q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS - Archive ouverte HAL
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Article Dans Une Revue Forum of Mathematics, Sigma Année : 2020
q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS
1 IMJ-PRG (UMR_7586) - Institut de Mathématiques de Jussieu - Paris Rive Gauche (Sorbonne Université - IMJ - Case 247 - 4 place Jussieu 75252 Paris cedex 05 / Université Paris Diderot - Bât. Sophie Germain, case 7012 - France)
"> IMJ-PRG (UMR_7586) - Institut de Mathématiques de Jussieu - Paris Rive Gauche
2 LMR - Laboratoire de Mathématiques de Reims (U.F.R. Sciences Exactes et Naturelles Moulin de la Housse - BP 1039 51687 REIMS cedex 2 - France)
"> LMR - Laboratoire de Mathématiques de Reims

Résumé

We introduce a notion of q-deformed rational numbers and q-deformed continued fractions. A q-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the q-deformed Pascal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the q-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, q-deformation of the Farey graph, matrix presentations and q-continuants are given, as well as a relation to the Jones polynomial of rational knots.
Fichier principal
Vignette du fichier
qRational_2.pdf (483.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02270545 , version 1 (26-08-2019)
Identifiants

Citer

Sophie Morier-Genoud, Valentin Ovsienko. q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS. Forum of Mathematics, Sigma, 2020, 8, pp.e13. ⟨10.1017/fms.2020.9⟩. ⟨hal-02270545⟩
234 Consultations
280 Téléchargements

Altmetric

Partager

More