Getting Started with the P# Framework

Pantazis Deligiannis!, Akash Lal?, Shaz Qadeer?

! p.deligiannis@imperial.ac.uk, Imperial College London, UK
2 akashl@microsoft.com, Microsoft Research, India
3 gadeer@microsoft.com, Microsoft Research, USA

1 Introduction

P# [1]][2] is an advanced systematic testing framework, designed to significantly ease the process of
developing and testing asynchronous reactive applications (i.e. distributed systems and web services) in
Microsoft’s .NET platform. P# works as follows:

— Provides an API for writing test harnesses, specifying safety and liveness properties, and modeling
the individual components of a large system as communicating state-machines (which is a similar
concept to actors).

— During testing, the P# runtime takes control of the P# test harness (which drives the system-under-
test) and all the modeled components, and systematically explores all interleavings between asyn-
chronous events, as well as other declared sources of nondeterminism (e.g. timeouts and failures), to
find bugs, such as local and global safety and liveness property violations, and runtime exceptions.

— P# can be optionally used for development of applications that will get deployed in production. P#
provides a runtime where the execution of the P# state-machines is not controlled. This runtime is a
thin layer built on top of TPL.

Programming model P# is built on top of the Rosly compiler and provides new C# language primi-
tives (which are largely based on Microsoft’s P [3] programming language) for creating machines, send-
ing events from one machine to another, and writing assertions about system properties. Each machine
has an input queue, states, state transitions, event handlers, fields and methods. Machines run concur-
rently with each other, each executing an event handling loop that dequeues an event from the input
queue and handles it by executing a sequence of operations. Each operation might update a field, create a
new machine, or send an event to another machine. In P#, create machine operations and send operations
are non-blocking. In the case of a send operation the message is simply enqueued into the input queue
of the target machine.

Usage There are many different ways that someone can use P# to test existing systems, or build new
highly-reliable ones:

— P# can be used just for systematically testing an existing message-passing system, by modeling its
environment (e.g. a client) and/or components of the system.

— The surface syntax of P# can be used to write an entire system from scratch. The surface P# syntax
directly extends C# with new language constructs, which allows for rapid prototyping. However, to
use the surface syntax, a developer has to use the P# compiler, which is built on top of Roslyn. The
main disadvantage of this approach is that P# does not yet fully integrate with the Visual Studio
integrated development environment (IDE), and thus does not support high-productivity features
such as IntelliSense (e.g. for auto-completition and automated refactoring).

!https://github.com/dotnet/roslyn

https://github.com/dotnet/roslyn

— P# can be used as a C# library to write an entire system from scratch. This approach is slightly more
verbose than the above, but allows full integration with Visual Studio. Note that most examples in
this guide will use the P# surface syntax, since it is less verbose. See for an example of using
P# as a C# library.

Repository The P# framework is publicly available as open-source and can be found at its git repository
at https://github.com/p-org/PSharp.

In the rest of this guide, we first introduce the basic features of a P# program (see §2)) and then discuss
how P# can be embedded in C# code (see §3). Next, we present an example of a simple program using
both the P# surface syntax and P# as a library (see §2.1). We then present the more advanced features
of P# (see). Next, we illustrate how someone can write safety properties in P# (see §2?), which can
be systematically checked for bugs. Finally, we provide an overview of the tools for compiling and
systematically testing a P# program.

2 Basic features of a P# program

A P# program is a collection of event and machine declarations and, optionally, other top-level
C# declarations, such as class and struct. All top-level declarations must be declared inside a
namespace, as in C#. If someone uses the P# high-level syntax, then events and machines must be
declared inside a . psharp file, while C# top-level declarations must be declared in a . cs file. On the
other hand, if someone uses P# as a C# library, all the code must be written inside a . cs file.

State machines are first-class citizens of the P# language and can be declared in the following way:

machine Server { ... }

The above code snippet declares a P# machine named Server. Machine declarations are similar to
class declarations in C#, and thus can contain an arbitrary number of fields and methods. For example,
the below code snippet declares the field client of type machine. An object of this type contains a
reference to a machine instance.

machine Server {
machine client;

}

The main difference between a class and a machine declaration is that the latter must also declare one or
more states:

machine Server ({
machine client;
start state Init { ... }
state Active { ... }

}

The above declares two states in the Server machine: Init and Active. The P# developer must use
the st art modifier to declare an initial state, which will be the first state that the machine will transition
to upon instantiation. In this example, the Init state has been declared as the initial state of Server.
Note that only a single state is allowed to be declared as an initial per machine. A state declaration
can optionally contain a number of state-specific actions, as seen in the following code snippet:

state SomeState {
entry { ... }
exit { ... }

}

https://github.com/p-org/PSharp

A code block indicated by entry { ... } denotes an action that will be executed when the machine
transitions to the state, while a code block indicated by exit { ... } denotes an action that will be
executed when the machine leaves the state. Actions in P# are essentially C# methods with no input
parameters and void return type. P# actions can contain arbitrary P# and C# statements. However, since
we want to explicitly declare all sources of asynchrony using P#, we only allow the use of sequential C#
code inside a P# machineE] An example of an ent ry action is the following:

entry {
this.client = create(Client);
send (this.client, Config, this);
send (this.client, Ping);
raise (Unit);

}

The above action contains the three most important P# statements. The create statement is used to
create a new instance of the Client machine. A reference to this instance is stored in the client
field. Next, the send statement is used to send an event (in this case the events Config and Ping) to
a target machine (in this case the machine whose address is stored in the field client).

When an event is being send, it is enqueued in the event queue of the target machine, which can then
dequeue the received event, and handle it asynchronously from the sender machine. Finally, the raise
statement is used to send an event to the caller machine (i.e. to itself). Like calling a send, when a
machine raises an event, it still continues execution of of the enclosing code block. However, when the
current machine action finishes, instead of dequeuing from the inbox, the machine immediately handles
the raised event. In P#, events (e.g. Ping, Unit and Config in the above example) can be declared as
follows:

event Ping;
event Unit;
event Config (target: machine);

A P# machine can send data (scalar values or references) to a target machine, as the payload of an event.
Such an event must specify the type of the payload in its declaration (as in the case of the Config event
above). A machine can also send data to itself (e.g. for processing in a later state) using raise.

In the previous example, the Server machine sends this (i.e. a reference to the current machine
instance) to the c1ient machine. The receiver (in our case c1ient) can retrieve the sent data by using
the keyword t rigger (or ReceivedEvent when using P# as a C# library), which is a handle to the
received event, casting t rigger to the expected event type (in this case Config), and then accessing
the payload as a field of the received event.

As discussed earlier, the create and send statements are non-blocking. The P# runtime will take
care of all the underlying asynchrony using the Task Parallel Library and, thus, the developer does not
need to explicitly create and manage tasks.

Besides the entry and exit declarations, all other declarations inside a P# state are related to
event-handling, which is a key feature of P#. An event-handler declares how a P# machine should react
to a received event. One such possible reaction is to create one or more machine instances, send one or
more events, or process some local data. The two most important event-handling declarations in P# are
the following:

state SomeState {
on Unit goto AnotherState;
on Pong do SomeAction;

}

% In practise, we just assume that the C# code is sequential, as it would be very challenging to impose this rule in
real life programs (e.g. a developer could use an external library).

The declaration on Unit goto AnotherState indicates that when the machine receives the Unit
event in SomeState, it must handle Unit by exiting the state and transitioning to AnotherState.
The declaration on Pong do SomeAction indicates that the Pong event must be handled by in-
voking the action SomeAction, and that the machine will remain in SomeState. P# also supports
anonymous event-handlers. For example, the declaration on Pong do { ... } is an anonymous event-
handler, which states that the block of statements between the braces must be executed when event Pong
is dequeued. Each event can be associated with at most one handler in a particular state of a machine.
If a P# machine is in a state SomeState and dequeues an event SomeEvent, but no event-handler is
declared in SomeState for SomeEvent, then P# will throw an appropriate exception.

Besides the above event-handling declarations, P# also provides the capability to defer and ignore
events in a particular state:

state SomeState {
defer Ping;
ignore Unit;

}

The declaration defer Ping indicates that the Ping event should not be dequeued while the machine
is in the state SomeState. Instead, the machine should skip over P ing (without dropping P ing from
the queue) and dequeue the next event that is not being deferred. The declaration ignore Unit indi-
cates that whenever Unit is dequeued while the machine is in SomeState, then the machine should
drop Unit without invoking any action.

P# also supports specifying invariants (i.e. assertions) on the local state of a machine. The developer
can achieve this by using the assert statement, which accepts as input a predicate that must always
hold in that specific program point, e.g. assert (k == 0), which holds if the integer k equals to 0.

2.1 A Simple Example Program

The following P# program shows a C1ient machine and a Server machine that communicate asyn-
chronously by exchanging Ping and Pong events:

1 namespace PingPong {

2 event Ping; // Client sends this event to the Server
3 event Pong; // Server sends this event to the Client
4 event Unit; // Event used for local transitions

5

6 // Event used for configuration, can take a payload
7 event Config (target: machine);

8

9 machine Server {

10 machine client;

11

12 start state Init {

13 entry {

14 // Instantiates the Client

15 this.client = create(Client);

16 // Sends event to client to configure it

17 send (this.client, Config, this);

18 raise (Unit); // Sends an event to itself

19 }

20

21 on Unit goto Active; // Performs a state transition
22 }

23

24 state Active {

25 on Ping do {

26 // Sends a Pong event to the Client

27 send (this.client, Pong);

28 }i

29 }

30 }

31

32 machine Client {

33 machine server;

34

35 start state Init {

36 on Config do Configure; // Handles the event
37 on Unit goto Active; // Performs a state transition
38 }

39

40 void Configure () {

41 // Receives reference to Server

42 this.server = (trigger as Config).target;
43 raise (Unit); // Sends an event to itself
44 }

45

46 state Active {

47 entry {

48 SendPing () ;

49 }

50 on Pong do SendPing;

51 }

52

53 void SendPing () {

54 // Sends a Ping event to the Server

55 send (this.server, Ping);

56 }

57 }

58

59 public class HostProgram {

60 static void Main (string[] args) {

61 PSharpRuntime.Create () .CreateMachine (typeof (Server)) ;
62 Console.ReadLine () ;

63 }

64 }

65 }

In the above example, the program starts by creating an instance of the Server machine (line 61). The
implicit constructor of each P# machine initializes the internal to the P# runtime data of the machine,
including the event queue, a set of available states, and a map from events to event-handlers per state.

After the Server machine has initialized, the P# runtime executes the ent ry action of the initial
(Init) state of Server, which first creates an instance of the C1ient machine (line 15), then sends the
event Config to the Client machine (line 17), with the this reference as a payload, and then raises
the event Unit (line 18). As mentioned earlier, when a machine calls raise, it bypasses the queue and
first handles the raised event. In this case, the Server machine handles Unit by transitioning to the
Active state (line 21).

Client starts executing (asynchronously) when it is created by Server. The Client machine
stores the received payload (which is a reference to the Server machine) in the server field (line 42),
and then raises Unit to transition to the Active state. In the new state, Client calls the SendPing
method to send a Ping event to Server (line 55). In turn, the Server machine dequeues Ping and

handles it by sending a Pong event to Client (line 27), which subsequently responds by sending a new
Ping event to Server. This asynchronous exchange of Ping and Pong events continues indefinitely.

3 Interoperability Between P# and C#

Because P# is built on top of the C# language, the entry point of a P# program (i.e. the first machine
that the P# runtime will instantiate and execute) must be explicitly declared inside a host C# program
(typically in the Main method), as follows:

using Microsoft.PSharp;
public class HostProgram ({
static void Main(string[] args) {
PSharpRuntime.Create () .CreateMachine (typeof (Server)) ;
Console.ReadLine () ;
}
}

The developer must first import the P# runtime library (Microsoft.PSharp.dl1l), then create a
PSharpRuntime instance, and finally invoke the CreateMachine runtime method to instantiate
the first P# machine (Server in the above example).

The CreateMachine method is part of the .NET interoperability API (a set of methods for calling
P# from native C# code) that is exposed by PSharpRunt ime. This method accepts as a parameter the
type of the machine to be instantiated, and returns an object of the MachineId type, which contains
a reference to the created P# machine. Because CreateMachine is an asynchronous method, we call
the Console.ReadLine method, which pauses the main thread until a console input has been given,
so that the host C# program does not exit prematurely.

The PSharpRunt ime .NET interoperability API also provides the SendEvent method for send-
ing events to a P# machine from native C#. This method accepts as parameters an object of type
MachineId, an event and an optional payload. Although the developer has to use CreateMachine
and SendEvent to call P# code from native C#, the opposite is straightforward, as it only requires
accessing a C# object from P# code.

The example of §2.1|can be written using P# as a C# library as follows:

1 // PingPong.cs

2 using System;

3 using Microsoft.PSharp;

4

5 namespace PingPong {

6 class Unit : Event { }

7 class Ping : Event { }

8 class Pong : Event { }

9

10 class Config : Event {

11 public MachineId Target;
12 public Config(MachineId target) : base() {
13 this.Target = target;
14 }

15 }

16

17 class Server : Machine {
18 MachineId Client;

19
20 [Start]
21 [OnEntry (nameof (InitOnEntry))]

22 [OnEventGotoState (typeof (Unit), typeof (Active))]

23 class Init : MachineState { }

24

25 void InitOnEntry () {

26 this.Client = this.CreateMachine (typeof (Client));
27 this.Send(this.Client, new Config(this));

28 this.Raise (new Unit ());

29 }

30

31 [OnEventDoAction (typeof (Pong), nameof (SendPing))]
32 class Active : MachineState {

33 protected override void OnEntry () {

34 (this.Machine as Server) .SendPing();

35 }

36 }

37

38 void SendPing() {

39 this.Send(this.Client, new Ping());

40 }

41 }

42

43 class Client : Machine {

44 MachineId Server;

45

46 [Start]

47 [OnEventGotoState (typeof (Unit), typeof (Active))]
48 [OnEventDoAction (typeof (Config), nameof (Configure))]
49 class Init : MachineState { }

50

51 void Configure () {

52 this.Server = (this.ReceivedEvent as Config) .Trigger;
53 this.Raise (new Unit ());

54 }

55

56 [OnEventDoAction (typeof (Ping), nameof (SendPong))]
57 class Active : MachineState { }

58

59 void SendPong () {

60 this.Send (this.Server, new Pong());

61 }

62 }

63

64 public class Program {

65 static void Main (string[] args) {

66 PSharpRuntime.CreateMachine (typeof (Server));

67 Console.ReadLine () ;

68 }

69 }

70 }

The programmer can use P# as a library by importing the Microsoft .PSharp.dl1l library. A P#
machine can be declared by creating a C# class that inherits from the type Machine (provided by the
P# library). A state can be declared by creating a class that inherits from the type MachineState.
This state class must be nested inside a machine class (no other class besides a state can be nested inside
a machine class). The start state can be declared using the [Start] attribute.

A state transition can be declared using the [OnEventGotoState (...)] attribute, where the
first argument of the attribute is the type of the received event and the second argument is the type of the
target state. An optional third argument, is a string that denotes the name of the method to be executed
after exiting the state and before entering the new state. Likewise, an action handler can be declared
using the [OnEventDoAction (...)] attribute, where the first argument of the attribute is the type
of the received event and the second argument is the name of the action to be executed. All P# statements
(e.g. send and raise) are exposed as method calls of the Machine and MachineState classes.

4 Advanced features of P#

The following is a discussion of more advanced features of P#, such as explicit termination of machines,
modeling components and the environment of a system, and specifying safety and liveness properties.

4.1 Explicit termination of P# machines

In order to terminate a P# machine explicitly, it must dequeue a special event named halt, which is
provided by P# (the user cannot declare it). A halt event (Halt when using P# as a library) can be
raised and/or send to another machine. Termination of a machine due to an unhandled halt event is
valid behavior (the P# runtime does not report an error). From the point of view of formal operational
semantics, a halted machine is fully receptive and consumes any event that is sent to it. The P# runtime
implements this semantics efficiently by cleaning up resources allocated to a halted machine and record-
ing that the machine has halted. An event sent to a halted machine is simply dropped. A halted machine
cannot be restarted; it remains halted forever.

4.2 Modeling System Components using P#

Figure [I] presents the pseudocode of a simple distributed storage system that was contrived for the pur-
poses of explaining our P# testing methodology. The system consists of a client, a server and three stor-
age nodes (SNs). The client sends the server a C1ientReq message that contains data to be replicated
(DataToReplicate), and then waits to get an acknowledgement (by calling the receive method)
before sending the next request. When the server receives C1ientReq, it first stores the data locally (in
the Data field), and then broadcasts a ReplReq message to all SNs. When an SN receives ReplReq,
it handles the message by storing the received data locally (by calling the st ore method). Each SN has
a timer installed, which sends periodic Timeout messages. Upon receiving Timeout, an SN sends
a Sync message to the server that contains the storage log. The server handles the Sync message by
calling the isUpToDate method to check if the SN log is up-to-date. If it is not, the server sends a
repeat Rep1Req message to the outdated SN. If the SN log is up-to-date, then the server increments a
replica counter by one. Finally, when there are three replicas available, the server sends an Ack message
to the client.

There are two bugs in this example. The first bug is that the server does not keep track of unique
replicas. The replica counter increments upon each up-to-date Sync, even if the syncing SN is already
considered a replica. This means that the server might send an Ack message when fewer than three
replicas exist, which is erroneous behaviour. The second bug is that the server does not reset the replica
counter to 0 upon sending an Ack message. This means that when the client sends another ClientReq
message, it will never receive Ack, and thus block indefinitely. To systematically test this example, the
developer must first create a P# test harness, and then specify the correctness properties of the system.
Figure 2] illustrates a test harness that can find the above two bugs.

Each box in the figure represents a concurrently running P# machine, while an arrow represents an
event being sent from one machine to another. We use three kinds of boxes: (i) a box with rounded
corners and thick border denotes a real component wrapped inside a P# machine; (ii) a box with thin

Server

receive msg { doSync (Node sn, Log log) {
case ClientReq: // If the storage log is not
this.Data = message.Val; // up-to-date, replicate
// Replicate data to all nodes if (lisUpToDate(log))
foreach (sn in this.Nodes) sn.send (ReplReq, this.Data);
sn.send (ReplReq, this.Data); else {

this.NumReplicas+-+;
if (this.NumReplicas == 3)
this.Client.send (Ack);

case Sync:
Node node = message.ld;
Log log = message.Log;

doSync(node, log); }
} }
Storage Node Client
receive msg { while (hasNextRequest()) {

// Store received data this.DataToReplicate);
store(message.Val); receive(Ack); // Wait for ack

case Timeout:
// Send server the log 1 -~~~ ~"~"~"---—------—-—------
// upon timeout :
this.Server.send(Sync, !
this.Id, this.Log); l

l

|

I

I

]
I
l
I
l
case ReplReq: : this.Server.send(ClientReq,
l
l
l
|
|

// Send timeout to node when

// countdown reaches 0

if (this.Countdown == 0)
this.SN.send(Timeout);

Fig. 1. Pseudocode of a simple distributed storage system that is responsible for replicating the data sent by a client.

border denotes a modeled component; and (iii) a box with dashed border denotes a special P# machine
used for safety or liveness checking (see §4.3]and §4.4).

We do not model the server component since we want to test its actual implementation. The server
is wrapped inside a P# machine, which is responsible for (i) sending the system messages (as payload
of a P# event) via the P# send (. . .) method, instead of the real network, and (ii) delivering received
messages to the wrapped component. We model the SN so that they store data in memory rather than on
disk (which can be inefficient during testing). We also model the client so that it can drive the system by
repeatedly sending a nondeterministically generated C1ientRegq, and then waiting for an Ack event.
Finally, we model the timer so that P# takes control of all time-related nondeterminism in the system.
This allows the P# testing engine to control when a Timeout event will be sent to the SNs during
testing, and (systematically) explore different schedules.

P# uses object-oriented language features such as interfaces and dynamic method dispatch to connect
the real code with the modeled code. Developers in industry are used to working with such features, and
heavily employ them in testing production systems. In our experience, this significantly lowers the bar
for engineering teams inside Microsoft to embrace P# for testing.

4.3 Writing safety properties

Safety property specifications generalize the notion of source code assertions; a safety property violation
is a finite trace leading to an erroneous state. P# supports the usual assertions for specifying safety
properties that are local to a P# machine (see §2)), and also provides a way to specify global assertions in
the form of a safety monitor, a special P# machine that can receive, but not send, events.

A safety monitor maintains local state that is modified in response to events received from ordinary
(non-monitor) machines. This local state is used to maintain a history of the computation that is rel-

| Safety Monitor | Modeled

____________ ! Timer
AN RN
Modeled ; NN /
Rl Ack | Notilyh of Modeled
\ < . | Storage Node | Timeout
ClientReq | Server (\Sy\nc; Modeled /
e 7 .| Storage Node
Notlfyv/ ReplReq\, £
B L) . Modeled
: Liveness Monitor : Storage Node

Fig. 2. The P# test harness for the example in Figure[T}

evant to the property being specified. An erroneous global behavior is flagged via an assertion on the
private state of the safety monitor. Thus, a monitor cleanly separates the instrumentation state required
for specification (inside the monitor) from the program state (outside the monitor).

The first bug in the example of §4.2]is a safety bug. To find it, the developer can write a safety monitor
(see Figure[2) that contains a map from unique SN ids to a Boolean value, which denotes if the SN is a
replica or not. Each time an SN replicates the latest data, it notifies the monitor to update the map. Each
time the server issues an Ack, it also notifies the monitor. If the monitor detects that an Ack was sent
without three replicas actually existing, a safety violation is triggered. The following code snippet shows
the P# source code for this safety monitor:

1 monitor SafetyMonitor {

2 // Map from unique SNs ids to a boolean value
3 // that denotes if a node is replica or not
4 Dictionary<int, bool> replicas;

5

6 start state Checking {

7 entry {

8 var node_ids = (HashSet<int>)payload;

9 this.replicas = new Dictionary<int, bool>();
10 foreach (var id in node_ids) {

11 this.replicas.Add(id, false);

12 }

13 }

14

15 // Notification that the SN is up-to-date
16 on NotifyUpdated do {

17 var node_id = (int)payload;

18 this.replicas[node_id] = true;

19 i

20

21 // Notification that the SN is out-of-date
22 on NotifyOutdated do ({

23 var node_id = (int)payload;

24 this.replicas|[node_id] = false;

25 i

26

27 // Notification that an Ack was issued

28 on NotifyAck do {

29 // Assert that 3 replicas exist

10

30 assert (this.replicas.All (n => n.Value));
31 }i

32 }

33 }

4.4 Writing liveness properties

Liveness property specifications generalize nontermination; a liveness property violation is an infinite
trace that exhibits lack of progress. Typically, a liveness property is specified via a temporal logic for-
mula. We take a different approach and allow the developers to write a liveness monitor. Similar to a
safety monitor, a liveness monitor can receive, but not send, events.

A liveness monitor contains two special states: the hot and the cold state. The hot state denotes a
point in the execution where progress is required, but has not happened yet; e.g. a node has failed, but a
new one has not launched yet. A liveness monitor transitions to the hot state when it is notified that the
system must make progress. A liveness monitor leaves the hot state and enters the cold state when it is
notified that the system has progressed. An infinite execution is erroneous if the liveness monitor stays
in the hot state for an infinitely long period of time. Our liveness monitors can encode arbitrary temporal
logic properties.

A liveness property violation is witnessed by an infinite execution in which all concurrently executing
P# machines are fairly scheduled. Since it is impossible to generate an infinite execution by executing
a program for a finite amount of time, our implementation of liveness checking in P# approximates
an infinite execution using several heuristics. In this work, we consider an execution longer than a large
user-supplied bound as an “infinite”” execution. Note that checking for fairness is not relevant when using
this heuristic, due to our pragmatic use of a large bound.

The second bug in the example of §4.2]is a liveness bug. To detect it, the developer can write a
liveness monitor (see Figure |Z|) that transitions from a hot state, which denotes that the client sent a
ClientReq and waits for an Ack, to a cold state, which denotes that the server has sent an Ack in
response to the last C1ientReq. Each time a server receives a ClientRegq, it notifies the monitor
to transition to the hot state. Each time the server issues an Ack, it notifies the monitor to transition to
the cold state. If the monitor is in a hot state when the bounded infinite execution terminates, a liveness
violation is triggered. The following code snippet shows the P# source code for this liveness monitor:

1 monitor LivenessMonitor {

2 start hot state Progressing {

3 // Notification that the server issued an Ack
4 on NotifyAck do {

5 raise (Unit);

6 }i

7 on Unit goto Progressed;

8 }

9

10 cold state Progressed {

11 // Notification that server received ClientReq
12 on NotifyClientRequest do {

13 raise (Unit);

14 }i

15 on Unit goto Progressing;

16 }

17 }

11

P+# Project

P# Binary

P

Compiler

P# Runtime
.psharp

N ! P+# Binary

NET libs

P#

Systematic

Operating System
Tester

(reproducible) error trace

Fig. 3. The typical P# workflow.

5 Compiling and Testing P# Programs

To compile a P# program, the developer must use the P# compiler (PSharpCompiler.exe), which
is built on top of the Microsoft Roslyn compiler. The P# compilation process consists of two phases:
parsing and rewriting. In the parsing phase, the input P# program is parsed using a recursive-descent
parser to produce an abstract syntax tree (AST). In the rewriting phase, the P# compiler traverses the
produced AST, and rewrites all P# statements to native (intermediate) C# code. Finally, the P# compiler
invokes the Roslyn compiler to build the intermediate C# program, link it with the P# runtime library,
and produce a .NET executable.

To test a P# program, the developer must use the PSharpTester . exe systematic testing tool (see
https://github.com/p-org/PSharp for instructions), or use the P# systematic testing APIs, as follows:

1 using System;

2 using System.Collections.Generic;

3

4 using Microsoft.PSharp;

5 using Microsoft.PSharp.SystematicTesting;

6 using Microsoft.PSharp.Utilities;

7

8 namespace Example

9 {

10 public class Test

11 {

12 static void Main (string[] args)

13 {

14 var configuration = Configuration.Create() .
15 WithLivenessCheckingEnabled() .

16 WithNumberOfIterations (10) .

17 WithVerbosityEnabled (2) ;

18 TestingEngine.Create (configuration, Execute) .Run();
19 }

20

21 [Microsoft.PSharp.Test]

22 public static void Execute (PSharpRuntime runtime)
23 {

24 runtime.CreateMachine (typeof (SomeMachine)) ;
25 }

26 }

27 }

12

https://github.com/p-org/PSharp

The developer must first create a Configuration object, which declares testing options such
as the number of testing iterations. Next, the developer must create a Test ingEngine, passing the
configuration instance and the entry point to the test (in our case Execute), which must be annotated
with the [Microsoft.PSharp.Test] attribute, as arguments. Finally, the Run method must be
invoked to start testing the P# program.

References

1. Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and Paul Thomson. Asynchronous
programming, analysis and testing with state machines. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 154-164. ACM, 2015.

2. Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen, Alastair F. Donaldson, John Erickson, Cheng
Huang, Akash Lal, Rashmi Mudduluru, Shaz Qadeer, and Wolfram Schulte. Uncovering bugs in distributed
storage systems during testing (not in production!). In Proceedings of the 14th USENIX Conference on File and
Storage Technologies, pages 249-262. Usenix, 2016.

3. Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. P: Safe
asynchronous event-driven programming. In Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 321-332. ACM, 2013.

13

	Getting Started with the P# Framework

