Article Dans Une Revue
Journal of Computational and Applied Mathematics
Année : 2021
Résumé
Relying on a building block developed by the authors in order to resolve the incompressible Navier-Stokes equation with high order implicit time stepping and dynamic mesh adaptation based on multiresolution analysis with collocated variables, the present contribution investigates the ability to extend such a strategy for scalar transport at relatively large Schmidt numbers using a finer level of refinement compared to the resolution of the hydrody-namic variables, while preserving space adaptation with error control. This building block is a key part of a strategy to construct a low-Mach number code based on a splitting strategy for combustion applications, where several spatial scales are into play. The computational efficiency and accuracy of the proposed strategy is assessed on a well-chosen three-vortex simulation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Marc Massot : Connectez-vous pour contacter le contributeur
https://hal.science/hal-02343546
Soumis le : samedi 2 novembre 2019-18:41:50
Dernière modification le : mardi 3 décembre 2024-15:14:03
Archivage à long terme le : lundi 3 février 2020-14:33:36
Dates et versions
- HAL Id : hal-02343546 , version 1
- DOI : 10.1016/j.cam.2019.112542
Citer
Marc-Arthur N'Guessan, Marc Massot, Laurent Series, Christian Tenaud. High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids. Journal of Computational and Applied Mathematics, 2021, 387, pp.112542. ⟨10.1016/j.cam.2019.112542⟩. ⟨hal-02343546⟩
Collections
319
Consultations
119
Téléchargements