8000 RuntimeError: NVML_SUCCESS == r INTERNAL ASSERT FAILED at "/opt/conda/conda-bld/pytorch_1695392020201/work/c10/cuda/CUDACachingAllocator.cpp":1154, please report a bug to PyTorch. · Issue #112377 · pytorch/pytorch · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
RuntimeError: NVML_SUCCESS == r INTERNAL ASSERT FAILED at "/opt/conda/conda-bld/pytorch_1695392020201/work/c10/cuda/CUDACachingAllocator.cpp":1154, please report a bug to PyTorch. #112377
Open
@zyh3826

Description

@zyh3826

🐛 Describe the bug

RuntimeError: NVML_SUCCESS == r INTERNAL ASSERT FAILED at "/opt/conda/conda-bld/pytorch_1695392020201/work/c10/cuda/CUDACachingAllocator.cpp":1154, please report a bug to PyTorch.

from transformers import LlamaForCausalLM, LlamaConfig, LlamaTokenizer
p = 'path/to/llama_2_models/13B'
model = LlamaForCausalLM.from_pretrained(p)
model.to('cuda:0')

errors below:
image

Versions

PyTorch version: 2.1.0
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.15.0-156-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800 80GB PCIe
  MIG 3g.40gb     Device  0:

Nvidia driver version: 525.105.17
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 57 bits virtual
CPU(s):                          96
On-line CPU(s) list:             0-95
Thread(s) per core:              2
Core(s) per socket:              24
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           106
Model name:                      Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz
Stepping:                        6
Frequency boost:                 enabled
CPU MHz:                         906.909
CPU max MHz:                     3400.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4200.00
Virtualization:                  VT-x
L1d cache:                       2.3 MiB
L1i cache:                       1.5 MiB
L2 cache:                        60 MiB
L3 cache:                        72 MiB
NUMA node0 CPU(s):               0-23,48-71
NUMA node1 CPU(s):               24-47,72-95
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.0
[pip3] torch==2.1.0
[pip3] torchaudio==2.1.0
[pip3] torchelastic==0.2.2
[pip3] torchvision==0.16.0
[pip3] triton==2.1.0
[conda] blas                      1.0                         mkl
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] mkl                       2023.1.0         h213fc3f_46343
[conda] mkl-service               2.4.0           py310h5eee18b_1
[conda] mkl_fft                   1.3.8           py310h5eee18b_0
[conda] mkl_random                1.2.4           py310hdb19cb5_0
[conda] numpy                     1.26.0          py310h5f9d8c6_0
[conda] numpy-base                1.26.0          py310hb5e798b_0
[conda] pytorch                   2.1.0           py3.10_cuda11.8_cudnn8.7.0_0    pytorch
[conda] pytorch-cuda              11.8                 h7e8668a_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.1.0               py310_cu118    pytorch
[conda] torchelastic              0.2.2                    pypi_0    pypi
[conda] torchtriton               2.1.0                     py310    pytorch
[conda] torchvision               0.16.0              py310_cu118    pytorch

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: CUDACachingAllocatortriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0