8000 Backward fails with compiled attention on nested tensors · Issue #155421 · pytorch/pytorch · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Backward fails with compiled attention on nested tensors #155421
Open
@PierreGtch

Description

@PierreGtch

🐛 Describe the bug

I was trying to use the transformer described in this tutorial with torch.compile and nested tensors, but encountered a bug when backpropagating.

Here is a minimal example which leads to the same error:

import torch
from torch import nn
import torch.nn.functional as F

DEVICE = "cuda"

class DummyTransformer(nn.Module):
    def __init__(self, d_model):
        super().__init__()
        self.d_model = d_model
        self.linear = nn.Linear(d_model, d_model)

    def forward(self, x):
        x = self.linear(x)
        x = x.unflatten(-1, [1, self.d_model]).transpose(1, 2)
        x = F.scaled_dot_product_attention(x, x, x)
        return x

x = torch.nested.nested_tensor_from_jagged(
    torch.randn(11, 3, device=DEVICE),
    offsets=torch.tensor([0, 5, 11], dtype=torch.int64, device=DEVICE),
)
layer = DummyTransformer(d_model=3).to(DEVICE)
layer = torch.compile(layer)

y = layer(x)
y.sum().backward()
Traceback (most recent call last):
  File "/scratch/big/home/piegue/chan_inv_clf/report_issue_compile_nested_transformer.py", line 34, in <module>
    y.sum().backward()
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/_tensor.py", line 648, in backward
    torch.autograd.backward(
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/autograd/__init__.py", line 354, in backward
    _engine_run_backward(
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/autograd/graph.py", line 829, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/autograd/function.py", line 311, in apply
    return user_fn(self, *args)
           ^^^^^^^^^^^^^^^^^^^^
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2157, in backward
    all_args = _backward_prologue_functional(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1665, in _backward_prologue_functional
    flat_processed_tangents = list(
                              ^^^^^
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1668, in <genexpr>
    AOTDispatchAutograd.process_runtime_tangent(
  File "/home/piegue/miniconda3/envs/torch/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1930, in process_runtime_tangent
    assert len(meta.attrs) == len(runtime_subclass_keys)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError

Versions

It failed with torch version 2.7.1:

PyTorch version: 2.7.1+cu126                                                                                                                                                               
Is debug build: False                                                                                                                                                                      
CUDA used to build PyTorch: 12.6                                                                                                                                                           
ROCM used to build PyTorch: N/A                                                                                                                                                            
                                                                                                                                                                                           
OS: Ubuntu 20.04.6 LTS (x86_64)                                                                                                                                                            
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0                                                                                                                                         
Clang version: 10.0.0-4ubuntu1                                                                                                                                                             
CMake version: version 3.16.3                                                                                                                                                              
Libc version: glibc-2.31                                                                                                                                                                   
                                                                                                                                                                                           
Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)                                                                                                         
Python platform: Linux-5.4.0-190-generic-x86_64-with-glibc2.31                                                                                                                             
Is CUDA available: True                                                                                                                                                                    
CUDA runtime version: 10.1.243                                                                                                                                                             
CUDA_MODULE_LOADING set to: LAZY                                                                                                                                                           
GPU models and configuration: 
GPU 0: Quadro RTX 6000
GPU 1: Quadro RTX 6000
GPU 2: Quadro RTX 6000
GPU 3: Quadro RTX 6000
GPU 4: Quadro RTX 6000
GPU 5: Quadro RTX 6000
GPU 6: Quadro RTX 6000
GPU 7: Quadro RTX 6000
GPU 8: Quadro RTX 6000
GPU 9: Quadro RTX 6000

Nvidia driver version: 535.54.03
cuDNN version: Probably one of the following:                                                                                                                                              
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.4.dpkg-new                                                                                                                                       
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.4.dpkg-new                                                                                                                             
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.4.dpkg-new                                                                                                                             
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.4.dpkg-new
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.4.dpkg-new
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.4.dpkg-new
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             64
On-line CPU(s) list:                0-63                                                                                                                                                   
Thread(s) per core:                 2                                                                                                                                                      
Core(s) per socket:                 16                                                                                                                                                     
Socket(s):                          2                                                                                                                                                      
NUMA node(s):                       2                                                                                                                                                      
Vendor ID:                          GenuineIntel                                                                                                                                           
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
Stepping:                           7
CPU MHz:                            1094.088
CPU max MHz:                        3900.0000
CPU min MHz:                        1000.0000
BogoMIPS:                           4600.00
Virtualization:                     VT-x
L1d cache:                          1 MiB
L1i cache:                          1 MiB
L2 cache:                           32 MiB
L3 cache:                           44 MiB
NUMA node0 CPU(s):                  0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62
NUMA node1 CPU(s):                  1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: Split huge pages
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Vulnerable, KVM SW loop
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm co
nstant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1
 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_en
hanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd a
vx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

Versions of relevant libraries:                                                                                                                                                            
[pip3] numpy==1.26.4                                                                                                                                                                       
[pip3] nvidia-cublas-cu12==12.6.4.1                                                                                                                                                        
[pip3] nvidia-cuda-cupti-cu12==12.6.80                                                                                                                                                     
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77                                                                                                                                                     
[pip3] nvidia-cuda-runtime-cu12==12.6.77                                                                                                                                                   
[pip3] nvidia-cudnn-cu12==9.5.1.17                                                                                                                                                         
[pip3] nvidia-cufft-cu12==11.3.0.4                                                                                                                                                         
[pip3] nvidia-curand-cu12==10.3.7.77                                                                                                                                                       [pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pytorch-lightning==2.2.2
[pip3] pytorch-metric-learning==2.8.1
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchdata==0.7.1
[pip3] torchinfo==1.8.0
[pip3] torchmetrics==1.3.2
[pip3] torchtext==0.17.1
[pip3] triton==3.3.1
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pytorch-lightning         2.2.2                    pypi_0    pypi
[conda] pytorch-metric-learning   2.8.1                    pypi_0    pypi
[conda] torch                     2.7.1                    pypi_0    pypi
[conda] torchaudio                2.7.1                    pypi_0    pypi
[conda] torchdata                 0.7.1                    pypi_0    pypi
[conda] torchinfo                 1.8.0                    pypi_0    pypi
[conda] torchmetrics              1.3.2                    pypi_0    pypi
[conda] torchtext                 0.17.1                   pypi_0    pypi
[conda] triton                    3.3.1                    pypi_0    pypi

I also tried with the latest nightly version, but it lead to the same result:

PyTorch version: 2.8.0.dev20250607+cu126                                                                                                                                                   
Is debug build: False                                                                                                                                                                      
CUDA used to build PyTorch: 12.6                                                                                                                                                           

[...]

Versions of relevant libraries:
[pip3] numpy==2.1.2
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.5
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pytorch-triton==3.3.1+gitc8757738
[pip3] torch==2.8.0.dev20250607+cu126
[pip3] torchaudio==2.8.0.dev20250607+cu126
[pip3] torchvision==0.23.0.dev20250607+cu126
[conda] numpy                     2.1.2                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pytorch-triton            3.3.1+gitc8757738          pypi_0    pypi
[conda] torch                     2.8.0.dev20250607+cu126          pypi_0    pypi
[conda] torchaudio                2.8.0.dev20250607+cu126          pypi_0    pypi
[conda] torchvision               0.23.0.dev20250607+cu126          pypi_0    pypi

cc @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ @chauhang @penguinwu

Metadata

Metadata

Assignees

No one assigned

    Labels

    awaiting response (this tag is deprecated)This tag is deprecated while we figure out what to do with itmodule: nestedtensorNestedTensor tag see issue #25032oncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0