Description
🐛 Describe the bug
I use the model: https://huggingface.co/Salesforce/codet5p-110m-embedding and with torch.jit.load
, it makes error:
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
model = AutoModel.from_pretrained('Salesforce/codet5p-110m-embedding', trust_remote_code=True)
input_list = [tokenizer(["xxxxxx"], padding='max_length', truncation=True, max_length=100, return_tensors='pt')['input_ids']]
ts_model = torch.jit.trace(model.eval(), input_list)
torch.jit.save(ts_model, "codet5p_embedding.pt")
ts_model = torch.jit.load("codet5p_embedding.pt").cuda()
the error message is:
RuntimeError Traceback (most recent call last)
Cell In[21], line 1
----> 1 ts_model = torch.jit.load("codet5p_embedding.pt").cuda()
2 org_out = model(input_list)
3 ts_out = ts_model(input_list)
File "/opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py", line 162, in load(f, map_location, _extra_files, _restore_shapes)
160 cu = torch._C.CompilationUnit()
161 if isinstance(f, (str, pathlib.Path)):
--> 162 cpp_module = torch._C.import_ir_module(cu, str(f), map_location, _extra_files, _restore_shapes) # type: ignore[call-arg]
163 else:
164 cpp_module = torch._C.import_ir_module_from_buffer(
165 cu, f.read(), map_location, _extra_files, _restore_shapes
166 ) # type: ignore[call-arg]
RuntimeError:
Expression of type - cannot be used in a type expression:
__torch__.transformers_modules.code-5p-110m-embedding.modeling_codet5p_embedding.___torch_mangle_1368.CodeT5pEmbeddingModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
Versions
Collecting environment information...
PyTorch version: 2.1.2
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: CentOS Linux 7 (Core) (x86_64)
GCC version: (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
Clang version: Could not collect
CMake version: version 3.28.4
Libc version: glibc-2.17
Python version: 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.10.112-005.ali5000.al8.x86_64-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L20
Nvidia driver version: 535.161.08
cuDNN version: Probably one of the following:
/usr/lib64/libcudnn.so.8.9.0
/usr/lib64/libcudnn_adv_infer.so.8.9.0
/usr/lib64/libcudnn_adv_train.so.8.9.0
/usr/lib64/libcudnn_cnn_infer.so.8.9.0
/usr/lib64/libcudnn_cnn_train.so.8.9.0
/usr/lib64/libcudnn_ops_infer.so.8.9.0
/usr/lib64/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.1.2
[pip3] torch-dct==0.1.6
[pip3] torchaudio==2.1.2
[pip3] torchvision==0.16.2
[pip3] triton==2.0.0
[conda] blas 1.0 mkl
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] mkl 2023.1.0 h213fc3f_46344
[conda] mkl-service 2.4.0 py310h5eee18b_1
[conda] mkl_fft 1.3.8 py310h5eee18b_0
[conda] mkl_random 1.2.4 py310hdb19cb5_0
[conda] numpy 1.26.4 py310h5f9d8c6_0
[conda] numpy-base 1.26.4 py310hb5e798b_0
[conda] pytorch 2.1.2 py3.10_cuda12.1_cudnn8.9.2_0 pytorch
[conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torch-dct 0.1.6 pypi_0 pypi
[conda] torchaudio 2.1.2 py310_cu121 pytorch
[conda] torchvision 0.16.2 py310_cu121 pytorch
[conda] triton 2.0.0 pypi_0 pypi