Communication Dans Un Congrès
Année : 2003
Résumé
Some agents have to face multiple objectives simultaneously. In such cases, and considering partially observable environments, classical Reinforcement Learning (RL) is prone to fall in pretty low local optima, only learning straightforward behaviors. We present here a method that tries to identify and learn independent ``basic'' behaviors solving separate tasks the agent has to face. Using a combination of these behaviors (an action-selection algorithm), the agent is then able to efficiently deal with various complex goals in complex environments.
Publications Loria : Connectez-vous pour contacter le contributeur
https://inria.hal.science/inria-00099828
Soumis le : mardi 26 septembre 2006-09:41:36
Dernière modification le : jeudi 15 février 2024-03:31:20
Dates et versions
- HAL Id : inria-00099828 , version 1
Citer
Olivier Buffet, Alain Dutech. A Self-Made Agent Based on Action-Selection. Sixth European Workshop on Reinforcement Learning - EWRL-6 2003, 2003, Nancy, France, pp.47-48. ⟨inria-00099828⟩
Collections
108
Consultations
0
Téléchargements