literals are allowed as types (for example, 1, :atom, or false). All other types are built out of unions of predefined types. Some types can also be declared using their syntactical notation, such as [type] for lists, {type1, type2, ...} for tuples and <<_ * _>> for binaries.

The notation to represent the union of types is the pipe |. For example, the typespec type :: atom() | pid() | tuple() creates a type type that can be either an atom, a pid, or a tuple. This is usually called a sum type in other languages

Differences with set-theoretic types

While they do share some similarities, the types below do not map one-to-one to the new types from the set theoretic type system. For example, there is no plan to support subsets of the integer() type such as positive, ranges or literals.

Basic types

type ::
      any()                     # the top type, the set of all terms
      | none()                  # the bottom type, contains no terms
      | atom()
      | map()                   # any map
      | pid()                   # process identifier
      | port()                  # port identifier
      | reference()
      | tuple()                 # tuple of any size

                                ## Numbers
      | float()
      | integer()
      | neg_integer()           # ..., -3, -2, -1
      | non_neg_integer()       # 0, 1, 2, 3, ...
      | pos_integer()           # 1, 2, 3, ...

                                                                      ## Lists
      | list(type)                                                    # proper list ([]-terminated)
      | nonempty_list(type)                                           # non-empty proper list
      | maybe_improper_list(content_type, termination_type)           # proper or improper list
      | nonempty_improper_list(content_type, termination_type)        # improper list
      | nonempty_maybe_improper_list(content_type, termination_type)  # non-empty proper or improper list

      | Literals                # Described in section "Literals"
      | BuiltIn                 # Described in section "Built-in types"
      | Remotes                 # Described in section "Remote types"
      | UserDefined             # Described in section "User-defined types"

Literals

The following literals are also supported in typespecs:

type ::                               ## Atoms
      :atom                           # atoms: :foo, :bar, ...
      | true | false | nil            # special atom literals

                                      ## Bitstrings
      | <<>>                          # empty bitstring
      | <<_::size>>                   # size is 0 or a positive integer
      | <<_::_*unit>>                 # unit is an integer from 1 to 256
      | <<_::size, _::_*unit>>

                                      ## (Anonymous) Functions
      | (-> type)                     # zero-arity, returns type
      | (type1, type2 -> type)        # two-arity, returns type
      | (... -> type)                 # any arity, returns type

                                      ## Integers
      | 1                             # integer
      | 1..10                         # integer from 1 to 10

                                      ## Lists
      | [type]                        # list with any number of type elements
      | []                            # empty list
      | [...]                         # shorthand for nonempty_list(any())
      | [type, ...]                   # shorthand for nonempty_list(type)
      | [key: value_type]             # keyword list with optional key :key of value_type

                                              ## Maps
      | %{}                                   # empty map
      | %{key: value_type}                    # map with required key :key of value_type
      | %{key_type => value_type}             # map with required pairs of key_type and value_type
      | %{required(key_type) => value_type}   # map with required pairs of key_type and value_type
      | %{optional(key_type) => value_type}   # map with optional pairs of key_type and value_type
      | %SomeStruct{}                         # struct with all fields of any type
      | %SomeStruct{key: value_type}          # struct with required key :key of value_type

                                      ## Tuples
      | {}                            # empty tuple
      | {:ok, type}                   # two-element tuple with an atom and any type

Built-in types

The following types are also provided by Elixir as shortcuts on top of the basic and literal types described above.

Built-in typeDefined as
term()any()
arity()0..255
as_boolean(t)t
binary()<<_::_*8>>
nonempty_binary()<<_::8, _::_*8>>
bitstring()<<_::_*1>>
nonempty_bitstring()<<_::1, _::_*1>>
boolean()true | false
byte()0..255
char()0..0x10FFFF
charlist()[char()]
nonempty_charlist()[char(), ...]
fun()(... -> any)
function()fun()
identifier()pid() | port() | reference()
iodata()iolist() | binary()
iolist()maybe_improper_list(byte() | binary() | iolist(), binary() | [])
keyword()[{atom(), any()}]
keyword(t)[{atom(), t}]
list()[any()]
nonempty_list()nonempty_list(any())
maybe_improper_list()maybe_improper_list(any(), any())
nonempty_maybe_improper_list()nonempty_maybe_improper_list(any(), any())
mfa(){module(), atom(), arity()}
module()atom()
no_return()none()
node()atom()
number()integer() | float()
struct()%{:__struct__ => atom(), optional(atom()) => any()}
timeout():infinity | non_neg_integer()

as_boolean(t) exists to signal users that the given value will be treated as a boolean, where nil and false will be evaluated as false and everything else is true. For example, Enum.filter/2 has the following specification: filter(t, (element -> as_boolean(term))) :: list.

Remote types

Any module is also able to define its own types and the modules in Elixir are no exception. For example, the Range module defines a t/0 type that represents a range: this type can be referred to as Range.t/0. In a similar fashion, a string is String.t/0, and so on.

Maps

The key types in maps are allowed to overlap, and if they do, the leftmost key takes precedence. A map value does not belong to this type if it contains a key that is not in the allowed map keys.

If you want to denote that keys that were not previously defined in the map are allowed, it is common to end a map type with optional(any) => any.

Note that the syntactic representation of map() is %{optional(any) => any}, not %{}. The notation %{} specifies the singleton type for the empty map.

Keyword Lists

Beyond keyword() and keyword(t), it can be helpful to compose a spec for an expected keyword list. For example:

@type option :: {:name, String.t} | {:max, pos_integer} | {:min, pos_integer}
@type options :: [option()]

This makes it clear that only these options are allowed, none are required, and order does not matter.

It also allows composition with existing types. For example:

@type option :: {:my_option, String.t()} | GenServer.option()

@spec start_link([option()]) :: GenServer.on_start()
def start_link(opts) do
  {my_opts, gen_server_opts} = Keyword.split(opts, [:my_option])
  GenServer.start_link(__MODULE__, my_opts, gen_server_opts)
end

The following spec syntaxes are equivalent:

@type options [{:name, String.t} | {:max, pos_integer} | {:min, pos_integer}]

@type options [name: String.t, max: pos_integer, min: pos_integer]

User-defined types

The @type, @typep, and @opaque module attributes can be used to define new types:

@type type_name :: type
@typep type_name :: type
@opaque type_name :: type

A type defined with @typep is private. An opaque type, defined with @opaque is a type where the internal structure of the type will not be visible, but the type is still public.

Types can be parameterized by defining variables as parameters; these variables can then be used to define the type.

@type dict(key, value) :: [{key, value}]

Defining a specification

A specification for a function can be defined as follows:

@spec function_name(type1, type2) :: return_type

Guards can be used to restrict type variables given as arguments to the function.

@spec function(arg) :: [arg] when arg: atom

If you want to specify more than one variable, you separate them by a comma.

@spec function(arg1, arg2) :: {arg1, arg2} when arg1: atom, arg2: integer

Type variables with no restriction can also be defined using var.

@spec function(arg) :: [arg] when arg: var

This guard notation only works with @spec, @callback, and @macrocallback.

You can also name your arguments in a typespec using arg_name :: arg_type syntax. This is particularly useful in documentation as a way to differentiate multiple arguments of the same type (or multiple elements of the same type in a type definition):

@spec days_since_epoch(year :: integer, month :: integer, day :: integer) :: integer
@type color :: {red :: integer, green :: integer, blue :: integer}

Specifications can be overloaded, just like ordinary functions.

@spec function(integer) :: atom
@spec function(atom) :: integer

Behaviours

Behaviours in Elixir (and Erlang) are a way to separate and abstract the generic part of a component (which becomes the behaviour module) from the specific part (which becomes the callback module).

A behaviour module defines a set of functions and macros (referred to as callbacks) that callback modules implementing that behaviour must export. This "interface" identifies the specific part of the component. For example, the GenServer behaviour and functions abstract away all the message-passing (sending and receiving) and error reporting that a "server" process will likely want to implement from the specific parts such as the actions that this server process has to perform.

Say we want to implement a bunch of parsers, each parsing structured data: for example, a JSON parser and a MessagePack parser. Each of these two parsers will behave the same way: both will provide a parse/1 function and an extensions/0 function. The parse/1 function will return an Elixir representation of the structured data, while the extensions/0 function will return a list of file extensions that can be used for each type of data (e.g., .json for JSON files).

We can create a Parser behaviour:

defmodule Parser do
  @doc """
  Parses a string.
  """
  @callback parse(String.t) :: {:ok, term} | {:error, atom}

  @doc """
  Lists all supported file extensions.
  """
  @callback extensions() :: [String.t]
end

As seen in the example above, defining a callback is a matter of defining a specification for that callback, made of:

  • the callback name (parse or extensions in the example)
  • the arguments that the callback must accept (String.t)
  • the expected type of the callback return value

Modules adopting the Parser behaviour will have to implement all the functions defined with the @callback attribute. As you can see, @callback expects a function name but also a function specification like the ones used with the @spec attribute we saw above.

Implementing behaviours

Implementing a behaviour is straightforward:

defmodule JSONParser do
  @behaviour Parser

  @impl Parser
  def parse(str), do: {:ok, "some json " <> str} # ... parse JSON

  @impl Parser
  def extensions, do: [".json"]
end
defmodule CSVParser do
  @behaviour Parser

  @impl Parser
  def parse(str), do: {:ok, "some csv " <> str} # ... parse CSV

  @impl Parser
  def extensions, do: [".csv"]
end

If a module adopting a given behaviour doesn't implement one of the callbacks required by that behaviour, a compile-time warning will be generated.

Furthermore, with @impl you can also make sure that you are implementing the correct callbacks from the given behaviour in an explicit manner. For example, the following parser implements both parse and extensions. However, thanks to a typo, BADParser is implementing parse/0 instead of parse/1.

defmodule BADParser do
  @behaviour Parser

  @impl Parser
  def parse, do: {:ok, "something bad"}

  @impl Parser
  def extensions, do: ["bad"]
end

This code generates a warning letting you know that you are mistakenly implementing parse/0 instead of parse/1. You can read more about @impl in the module documentation.

Using behaviours

Behaviours are useful because you can pass modules around as arguments and you can then call back to any of the functions specified in the behaviour. For example, we can have a function that receives a filename, several parsers, and parses the file based on its extension:

@spec parse_path(Path.t(), [module()]) :: {:ok, term} | {:error, atom}
def parse_path(filename, parsers) do
  with {:ok, ext} <- parse_extension(filename),
       {:ok, parser} <- find_parser(ext, parsers),
       {:ok, contents} <- File.read(filename) do
    parser.parse(contents)
  end
end

defp parse_extension(filename) do
  if ext = Path.extname(filename) do
    {:ok, ext}
  else
    {:error, :no_extension}
  end
end

defp find_parser(ext, parsers) do
  if parser = Enum.find(parsers, fn parser -> ext in parser.extensions() end) do
    {:ok, parser}
  else
    {:error, :no_matching_parser}
  end
end

You could also invoke any parser directly: CSVParser.parse(...).

Note you don't need to define a behaviour in order to dynamically dispatch on a module, but those features often go hand in hand.

Optional callbacks

Optional callbacks are callbacks that callback modules may implement if they want to, but are not required to. Usually, behaviour modules know if they should call those callbacks based on configuration, or they check if the callbacks are defined with function_exported?/3 or macro_exported?/3.

Optional callbacks can be defined through the @optional_callbacks module attribute, which has to be a keyword list with function or macro name as key and arity as value. For example:

defmodule MyBehaviour do
  @callback vital_fun() :: any
  @callback non_vital_fun() :: any
  @macrocallback non_vital_macro(arg :: any) :: Macro.t
  @optional_callbacks non_vital_fun: 0, non_vital_macro: 1
end

One example of optional callback in Elixir's standard library is GenServer.format_status/1.

Inspecting behaviours

The @callback and @optional_callbacks attributes are used to create a behaviour_info/1 function available on the defining module. This function can be used to retrieve the callbacks and optional callbacks defined by that module.

For example, for the MyBehaviour module defined in "Optional callbacks" above:

MyBehaviour.behaviour_info(:callbacks)
#=> [vital_fun: 0, "MACRO-non_vital_macro": 2, non_vital_fun: 0]
MyBehaviour.behaviour_info(:optional_callbacks)
#=> ["MACRO-non_vital_macro": 2, non_vital_fun: 0]

When using iex, the IEx.Helpers.b/1 helper is also available.

Pitfalls

There are some known pitfalls when using typespecs, they are documented next.

The string() type

Elixir discourages the use of the string() type. The string() type refers to Erlang strings, which are known as "charlists" in Elixir. They do not refer to Elixir strings, which are UTF-8 encoded binaries. To avoid confusion, if you attempt to use the type string(), Elixir will emit a warning. You should use charlist(), nonempty_charlist(), binary() or String.t() accordingly, or any of the several literal representations for these types.

Note that String.t() and binary() are equivalent to analysis tools. Although, for those reading the documentation, String.t() implies it is a UTF-8 encoded binary.

Functions which raise an error

Typespecs do not need to indicate that a function can raise an error; any function can fail any time if given invalid input. In the past, the Elixir standard library sometimes used no_return() to indicate this, but these usages have been removed.

The no_return() type also should not be used for functions which do return but whose purpose is a "side effect", such as IO.puts/1. In these cases, the expected return type is :ok.

Instead, no_return() should be used as the return type for functions which can never return a value. This includes functions which loop forever calling receive, or which exist specifically to raise an error, or which shut down the VM.