Three-dimensional (3D) digital subtraction angiography (3D DSA) is becoming the standard technique for the assessment of 3D brain vascular anatomy, with an impact on diagnosis and pre-operative surgical planning. In this thesis we examine a minimally invasive robot-assisted brain surgical procedure namely stereoelectroencephalography (SEEG) performed at the “Claudio Munari Center for Parkinson’s and Epilepsy Surgery”, H. Niguarda, Milano, Italy. In the examined scenario, the considered 3D DSA protocol enables accurate recording of the first passage transit of the contrast medium (CM), which enhances both the arterial and venous tree. In the current processing pipeline, the final 3D DSA reconstruction averages out all CM dynamic information. Conversely, the latter would provide a means to distinguish the arteries from the veins, since the protection of the former is of the highest priority in surgical planning. Moreover, despite the use of a computer-assisted software for surgical planning, both interpretation and understanding of vascular anatomical information rely only and exclusively on the physicians’ knowledge level and experience. On this background, the scope of this PhD thesis was the development of methods for the study of the CM flow information. This led also to further aims relevant to the improvement by artificial intelligence (AI) based techniques of crucial passages, such as the angiographic segmentation and the reduction of radiation exposure in the scan phase. In particular, by defining new methods (M), the contributions of this Ph.D. work are: 1. a novel method (M1) for “Cerebrovascular hemodynamics extraction and artery versus vein classification in presurgical 3D digital subtraction angiographies”. M1 exploits a dynamic iterative reconstruction algorithm fed with spatial prior knowledge provided by the angiogram, and with the subtracted contrast-enhanced (CE) projections that record the CM flow. For each voxel labelled as vascular, a time-intensity curve (TIC) is obtained as a linear combination of temporal basis functions whose weights are computed by the simultaneous algebraic reconstruction technique, expanded to include dynamics (SART 3.5D). Each TIC is classified by comparing the areas under the curve in the arterial and venous phases. Clustering is applied to optimize the classification thresholds. The method was validated on a dataset of 60 patients and evaluated with respect to annotated arterial and venous voxels. 2. A method (M2) for “Automated cerebrovascular segmentation via convolutional neural network”. M2 exploits an end-to-end fully encoder and decoder CNN which includes the salient characteristics of a U-net architecture integrated with residual and recurrent connections to improve model training and performance. The network embeds attention modules such as Squeeze and Excitation (SE) modules and Attention Gate modules to increase segmentation performance accuracy and robustness. Strategies to cope with the three dimensionality of the data and imbalance between background/foreground voxels distributions are integrated into the method with suitable data feeding strategy and loss function. The proposed method accounts for a training and validation dataset composed of 170 CE-CBCT 3D scans. A semi-automatic annotation pipeline based on model- and data-driven segmentation methods is proposed to avoid the burden of manual annotation. For the quantitative evaluation, the performance of the proposed method was assessed on 20 patient scans. For each testing dataset, 10 ROIs were prelabelled and manually refined under the supervision of one neuroradiologist. 3. A novel method (M3) for “Half-dose 3D DSA generation via image-to-image translation Generative Adversarial Network.” M3 exploits a conditional GAN (cGAN) framework to generate high-quality DSA images from the single CE image in the projection domain and avoid pre-contrast scan acquisition. To improve network performance, SE modules are embedded in the generator architecture; an effective objective function and an efficient training scheme are proposed to improve network stability. From a population of 54 patients, a training dataset including 12000 paired images and a testing set including 7500 paired images were processed. Quantitative evaluation is performed by comparing 3D DSA obtained via standard and DL-based methods. In conclusion, these studies provide significant enhancements both on the anatomical and the functional (i.e., CM dynamics) side, based on the existing standard protocols or even permitting half the Rx exposure. The combination of the proposed methodologies is intended to enhance the overall clinical pipeline by providing surgeons with precise information on the morphology and hemodynamics to aid in pre-surgical, diagnostics, intra- and post-operative decision-making. It is worth stressing that the methods developed in this thesis, though validated on the SEEG planning dataset, can be extended to the whole area of brain surgery and the study and reduction of cerebrovascular malformations.
L'angiografia a sottrazione digitale tridimensionale (3D DSA) sta diventando la tecnica standard per la valutazione dell'anatomia dell’albero cerebrovascolare, con un impatto sulla diagnosi e sulla pianificazione chirurgica preoperatoria. Nella presente tesi di dottorato esaminiamo nello specifico una procedura di chirurgia cerebrale minimamente invasiva assistita da robot, ovvero la stereoelettroencefalografia (SEEG) eseguita presso il "Centro Claudio Munari per la chirurgia del Parkinson e dell'epilessia", Ospedale Niguarda, Milano, Italia. Nello scenario esaminato, il protocollo 3D DSA considerato consente una registrazione accurata del transito del mezzo di contrasto (CM), che interessa sia l'albero arterioso che venoso. Nell'attuale pipeline di elaborazione, la ricostruzione della 3D DSA finale media tutte le informazioni dinamiche del CM. Al contrario, quest'ultimo fornirebbe un mezzo per distinguere le arterie dalle vene: la protezione delle prime è della massima priorità nella pianificazione chirurgica. Inoltre, nonostante l'utilizzo di un software computerizzato per la pianificazione chirurgica, sia l'interpretazione che la comprensione delle informazioni anatomiche vascolari dipendono solo ed esclusivamente dal livello di conoscenza e dall'esperienza dei medici. In questo contesto, lo scopo di questa tesi di dottorato è stato lo sviluppo di metodi per lo studio delle informazioni di flusso CM. Ciò ha portato anche ad ulteriori obiettivi relativi al miglioramento mediante tecniche basate sull'intelligenza artificiale (AI) di passaggi cruciali, come la segmentazione angiografica e la riduzione dell'esposizione alle radiazioni nella fase di scansione. In particolare, definendo nuovi metodi (M), i contributi di questo dottorato sono: 1. un nuovo metodo (M1) per "Estrazione dell’emodinamica cerebrovascolare e classificazione di arteria rispetto a vena in angiografie di sottrazione digitale 3D prechirurgiche". M1 sfrutta un algoritmo di ricostruzione iterativo dinamico alimentato con la conoscenza spaziale precedente fornita dall'angiogramma e con le proiezioni sottratte con contrasto migliorato (CE) che registrano il flusso CM. Per ogni voxel etichettato come vascolare, si ottiene una curva di intensità del tempo (TIC) come combinazione lineare di funzioni di base temporali i cui pesi sono calcolati dalla tecnica di ricostruzione algebrica simultanea, espansa per includere la dinamica (SART 3.5D). Ogni TIC viene classificato confrontando le aree sotto la curva nelle fasi arteriosa e venosa. Il clustering viene applicato per ottimizzare le soglie di classificazione. Il metodo è stato convalidato su un set di dati di 60 pazienti e valutato rispetto ai voxel arteriosi e venosi annotati. 2. Un metodo (M2) per la "segmentazione cerebrovascolare automatizzata tramite una rete neurale convoluzionale". M2 sfrutta un codificatore e decodificatore completo end-to-end CNN che include le caratteristiche salienti di un'architettura U-net integrata con connessioni residue e ricorrenti per migliorare l'addestramento e le prestazioni del modello. La rete incorpora moduli di attenzione come i moduli Squeeze and Excitation (SE) e moduli Attention Gate per aumentare l'accuratezza e la robustezza delle prestazioni di segmentazione. Le strategie per far fronte alla tridimensionalità dei dati e allo squilibrio tra le distribuzioni dei voxel vascolari e non vascolari sono integrate nel metodo con un'adeguata strategia di alimentazione dei dati e funzione di costo. Il metodo proposto tiene conto di un set di dati composto da 170 scansioni 3D CE-CBCT. Viene proposta una pipeline di annotazione semiautomatica basata su metodi di segmentazione basati su modelli e dati per evitare l'onere dell'annotazione manuale. Per la valutazione quantitativa, le prestazioni del metodo proposto sono state valutate su 20 scansioni di pazienti. Per ogni set di dati di test, 10 ROI sono state annotate e perfezionate manualmente sotto la supervisione di un neuroradiologo. 3. Un nuovo metodo (M3) per la "generazione di 3D DSA a mezza dose tramite la image-to-image translation Generative Adversarial Network". M3 sfrutta un framework GAN condizionale (cGAN) per generare immagini DSA di alta qualità dalla singola immagine CE nel dominio delle proiezioni ed evitare l'acquisizione della scansione pre-contrasto. Per migliorare le prestazioni della rete, i moduli SE sono incorporati nell'architettura del generatore; si propone un'efficace funzione di costo e un efficiente addestramento della rete per migliorare la stabilità della rete. Da una popolazione di 54 pazienti, sono stati elaborati un set di dati di addestramento comprendente 12000 immagini accoppiate e un set di test comprendente 7500 immagini accoppiate. La valutazione quantitativa viene eseguita confrontando 3D DSA ottenuti tramite metodi standard e basati su DL. In conclusione, questi studi forniscono miglioramenti significativi sia dal punto di vista anatomico che funzionale (vale a dire, dinamiche CM), sulla base dei protocolli standard esistenti o addirittura consentendo metà dell'esposizione alle radiazioni x. La combinazione delle metodologie proposte ha lo scopo di migliorare la pipeline clinica complessiva fornendo ai chirurghi informazioni precise sulla morfologia e sull' emodinamica per aiutare nel processo decisionale pre-chirurgico, diagnostico, intra e post-operatorio. Vale la pena sottolineare che i metodi sviluppati in questa tesi, sebbene validati sul dataset di pianificazione SEEG, possono essere estesi a tutta l'area della neurochirurgia e dello studio e riduzione delle malformazioni cerebrovascolari.
Numerical and artificial intelligence methods for the analysis of cerebrovascular architecture and hemodynamics
El Hadji, Sara
2022/2023
Abstract
Three-dimensional (3D) digital subtraction angiography (3D DSA) is becoming the standard technique for the assessment of 3D brain vascular anatomy, with an impact on diagnosis and pre-operative surgical planning. In this thesis we examine a minimally invasive robot-assisted brain surgical procedure namely stereoelectroencephalography (SEEG) performed at the “Claudio Munari Center for Parkinson’s and Epilepsy Surgery”, H. Niguarda, Milano, Italy. In the examined scenario, the considered 3D DSA protocol enables accurate recording of the first passage transit of the contrast medium (CM), which enhances both the arterial and venous tree. In the current processing pipeline, the final 3D DSA reconstruction averages out all CM dynamic information. Conversely, the latter would provide a means to distinguish the arteries from the veins, since the protection of the former is of the highest priority in surgical planning. Moreover, despite the use of a computer-assisted software for surgical planning, both interpretation and understanding of vascular anatomical information rely only and exclusively on the physicians’ knowledge level and experience. On this background, the scope of this PhD thesis was the development of methods for the study of the CM flow information. This led also to further aims relevant to the improvement by artificial intelligence (AI) based techniques of crucial passages, such as the angiographic segmentation and the reduction of radiation exposure in the scan phase. In particular, by defining new methods (M), the contributions of this Ph.D. work are: 1. a novel method (M1) for “Cerebrovascular hemodynamics extraction and artery versus vein classification in presurgical 3D digital subtraction angiographies”. M1 exploits a dynamic iterative reconstruction algorithm fed with spatial prior knowledge provided by the angiogram, and with the subtracted contrast-enhanced (CE) projections that record the CM flow. For each voxel labelled as vascular, a time-intensity curve (TIC) is obtained as a linear combination of temporal basis functions whose weights are computed by the simultaneous algebraic reconstruction technique, expanded to include dynamics (SART 3.5D). Each TIC is classified by comparing the areas under the curve in the arterial and venous phases. Clustering is applied to optimize the classification thresholds. The method was validated on a dataset of 60 patients and evaluated with respect to annotated arterial and venous voxels. 2. A method (M2) for “Automated cerebrovascular segmentation via convolutional neural network”. M2 exploits an end-to-end fully encoder and decoder CNN which includes the salient characteristics of a U-net architecture integrated with residual and recurrent connections to improve model training and performance. The network embeds attention modules such as Squeeze and Excitation (SE) modules and Attention Gate modules to increase segmentation performance accuracy and robustness. Strategies to cope with the three dimensionality of the data and imbalance between background/foreground voxels distributions are integrated into the method with suitable data feeding strategy and loss function. The proposed method accounts for a training and validation dataset composed of 170 CE-CBCT 3D scans. A semi-automatic annotation pipeline based on model- and data-driven segmentation methods is proposed to avoid the burden of manual annotation. For the quantitative evaluation, the performance of the proposed method was assessed on 20 patient scans. For each testing dataset, 10 ROIs were prelabelled and manually refined under the supervision of one neuroradiologist. 3. A novel method (M3) for “Half-dose 3D DSA generation via image-to-image translation Generative Adversarial Network.” M3 exploits a conditional GAN (cGAN) framework to generate high-quality DSA images from the single CE image in the projection domain and avoid pre-contrast scan acquisition. To improve network performance, SE modules are embedded in the generator architecture; an effective objective function and an efficient training scheme are proposed to improve network stability. From a population of 54 patients, a training dataset including 12000 paired images and a testing set including 7500 paired images were processed. Quantitative evaluation is performed by comparing 3D DSA obtained via standard and DL-based methods. In conclusion, these studies provide significant enhancements both on the anatomical and the functional (i.e., CM dynamics) side, based on the existing standard protocols or even permitting half the Rx exposure. The combination of the proposed methodologies is intended to enhance the overall clinical pipeline by providing surgeons with precise information on the morphology and hemodynamics to aid in pre-surgical, diagnostics, intra- and post-operative decision-making. It is worth stressing that the methods developed in this thesis, though validated on the SEEG planning dataset, can be extended to the whole area of brain surgery and the study and reduction of cerebrovascular malformations.File | Dimensione | Formato | |
---|---|---|---|
SElHadji_Thesis_Final_Version.pdf
solo utenti autorizzati a partire dal 24/01/2026
Dimensione
7.64 MB
Formato
Adobe PDF
|
7.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/196154