Description
🐛 Describe the bug
Description:
torch.fft.ifft2 handles infinite input values inconsistently between CPU and GPU devices. While real components may be similar, the GPU implementation incorrectly produces NaN imaginary components where the CPU produces clean zero imaginary parts.
Expected behavior: Identical complex number results on both CPU and GPU
Code:
import torch
x = torch.tensor([[torch.inf, 1.0], [-torch.inf, 2.0]], dtype=torch.complex64)
result = torch.fft.ifft2(x)
x_gpu = torch.tensor([[torch.inf, 1.0], [-torch.inf, 2.0]], dtype=torch.complex64).to('cuda')
result_gpu = torch.fft.ifft2(x_gpu)
print("CPU: ",result)
print("GPU: ",result_gpu)
Output:
CPU: tensor([[nan+0.j, nan+0.j],
[inf+0.j, inf+0.j]])
GPU: tensor([[nan+nanj, nan+nanj],
[inf+nanj, inf+nanj]], dev
680A
ice='cuda:0')
Versions
PyTorch version: 2.7.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.2 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.39
Python version: 3.9.21 (main, Dec 11 2024, 16:24:11) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.8.0-59-generic-x86_64-with-glibc2.39
Is CUDA available: True
CUDA runtime version: 12.8.93
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB
Nvidia driver version: 570.133.20
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 22
On-line CPU(s) list: 0-21
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7642 48-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 22
Stepping: 0
BogoMIPS: 4599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif umip rdpid arch_capabilities
Virtualization: AMD-V
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 1.4 MiB (22 instances)
L1i cache: 1.4 MiB (22 instances)
L2 cache: 11 MiB (22 instances)
L3 cache: 352 MiB (22 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-21
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.0.2
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] torch==2.7.0
[pip3] triton==3.3.0
[conda] numpy 2.0.2 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
cc @mruberry