THE KERF PROGRAMMING LANGUAGE

John Earnest

This manual is a reference guide to Kerf, a concise multi-paradigm language with an emphasis on
high-performance data processing. For the latest information and licensing inquiries, please consult:

kert.concerns@gmail.com

August 28, 2024

kerf.concerns@gmail.com

Contents

(l__Introductionl
(1.1 Background|
L2 Conventions . . . -« o o
[[:37 Using the REPT]
[1.3.1 Command-Line Arguments and Scripting|
C32 The REPT] . . . o o oot i e e e
1.4 Examples| e e e
[2__Installation|
2.1 Installing (Binary)[.
2.2 Installing (License Files)|
2.3 Installing (Building from Source)|
24 Adding Kerf to your Pathl
[2.5 Startup SCripts] o . e e e e

|3 Terminology|
[3.1 Atomicity]

8.2 Combinatorsl e e

[4.3 otrings and Characters| L

[4.4 Timestamps| L e e

[4.5 Maps, Tables and Atlases|.

[4.6 Special Identifiers| L

[4.7 Index, Enum and Zip|o

[4.8 Type Coercion| o e e

[5.1 Expressions|o

[5.3 ASSIGNMENt|. oL e e e e e

6 SQL
6.1 coping| .
6.2 INSERT]
6.3 DELETE
6.4 SELECT

6.0.2 GROUP BYl e 52
6.6 Joinsl 53
6.6.1 Left Joinl« . e 54
6.6.2 Asof Join| 55

67 DAMCE] . - - - o o oo e 56
6.8 TAETING| o v o o e e e e e e e e 56
(6.9 Performancel L 57
(7 Input/Output| 58
7.1 General I/O|o 58
7.2 File I/O| 59
[73 Striped Files| o o 60
[r4 Parceled tables. o 61
7.5 Network I/O (IPC)| e 62
0.1 tarting an EIVET| © o v v v e i e e e e e e e e e e e e e 64
[7.5.2 Backgrounding a Kerf Server| o o 64

[8 Foreign Function Interface| 65
S.1 rom Kerf] 65
8.2 Kerf from Cl 67
8.2.1 Kertf .a archive and .o object files|o o oo 67

8.3 Reterence Counting| 68
[8.3.1 Releasing] 68
3.3.2 etalning| L. 69

(8.4 Internal Representations| L L 71
8.4.1 Integers| 71
842 Floats o 71
B43 Characters 71
8.4.4 Stamps| e e e 71
BAS Vectors o o 71

8.5 Attribute Flags| oo 72
8.6 Native APIl. o e 74
3.0.1 kerf_api_append- Append to List| 000000 74
[B:6.2 kerfapicalldyad- Call Dyad| 74
8.6.3 kerf_api_callmonad - Call Monad| 75

B64 Ferfapicallmilad CallNIRd] - . . -« oo oooo e 75
[8:6.5 kerf_api_copyonwrite - Copy On Write] 75
[B6.6 kerfapiget-Kerf Gef]. 76
[8:6.7 kerf_api_init - Initialize the Kerf Process| o v v v v v v v i oo 76
8.6.8 kerf_api_interpret - Interpret String|. Lo 7
8.6.9 kerf_api_len- Kerf Length{.o o o000 77
|§.6.10 kerf_api_new_charvec - New Kerf T 78
8.6.11 kerf apinew float - New Kerf Float| 78

.0.12 kerf_apinew_int - New Kerf Integer| 78
[8:6.13 kerf_apinew kerf - New Kerf Object] 78
[8.6.14 kerf api new list - New Kerf List| 79
8.6.15 kerf_apinewmap - New Kert Map|. 79

.06.16 kerf_api new_stamp - New Kerf Timestamp| 80
B6I7 kerfapimnil-Kerf Nill 80
[8:6.18 kerf_api_release - Release Kerf Reference]o oo, 80
8.6.19 kerf_api_retain - Retain Kerf Reference] 80

8.6.20 kerf_api_set - Kerf Set|. oo 81

8.6.21 kerf_api_show - Show Kerf Object| oo 0. 81

[8.7 The Kerf IPC Protocol (KIP)| it 82
[B71 Execution Type|. o o o 82
8.7.2 Response T'ype|l 82
[8.7.3 Display Type| 83
BTZA " Wire Sizel o 83
875 Shard Sizel. 83
8.7.6 Payload Size| 83

9 __Built-In Function Reference 84
9.1 abs - Absolute Valuel 84
9.2 acos-ArcCosinel L 84
9.3 add - Addl 84
[9.4 and - Logical AND| e 84
[055 append table from csv - Append Table From CSV Filg] v o oo v vt v oo a 85
[9.6 append_table from fixed file - Append Table From Fixed-Width Fil¢] 85
E(append_table_from_psv - Append Table From PSV File| 85
. append_table_from_tsv - Append Table From ile] ... 85
0.9 ascend - Ascending Indices|. L L 85
OI0 asin - ATC SO . - o v v o e e 86
9.11 asof_join- Asof Join|. 86
D12 atan - Arc Tangenl] - - - - o o o oo 86
913 atlas-Atlas Off o 86
914 atom-1Is Atom?l 87
[9.15 avg- Averagel 87
[0.16 Dbars - Time Bars, Sample BUCKETS, €TC. . . . « v v v v v v o e e 88
9.17 between - Between? 89
9.18 btree- BTreel e 89
9.19 bucketed - Bucket Values| oo o oo 89
9.20 car - Contents of Address Register| o oo 89
9.21 cdr - Contents of Decrement Register| L. 89
[9.22 ceil - Ceiling| L 90
-C Charl . . o 90

[9.24 checksum - Object Hashcode| 90
925 close socket - Close Socket]o oo 90
[0.26 combinations - Combinationd oo L 91
[9.27 compressed - Compressed Vector Off, 91
028 cos-Cosine o o 92
[9.29 cosh - Hyperbolic Cosine| 92
930 count - Countl e 92
931 count nonnull - Count Non-Nullsl. 92
9.32 count null - Count Nullsl 92
-C SV Filel oo 93

-C -Width Filel 93

[9.85 create_table from psv - Create Table From PSV File 93
036 create table from tsv - Create Table From TSV Fild 93
9.37 cross - Cartesian Product] 94
9.38 deal-Deall. e 94

[9.39 deletekeys - Delete Keys| 95
[040 descend - Descending Indices| v v it 95

[9.41 dir_1s - Directory Listing| 96

- Distinct Valuesl 96

9.44 divide - Dividel 96
[9.45 dlload - Dynamic Library Load| o o 97
[9.46 dotp - Dot Product] 97
[0.47 drop-Drop Elements|. 97
| .48 emu_debug mode - Toggle Bytecode Debugger|. 98
9.49 enlist - Enlist BElement]0 o o 98
9.50 enum - Fnumerationlo Lo 98
9.1 enumerate - Fpumerate ltems| Lo Lo o 98
[9.52 equal - Equal?|. 99
[053 equals - Equals?] o o vt e 100
9.54 erf - Brror Functionl oL 100
[9.55 erfc - Complementary Error Function| 000 100
9.56 eval - Bivaluatelo 100
[9.57 except - Except] 100
058 exit - FXIt .+« « v v v e e e e e e 101
[9.59 exp - Natural Exponential Function|, 101
@.60 explode - Explodelo 101
0.61 extract - Extract From Tabld 102
062 fiTter-Filterl. o 102
9.63 first - Firstl. e 103
9.64 flatten-Flatten| 103
9.65 float - CasttoFloatl 103
9.66 floor - Floorl e 104
[9.67 format - Format String| 104
[9.68 format_stamp - Format Timestamp| 0 0L 105
[0.69 greater - Greater Than?|., 107
[0.770 greatereq - Greater of EQUAl?|. - « « « v v v v v i e e e e e e 107
071 has column - Table Has COIUMAT « « « v v v oo v e e e e e e e 107
[9.72 haskey-Has Key?| 108
073 Thash- Hashl o 108
9.74 hashed - Hashedl. o 108
9.75 help- Help Tooll. o 109
. ident - Identity|o 109
077 Gfnull -TENull?l .. .00 o 109
[9.78 dimplode - Implode] 109
Q79 Tn-Tnl.o 109
9.80 dindex -Indexl e 110
9.81 indexed - Indexed|. e 110
982 dnt-Casttolntl. 110
[9.83 intersect - Set Intersection| 110
9.84 disnull -Is Nulldl o o o o 111
9.85 join-Join|.o 111
9.86 json_from kerf - Convert Kert to JSON| oo 0. 111
@ kerf_from_json - Convert JSON to Kerf] o000 112
[0.88 kerf_type- Type Code|. 112
[0.89 kerf typemame - Type Name| 113
090 Tast -Tastl. 113
9.91 left_join-Left Join| o 113
092 Ten-Lengthl 113

9.93 less - Less Than?l. 114

9.94 lesseq-Lessor kqual?l o oo 114
095 Tg Bawe 2 Logatlthi] . . - . . o o oo 114
096 Tines - Lines From FIlA. « .« o ¢ vttt vt e e e 114
[9.97 1n - Natural Logarithm| 115
098 Joad-ToadSourcd 115
[9.99 Tog - Logarithm| 115
[0.100 Tsq - Least Squares Solution] 116
0301 map - Make Map| 116
9.102 match - Match?l e 116
[9.103 mavg - Moving Average] 117
0104 max - Maximuml . - . - - o o v oo 117
9.105 maxes - Maximumsl e 117
[9.106 mcount - Moving Count|. e 117
0.I07 median - Medianl. 118
[0.I08 meta table - Meta Tablel 118
0.109 min - Minfmuml . . . - . . . o e e 118
9.110 mins - Minimumsl e e 118
OITT minus-Minus o oo 119
0112 minv - Matrix Inversel e 119
[9.113 mkdir - Create directory] e 119
[9.114 mmax - Moving Maximum| 119
0175 mmin - Moving Minimum|« v v ot e e e e e 119
[9.116 mmul - Matrix Multiply| o o 120
9117 mod - Modulusl 120
[9.118 msum - Moving Sum| 120
[9.119 negate - Negate] 121
[0.120 negative - Negabive] 121
|§.121 ngram - N-Gram| 121

not - Logical Not| o 121
0.123 noteq- Not Equal?| 122

9.124 now - Current Datelimel

0129 or - Logical OR] o o o 123
9.130 order - Orderl L e e 123
[9.131 out - Output|. e 123
9.132 parse_float - Parse Float From String| 0000000 124
[0.133 parse_int - Parse Integer From String] 124
[0.134 parse_stamp - Parse Timestamp From String] 124
[0.135 part - Partition] 125
[0.136 permutations - Permutations] 125
[0137 plus - PIugl. 125

8 pow - Exponentiation| 126

|§|3§ Eowerset - Eower Se’| 126

9.140 rand - Random Numbers

[9.141 range - Range| 127
@.142 read_from path - Read From Pathlo o000 127
[0.T43 read parceled from path - Read Parceled Table From Path] 128

[9.149 rep - Output Representation| 131

0350 repeat - Repeal] 131
- Reserved Names| o 131

9.152 reset - Resetl 131
9.153 reverse - Reversel L e 132
[9.154 rsum - Running Sum| 132
OI55 7un - BUI - - . v ot et e e e e e 132
[9.156 search - Searchl L 133
9.157 seed_prng - Set random seed|.l 133
9.158 send_async - Send Asynchronous| L. Lo 0 133
0159 send_sync - Send Synchronous|. L 133
[0.160 setminus - Set Disjunction] 133
0161 shell - Shell Commandl 133
9.162 shift - Shiftl. o 134
9.163 shuffle - Shufflel o 134
9164 sin - Sinel L 134
[9.165 sinh - Hyperbolic Sine| o 135
0166 sleep-Sleep| 135
1 sort - Sortl e 135
[9.168 sort_debug - Sort Debug| o 136
0169 spIlit - SpHt Listo 136
[0.I70 sqrt - Square Root] 136
0171 stamp - Cast to Stamp| 137
[0.172 stamp_diff - Timestamp Difference] v vt it 137
0173 std- Standard Deviafion] 137
[9.174 string - Cast to String|. 137
9.175 subtract - Subtractl. L 137
9176 sum-Suml 138
9177 table - Make Tablel 138
9178 tables - Tables 138
9179 take - Takel 139
[9.180 tan - Tangent| L L 139
9.181 tanh - Hyperbolic Tangent| 139
9.182 times - Multiplication| L 140
[9.183 timing - Timing|. 140
[OI84 toTower - To LOWEICASE . . . v« v v v v v e e e e e e 140
[9.185 toupper - To Uppercasel 140
9.186 transpose - Iransposel 141
OI87T trim - THmMl o o o o e e e e 141
[9.188 typenull - Type Nulll o o 141
0189 uneval - Unevall o o 142
0190 union-Set Unjonl o i 142
[9.191 unique - Unique Elements| 142
[0.192 unzip - Decompress Object]. 142
Q193 var - Variancel 142
9.194 which - Whichl o 143

9.195 write csv from table - Write CSV From Tablel

[9.196 write delimited file from table - Write Delimited File From Tablel
[9.197 write_striped_to_path - Write Striped File To Path|

[9.199 write to_path - Write to Path|. 0.
[0.200 xkeys - Object Keys|
[0.20T xvals - Object Values|.
[9.202 zip - Compress Object| o

(10 Combinator Referencel

10.1 converge - Convergel e

[10.4 mapback - Map Back|
[[0.5 mapcores-Mapto Cores|.
10.6 mapdown - Map Down|

|1()1 mapleft - Map Left| ..

0.8 mapright - Map R

11.1.1 .Argv - Arguments|.
.1.2 .Help - Function Reference|o oo o

11.4.1 .Parse.strptime _format - Time Stamp Format|
.2 .Parse.strptime_format2 - lime Format|,

{12 Programming Techniques|

[12.1 Reversinga Map|.

12.2 un-Length Encoding|.

(12.4 HTTP Fetching]
[(12.5 Kerf IPC with Python|
[12.5.1 HudsucKerf By Proxyl

146
146
146
147
147
148
149
149
149
150
150
150
150
150

151
151
151
151
151
151
151
151
151
151
151
151
152
152
152
152
152

1 Introduction

Kerf is a programming language built on pragmatism, borrowing ideas from many popular tools. The syntax
of Kerf will be familiar enough to anyone who has programmed in C, Python or VBA. Data is described
using syntax from JSON (JavaScript Object Notation), a text-based data interchange format. Queries to
search, sort and aggregate data can be performed using SQL syntax. Kert’s built-in commands have aliases
which allow programmers to use names and terms they are already used to.

Beneath this friendly syntax, Kerf exposes powerful ideas inspired by the language APL and its descendants.
APL has a well-earned reputation for extreme concision, and with practice you will find that Kerf similarly
permits you to say a great deal with a few short words. Coming from other programming languages, you
may be surprised by how much you can accomplish without writing loops, using conditional statements or
declaring variables. Kerf provides a fluid interface between your intentions and your data.

1.1 Background

The Kerf team was first introduced to array languages in 2006 by Dennis Shasha at NYU. This led to work
with Arthur Whitney’s & Kx System’s kdb+ family of languages at the investment banks Cantor Fitzgerald
and Merrill Lynch. A precursor language to Kerf called Kona was started around 2009. Kona was open-
sourced in Summer 2010 and improved upon with the community for the following four years. Lessons from
Kona would inspire Kerf.

The first lines of code for Kerf were written in Summer 2014. Kerf officially launched as a product in Spring
2015. Kerf is the team’s third major programming language release, and arguably a fifth generation language
and database system. It draws on lessons from over twenty years of programming. It is mature technology.

The name “Kerf” comes from a term in woodworking- the cut made by a saw. It springs from the Old
English “cyrf”, the action of cutting. It’s short, strong, and simple.

1.2 Conventions

Throughout this manual, the names of functions and commands will be shown in a monospaced font.
Transcripts of terminal sessions will be shown with sections typed by the user in blue:

KeRF> range 6
o, 1, 2, 3, 4, 5]
KeRF> sum(5, range 6)
20

Sometimes examples will contain comments, colored to help set them apart from code:

2+3;

1.3 Using the REPL

A Read-Evaluate-Print Loop (REPL) is an interactive console session that allows you to type code and see
results. The REPL is the main way you will be interacting with Kerf. If Kerf is in the current directory, you
can start the REPL by typing ./kerf and pressing return, and if if you have installed Kerf in your path,
you can simply type kerf. The rest of this discussion will assume the latter case. To exit the REPL use the
key combination Ctrl+d.

1.3.1 Command-Line Arguments and Scripting

Kerf accepts several command-line flags to control its behavior. Throughout this manual we will be using
the —q flag for some examples to avoid showing the Kerf startup logo for the sake of brevity.

Flag | Arguments Behavior

-q - Suppress the startup banner.

-1 - Enable debug logging.

-e String Expression | Execute an expression.

-X String Expression | Evaluate an expression and print the result.

-p Port Number Specify a listening port for starting an IPC server.
-P Port Number Specify a listening port for starting an HTTP server.
-V Number of Bytes | Cap virtual memory used for disk-backed storage.
-R Number of Bytes | Cap physical workspace RAM reserved by Kerf.

Summary of Command-Line Flags

The -e and -x flags differ by whether or not they display the result of a calculation. Either will exit the
interpreter when complete:

> kerf -x "2+3"
5
> kerf -e "2+3"
>

If you provide a filenames as command-line arguments, the contents of those files will be executed before

opening the REPL. You may wish to conclude scripts with [exit](0) so that they execute and then self-
terminate:

> cat example.kerf

display join unfold range(10)
exit(0)

> kerf example.kerf

(o,

(o, 11,

(0, 1, 21,

0, 1, 2, 31,

[o, 1, 2, 3, 41,

(0, 1, 2, 3, 4, 5],

[0, 1, 2, 38, 4, 5, 6],

o, 1, 2, 3, 4, 5, 6, 71,

[0, 1, 2, 3, 4, 5, 6, 7, 8],
(0, 1, 2, 38, 4, 5, 6,7, 8, 9]
>

You could also accomplish the same by using -x and

> kerf -x "load 'example.kerf'"

The flags -V and -R permit configuring how Kerf uses system memory. By default, there is no cap for
workspace ram usage, and virtual memory for disk-backed tables is also effectively uncapped. We can easily
observe the behavior of limiting usable workspace RAM:

> ./kerf -q -R 10000

KeRF> range(1, 500)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ...]

KeRF> range (1, 20000)

User-set memory bound prevented further memory allocation.

range (1, 20000)

Virtual memory error
KeRF>

Note that this limit applies only to Kerf’s reference-counted internal pools; external libraries and IPC code
can allocate additional memory. Enforcing harder limits will require operating-system-specific tools.

1.3.2 The REPL

The REPL always begins with the KeRF> prompt. Type an expression, press return and the result will be
printed, followed by an empty line. If an expression returns null, it will appear as an empty line. Trailing
whitespace will generally be elided from REPL transcripts in this manual.

KeRF> 1+3 5 7
[4, 6, 8]

KeRF> null

KeRF>

If you type several expressions separated by semicolons (;), each will be executed left to right and the value
returned by the final expression will be printed. An empty expression returns null, so if you end a statement
with a semicolon it will effectively suppress printing the result. Transcripts in this manual will often use this
technique for the sake of brevity.

KeRF> one: 1; two: 2
2
KeRF> one
1
KeRF> a: 3 5 7;
KeRF>

If you type an expression with an unbalanced number of [, (or {, the REPL will prompt you with > to
complete the expression on the next line. Remember, newlines and semicolons are always equivalent:

KeRF> [1 2 3

> 4 5 6]
[rL, 2, 31,
(4, 5, 6]1]

10

The up and down cursor keys can be used to cycle through recently entered commands, saving repetitive
typing. For your convenience, this history information is stored in $HOME/.kerf_history across sessions.

The key combination Control-d will cause Kerf to exit by sending an EOF to the shell. For many this is the
preferred way to exit the REPL.

If your program enters an infinite loop or otherwise seems to have locked up, Pressing Control-c will interrupt
execution, allowing you to make corrections. Control-z is a stronger epithet which will stop execution of the
Kerf process and move it to the background of the shell. Note that backgrounded processes are still alive
and still consume memory. For more information regarding stopped processes, refer to Unix documentation
for the jobs, fg and kill commands.

KeRF> for(i: 0; i < 10; i: i-1) {}
“C
for(i: 0; i < 10; i: i-1)

Caught interrupt signal

11

During a session you can use to clear the workspace and close all open resources. When you’re done
using Kerf, the function will exit the REPL and return you to your shell. You may also use the key
combination Control-D to exit Kerf.

KeRF> exit ()
>

Kerf also special-cases a number of common commands to save you typing:

 exit - equivalent to calling [exit](0). Ends the session and stops the Kerf process.

 reset - equivalent to calling [reset]|(). Resets the interpreter and workspace, preserving command line
flags to the original Kerf process.

e clear - equivalent to calling system(’clear’). Clear the terminal output.

+ help - equivalent to callingfheIp|(). Display the top-level index for the built-in Kerf command reference.

KeRF> help

Help Menu. Try: help(’list’).
Press return to see the next part of the table.

subject

list
strings
table
aggregate
math
combinator
sql

misc

KeRF>

12

1.4 Examples
Let’s look at a few short Kerf snippets to get a taste of the language:

Are two strings anagrams?

def are_anagrams(a, b) {
return (sort a) match (sort b)

KeRF> are_anagrams("baton", "stick")
0

KeRF> are_anagrams("setecastronomy", "toomanysecrets')
1

Gather simple statistics for random data using SQL syntax:

KeRF> data: {{a: rand(100, 5)}};
KeRF> SELECT count(a) AS items, avg(a) AS average FROM data

items|average

100 1.82

Load a text file and interactively query it:

KeRF> characters: tolower flatten lines "flour.txt"
"flour is a powder made by grinding uncooked cereal grains or other seeds or roots (like
cassava). it is the main ingredient of bread, which is a staple food for many cultures,
making the availability o..."

KeRF> sum characters in "aeiou"

182

KeRF> count characters
540

KeRF> 5 take " " explode characters
["flour", "is", "a", "powder", "made"]

Iteratively calculate terms of the Fibonacci sequence without using explicit loops:

KeRF> 6 {[x] last(x) join sum x} deconverge 1 1
(e, 11, 1, 21, [2, 31, (38, 5], [5, 8], [8, 131, [13, 21]]
KeRF> first mapdown 10 {[x] last(x) join sum x} deconverge 1 1
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

13

2 Installation
Pre-compiled evaluation copies of Kerf for 64-bit Linux and OSX can be obtained by request:

kerf.concerns@gmail.com

2.1 Installing (Binary)

Kerf binaries are statically linked and include all library dependencies. Installation is as simple as placing
the binary in a desired directory. Let’s place it in a directory called /opt/kerf so that it is accessible by all
users. It will be necessary to use the sudo command when creating this directory, as the base directory is
owned by root:

/Users/john/Desktop> sudo mkdir /opt/kerf

Password:

/Users/john/Desktop> sudo cp KerfREPL/osx/kerf /opt/kerf/
/Users/john/Desktop> cd /opt/kerf

/opt/kerf> 1s

kerf

You can then invoke it from the command line. The -q option (quiet) suppresses the Kerf logo at startup,
for the purposes of brevity in these transcripts.

/1ibf> . /kerf -q
KeRF> 2+3

5
KeRF> exit (0)
/opt/kerf>

2.2 Installing (License Files)

Commercial installations of Kerf typically use a licensing file kerf-license.dat. It is recommended that
this license file be placed in ~/.kerf/kerf-license.dat, where ~/.kerf is the hidden .kerf directory
under the users’s home directory.

If Kerf does not find the license file in ~/.kerf it will look in the current working directory (cwd) as a
fallback. This is usually less convenient.

When the time has expired on the license file it will need to be replaced. If you have an active link to the
license server where a license file can be downloaded, you can download a new license file to replace the old
one, and the expiration period will refresh.

/home/john > cd $HOME
/home/john > mkdir -p $HOME/.kerf
/home/john > cp kerf-license.dat $HOME/.kerf/kerf-license.dat

14

2.3 Installing (Building from Source)

If you have been granted access to the Kerf source code, you can build your own binaries. From the base
source directory, invoke make clean to remove any temporary or compiled files and then make to build a
fresh set of binaries for your OS:

/Users/john/Desktop/kerf-source> make clean

find manual/ -type f -not -name ’*.tex’ | xargs rm

rm -f -r kerf kerf_ test .//obj/*.o
/Users/john/Desktop/kerf-source> make

clang -rdynamic -m64 -w -Os -c alter.c -o obj/alter.o

/Users/john/Desktop/kerf-source>

This process will produce a kerf executable in the source directory. You can then follow the steps described
in the above section to place this in a directory accessible by other users or simply run it in place. Compiling
from source will also produce a binary named kerf_test which executes self-tests at startup and executes in
debug mode, printing extra information when errors are encountered. The debug mode binary is particularly
helpful when debugging dynamic libraries, as it can detect many types of memory leak at shutdown.

2.4 Adding Kerf to your Path

You may wish to add the Kerf binary to your PATH so that it can be accessed more easily. If you've placed
the binary in the directory /opt/kerf/, edit "/ .profile and add a line to initialize this setting.

If you're using bash (The default shell on OSX):

’ export PATH=/opt/kerf/:$PATH ‘

If you're using tcsh or csh (The default shell in some Linux distros):

set path = ($path /opt/kert) ‘

Open a fresh terminal or type source ~/.profile and you should now be able to invoke the kerf command
from any directory.

15

2.5 Startup Scripts

While working with Kerf, you may find yourself writing reusable utility routines. For example, here’s a
simple predicate which returns true if a timestamp falls on the current day, and then a function which filters
lists based on this predicate:

def today(s) {
t: [nyearn s "month“ s ”day"]
return match(now() [t], s[t])

}

def on_today(v) {
return today filter v
}

KeRF> on_today 2016.01.11 2016.01.12 2016.01.13
[2016.01.12]

If you use these routines often, you might want them to be automatically loaded when you open the Kerf
REPL. Kerf will search for a file named startup.kerf, first in a directory given by the environment variable
KERF_HOME, then in a .kerf directory in the user’s HOME directory, and finally in the current directory. Your
startup script can in turn execute additional files by using

> cat “/kerf_home/startup.kerf

def calendar() {
out "\n" implode shell "cal"
}

out "Loaded custom startup script.\n"

> export KERF_HOME=$HOME/kerf_home/
> echo $KERF_HOME
/Users/john/kerf_home/

> kerf -q
Loaded custom startup script.

KeRF> calendar ()
January 2016
Su Mo Tu We Th Fr Sa
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
KeRF>

To set KERF_HOME persistently, add an appropriate line to .profile, just as you did to add the kerf executable
to your PATH.

16

3 Terminology

Kerf uses terminology from databases, statistics and array-oriented programming languages like APL. This
section will serve as a primer for concepts which may seem unfamiliar.

3.1 Atomicity

Atomicity describes the manner in which values are conformed by particular functions.

A function which is not atomic will simply be applied to its arguments, behaving the same whether they are
lists or atoms. [enlistlis not atomic:

KeRF> enlist 4

[4]
KeRF> enlist [1, 9, 8]
({1, 9, 8]]

A unary function which is atomic will completely decompose any nested lists in the argument, operate
on each atom separately, and then reassemble these results to match the shape of the original argument.
Another way to think of this is that atomic functions “penetrate” to the atoms of their arguments. is
atomic:

KeRF> not 1
0

KeRF> not [1, 0, 0, 1, 0]
o, 1, 1, o, 1]

KeRF> not [1, O, [1, o], [0, 1], O]
fo, 1, [o, 11, [1, o], 1]

Things get more interesting when dealing with fully atomic binary functions. The shapes of the arguments
do not have to be identical, but they must recursively conform. Atoms conform with atoms. Lists conform
with atoms and vice versa. Lists only conform with other lists if their lengths match and each successive
pairing of their elements conforms. is fully atomic:

KeRF> add(1, 2)

3

KeRF> add(1 3 5, 10)
[11, 13, 15]

KeRF> add(1 2 3, 4 5 6)
[5, 7, 9]

KeRF> add(1 2 3, 4 5)
add(1 2 3, 4 5)

Length error

17

3.2 Combinators

In the context of Kerf, a combinator is an operator which controls how a function is applied to values.
Combinators express abstract patterns which recur frequently in programming. For example, consider the
following loop:

function mysum(a) {

s: O
for(i: 0; i < len(a); i: i+1) { s: add(s, alil) }
return s

We're iterating over the indices of the list x from left to right, accumulating a result into the variable s. On
each iteration, we take the previous s and combine it with the current element of a via the function
This pattern is captured by the combinator which takes a function as a left argument and a list as a
right argument:

KeRF> add fold 37 15 4 8
64

Think of as applying its function argument between the elements of its list argument:

KeRF> (((37 add 15) add 4) add 8)
64

In this particular case we could have simply used the built-in function but can be applied to any
function- including functions you define yourself. Combinators are generally much more concise than writing
explicit loops, and by virtue of having fewer “moving parts” avoid many classes of potential mistake entirely.
If you use it isn’t possible to have an “off-by-one” index error accessing elements of the list argument
and several useful base cases are handled automatically. Familiarize yourself with all of Kerf’s combinators-
with practice, you may find you hardly ever need to use for, do and while loops at alll

Kerf understands the patterns combinators express and can sometimes perform dramatic optimizations when
they are used in particular combinations with built-in functions or data with specific properties:

KeRF> timing(1);
KeRF> max fold range 50000

49999
0 ms
KeRF> {[a,b] max(a, b)} fold range 50000
49999
3.2 s

The former example allows Kerf to recognize the opportunity for short-circuiting max|fold] because the result
of is sorted. When [folding a user-declared lambda, it must construct and then reduce the entire list.

18

3.3 Matrix

A matriz is a vector of vectors of uniform length and type. For example, the following is a matrix:

[[1’ 27 3]’
[4, 5, 61,
[7, 8, 911

But this is not a matrix, because the rows are not of uniform length:

(1, 21,

(3, 4, 5, 6],

(7, 8, 91]
3.4 Truthy

Kerf does not have a special “boolean” type for representing the values true and false. By convention, the
values 1 and 0 are used in most cases- this is particularly helpful in combination with the operator:

KeRF> [true, false, true, true]

(1, 0, 1, 1]
KeRF> which 1 0 1 1
[0, 2, 3]

In some situations, Kerf permits a broader range of values to behave like true, or truthy. Values which
behave like false are naturally falsey. Any numeric zero or null is falsey, and any other value is considered
truthy.

KeRF> if (-5) { display "yep" }
llyep n

KeRF> if ([]) { display "yep" }
”yep n

KeRF> if ({}) { display "yep" }
”yep n

KeRF> if (NaN) { display "yep" }
llyep n

KeRF> if (0) { display "nope" }
KeRF> if (0.0) { display "nope" }
KeRF> if (null) { display "nope" }

Heavy reliance on truthiness can lead to very confusing code. Prefer 1 and 0, or the literals true and false,
whenever possible.

3.5 Valence

A function’s valence is the number of arguments it takes. For example, is a binary function which takes
two arguments and thus has a valence of 2. on the other hand, is a unary function which takes a single
argument and thus has a valence of 1. The term draws an analogy to linguistics and in turn chemistry,
describing the way words and molecules form compounds.

3.6 Vector

A wector is a list of elements with a uniform type. If a list contains more than one type of element it is
sometimes referred to as a mized-type list. Vectors can store data more densely than mixed-type lists and as
a result are often more efficient.

19

4 Datatypes
4.1 Numbers

Kerf has two numeric types: integers (or “ints”) and floating-point numbers (or “floats”). The results of
numeric operations between ints and floats will coerce to floats, and some operators always yield floating-
point results.

Integers consist of a sequence of digits, optionally preceded by + or —. They are internally represented as
64-bit signed integers and thus have a range of —(25%) to 263 — 1.

42
010
+976
-9000

Integers can additionally be one of the special values INF, ~INF or NAN, used for capturing arithmetic overflow
and invalid elements of an integer vector:

KeRF> b: 100
INF

KeRF> kerf type_name b
"integer"

KeRF> 1 2 3[-5]
NAN

Floats consist of a sequence of digits with an optional sign, decimal part and exponent. They are based on
IEEE-754 double-precision 64-bit floats, and thus have a range of roughly 1.7 10308,

1.0
-379.8
-.2
.117e43

Floats can additionally be one of the special values nan, -nan, inf or -inf. nan has unusual properties in
Kerf compared to most other languages. The behavior is intended to permit invalid results to propagate
across calculations without disrupting other valid calculations:

KeRF> nan == nan
1

KeRF> nan == -nan
1

KeRF> 5/0
inf

KeRF> 0/0
nan

KeRF> -1/0
-inf

Numeric values may be cast to integers or floats by using the built-in functions and respectively.
Strings can be parsed as numbers by the functions [parse_int|and [parse_float| or in other cases by simply

using

20

4.2 Lists and Vectors

Lists are ordered containers of heterogenous elements. Lists have several literal forms. A sequence of numbers
separated by whitespace is a valid list. This is an “APL-style” literal:

1234
47 49

Alternatively, separate elements with commas (,) or semicolons (;) and enclose the list in square brackets
for a more explicit “JSON-style” literal:

[1, 2, 3]
[4;5;6]
[42]

This manual will use both styles throughout the examples. Naturally, these styles can be nested together.
The following examples are equivalent:

[1 2,3 4,5,6]
[[1, 21, [3, 4], 5, 6]
[[1;2], [3;4], 5, 6]

If a list consists entirely of items of the same type, it is a vector. Vectors can be represented more compactly
than mixed-type lists and thus are more cache-friendly and provide better performance. Kerf has special
optimizations for vectors of timestamps, characters, floats and integers.

Vector and list types each have their own special symbol for emptiness:

KeRF> 0 take 1 2 3
INT[]

KeRF> 0 take 1.0 2 3
FLOATI[]

KeRF> 0 take "ABC"
nn

KeRF> 0 take [now(),now()]
STAMP []

KeRF> 0 take [1,"A"]
(]

21

4.3 Strings and Characters

Kerf character literals begin with a backtick (™) followed by double-quotes (") or single-quotes (') surrounding
the character. Character literals which do not contain escape sequences may omit the quotation marks.

TA
S B!
ol

Kerf supports all JSON string escape sequences, and additionally an escape for single-quotes:

~ ,,\” "
~ ,\, |
\”\\u
‘,,\/u
‘”\b"
~ “\f"
‘”\H"
‘”\I’"
~ ”\t"

* 1\ u0043"

The function [char| can convert a number into an equivalent character, and will convert characters into
numeric character codes:

KeRF> char 65 66 67
||ABC "

KeRF> int "Text"
[84, 101, 120, 116]

Strings are lists of characters, and qualify as vectors. Strings are simply enclosed in double-quotes (") or
single-quotes (').

"Hello, World!"
'goodbye, \ncruel world...

Note that a single character in quotation marks is a string, not a character literal:

KeRF> kerf type_name "A"
"character vector"
KeRF> "A" match ~"A"
0
KeRF> first "A"
~ IIAH

When dealing with characters, spaces are considered null values:

KeRF> isnull ~" "
1

KeRF> (not isnull) filter "Text with whitespace! "
"Textwithwhitespace!"

To assemble strings from other assorted datatypes, see [format

22

4.4 Timestamps

Timestamps, or simply “stamps”, are a flexible datatype which can represent dates, times, or a complete
date-time. Times are internally represented in UTC at nanosecond granularity.

1997.07.16

19:20:30

19:20:30.123
1997.07.16T19:20:30
1997.07.16T19:20:30.123

Timestamps can be compared using the same operators as numeric types. The function should
be used for calculating the interval between timestamps:

KeRF> 2015.04.02 < 2015.05.01
1

KeRF> stamp_diff (2015.05.03, 2015.05.01)
172800000000000

Kerf provides special literals for relative date-times:

1y
10m
3d
1h
21
1s

These can also be combined as a single unit. For example,

KeRF> 2015.01.01 + 2m + 1d
2015.03.02

KeRF> 2015.01.01 + 2mld
2015.03.02

KeRF> 2015.01.01 - 1hlils
2014.12.31T22:58:59.000

Indexing is overloaded for timestamps to permit easy extraction of fields. The date and time fields produce
a stamp and other fields produce an integer:

KeRF> d: now();

KeRF> d["date"]
2016.01.06

KeRF> d[["date", "time"]]
[2016.01.06, 16:54:52.021]

KeRF> d[["year", "month", "week", "day", "hour", "minute", "second", "millisecond", '"nanosecond"]]
[2016, 1, 2, 6, 16, 54, 52, 21, 21124000]

Strings can be converted to stamps by using and or can reverse the process:

KeRF> eval "2001.10.10"
2001.10.10

KeRF> rep 2001.10.10
"2001.10.10"

KeRF> string 2001.10.10
"2001.10.10T00:00:00.000"

23

It is also possible to use the function:

KeRF> stamp ["2001.02.03", "1985.08.17"]
[2001.02.03, 1985.08.17]

For more flexibility, see [parse_stamp|and [format_stampl These functions support a superset of the parsing
and formatting capabilities of the standard C strftime() and strptime() functions which can handle
milliseconds or nanoseconds:

KeRF> parse_stamp("%S:/%M:%H", "56:34:12")
12:34:56.000

KeRF> format_stamp("7%H:%M:%S.%q", now())
"00:43:54.152979000"

Timestamps are currently valid through 2262.04.11, at which point we’ll already have transitioned to 128-bit
operating systems. Be sure to download the latest Kerf release when nearing the “Year 2.262k Problem”.

24

4.5 Maps, Tables and Atlases

A Map is an associative data structure which binds keys to values. Kerf maps are a generalization of JSON
objects. Map literals are enclosed in a pair of curly braces ({ and }), and contain a series of comma delimited
key-value pairs separated by a colon (:). JSON object syntax requires keys to be enclosed in double-quotes,
but Kerf maps permit using single-quotes or bare identifiers. In any of these cases, the keys of the resulting
map will be strings.

{"a": 10, "b": 20}
{'a': 10, 'b': 20}
{a: 10, b: 20}

A Table is a map in which each value is a list of equal length. Tables are enclosed in two pairs of curly
braces ({{ and }}) and otherwise syntactically resemble maps. If non-list values are provided, they will be
wrapped in lists. Values can also be omitted entirely to produce a table with empty columns.

{{a: 1 2, b: 3 4}}
{{a: 1, b: 2}}
{{a, b}}

If tables are serialized to JSON, Kerf will insert a key is_json_table- this permits tables to survive round-
trip conversion:

KeRF> json_from_kerf {{a: 1 2, b: 3 4}}
tf\"a\":[1,2],\"b\": [3,4],\"is_json_table\":[1]}"

The builtins [xkeys|and [xvals|can be used to extract a list of keys or values from a map or table. The builtin
produces a map from a list of keys and a list of values, and works similarly for a list of column
names and a rectangular array of values.

KeRF> xkeys {a: 10 11 12, b: 20 21}

["a", "b"]

KeRF> xvals {{a:1, b:2}}
([11, [2]]

KeRF> map(["a","b"], [37, 99])
{a:37, b:99}

KeRF> table(["first","second"],[1 2, 3 4])

first|second

delete _keys| can remove entries from maps or tables:

KeRF> delete_keys({a:1, b:2, c:3}, ["c"])
{a:1, b:2}
KeRF> delete_keys({{a:1, b:2, c:3}}, ["b","a","b","x"])

25

Many primitive operations penetrate to the values of maps and tables:

KeRF> 3 + {a: 10, b: 20}
a:13, b:23
KeRF> 3 + {{a: 10, b: 20}}

a |b

13123

Note that maps are treated by some built-in functions as atoms. For example, considers a map with
any number of key-value associations to be of length 1. To obtain the number of associations in a map, use

or If you’re really desperate to save keystrokes you can use |~ .

KeRF> len {}
1
KeRF> len {a:2, quux:"a string"}
1
KeRF> len xkeys {}
0
KeRF> len xkeys {a:2, quux:'"a string"
2
KeRF> | {a:1, b:2}
2

If this behavior for maps is confusing, consider that with a table indicates the number of rows, rather
than the number of columns. A map is behaving just like a table with a single row:

KeRF> len {{a:0 1 2 3, b:4 56 7}}
4

KeRF> len {{a:0, b:4}}
1

An Atlas behaves somewhat like a table with varying keys, for unstructured or semi-structured data. Atlases
are sets of maps enclosed in one set curly braces with a square brace ({[and]}). Atlases can also be
constructed from lists of maps using the atlas function. The Atlas type is to be used for unstructured or
semi-structured data, for example, financial forms with varying columns.

KeRF> {[{a: 1, b: 3},{a: 3, c: 2}]}
KeRF> atlas([{a:1,b:3},{a:3,c:2}1)

KeRF> {[{a: 1, b: 2},{a:2,d:{z:1,e:7}}]}

26

Atlases, unlike simple key-value stores, can be queried and aggregated in ways similar to tables, despite
not having consistent columns. Aggregates or selected keys always return a table. Otherwise, an atlas is
returned.

KeRF> atla: atlas([{a:1,b:2},{b:4,c:5},{a:3,b:3,d:9}]);select avg(a) from atla

2.0

KeRF> select avg(b) from atla

b

3.0

KeRF> select from atla where b=4
atlas[{b:4, c:5}]

KeRF> select a,b from atla where b>2

a b

NAN |4

Nested keys can also be accessed.

KeRF> atla: {[{a:1,b:2}, {b:4,c:5}, {b:{d:6,e:7}} 1}
KeRF> select b.e from atla where b.d=6

b.e

Finally, group by is also supported

KeRF> atla: {[{c:10,b:4,a:1}, {b:4,c:10,a:2}, {c:11, b:5,a:3} 1}
KeRF> select sum(a) from atla group by c where a>=2

Cc |a

102
11(3

27

4.6 Special Identifiers

Kerf uses reserved words to identify a number of special values.

The words true and false are boolean literals, equivalent to 1 and 0, respectively:

KeRF> true
1

KeRF> false
0

Inside a function, the words self or this may be used to refer to the current function. This is particularly
useful for performing recursive calls in anonymous “lambda” functions:

KeRF> def foo(x) { return [this, self, x] }
{[x] return [this, self, x]}
KeRF> fo0(9)
[{[x] return [this, self, x]}, {[x] return [this, self, x]}, 9]

The words nil or null may be used interchangeably to refer to a null value:

KeRF> nil
KeRF> null

KeRF> kerf type_name nil
"null"

KeRF> kerf_type_name null
"null"

The word root is a reference to Kerf’s global scope. It contains all the variables which have been defined or
referenced:

KeRF> root
{
KeRF> a: 24
24
KeRF> b
Undefined token error
KeRF> root
{a:24}

28

4.7 Index, Enum and Zip

Indexes, Enumerations and Zips are special lists which perform internal bookkeeping to improve the perfor-
mance of certain operations.

An Enumeration performs interning. It keeps only one reference to each object and stores appearances as
fixed-width indices. It is useful for storing repetitions of strings and lists, which cannot otherwise efficiently
be stored as vectors. In all other respects an Enumeration appears to be a list. To create an Enumeration,
use hashed| or the unary # operator:

KeRF> a: hashed ["cherry", '"peach", '"cherry"]
#["cherry", "peach", "cherry"]

KeRF> kerf type_name a
"enum"

Not only do Enumerations reduce the memory footprint of lists with a large number of repeated elements,
they permit dramatically faster sorting. There is no benefit to making an Enumeration out of a vector of
integers or floats.

KeRF> samples: {[x] rand(x, ["cherry", "peach", "zucchini"])};
KeRF> s1: samples(1000);
KeRF> s2: samples(10000);
KeRF> s3: samples(100000) ;
KeRF> timing 1
1

KeRF> sort si;

2 ms
KeRF> sort s2;

15 ms
KeRF> sort s3;

134 ms
KeRF> sort hashed si;

0 ms
KeRF> sort hashed s2;

4 ms
KeRF> sort hashed s3;

28 ms

An Index is a list augmented with a B-Tree. This permits more efficient lookups and range queries. Do not
use an index for data that will always be sorted in ascending order- Kerf tracks sorted lists internally. To

create an Index, use or the unary = operator:

KeRF> b: indexed 3 9 0 7
=[3, 9, 0, 7]

KeRF> kerf type_name b
"btree sort"

A Zip is a list which is stored in memory in a compressed form, making it easier to work with large datasets.
There are a number of specialized compressed list subtypes- see the discussion in

29

4.8 Type Coercion

Some operators can be applied to arguments of several distinct types. For example, accepts both integers
and floats, and will work if given one of each as arguments:

KeRF> 1 add 2.5
3.5

In situations like these, the Kerf interpreter follows simple rules to coerce arguments to different types and
determine the appropriate return type.

In numeric operations, integer values will be converted to floats. For very large values this can lose some
precision; 64-bit floats represent fewer distinct values than 64-bit integers, distributed over a larger range:

KeRF> 1.0 + 100000000000000002
100000000000000000.0

Similarly, a float vector combined with an integer vector will promote the integer vector to a float vector
and yield a float vector as a result:

KeRF> kerf_ type_name a:2.1 3.0 4.0
"float vector"

KeRF> kerf type_name b:3 5 7
"integer vector"

KeRF> a+b
(5.1, 8, 11.0]

KeRF> kerf type_name a+b
"float vector"

If you append an integer to a float vector, it remains a float vector. Appending a float to an integer vector
promotes the result to a float vector:

KeRF> kerf_type_name join(0.5 0.6, 3)
"float vector"

KeRF> kerf_type_name join(0.2, 5 6)
"float vector"

An empty list combined with a vector or vectorizable type (integers, floats, timestamps or characters) will
always produce a vector:

KeRF> kerf_type_name []
"list"

KeRF> kerf_type_name join([], 2)
"integer vector"

KeRF> kerf_type_name join([], 3.5 3.6)
"float vector"

30

Lists may automatically become vectors when modified to contain items of a uniform vectorizable type. The
behavior of specific operators in this manner is an optimization, and may change with future revisions of
Kerf. Try not to depend on this behavior, and avoid using mixed-type lists when you want the performance
benefits of vectors:

KeRF> kerf_ type_name a: ["foo", 12, 3.5]

||1ist||
KeRF> a: drop(1l, a)
[12, 3.5]

KeRF> kerf_ type_name a
"float vector"

If you have a list which is known to only contain numeric values, you can explicitly convert it to a vector by
using the built-in functions or

KeRF> kerf_type_name a: xvals {a:0.4, b:4}
"list"
KeRF> int a
[0, 4]
KeRF> kerf_ type_name int a
"integer vector"
KeRF> float a
(0.4, 4.0]
KeRF> kerf type_name float a
"float vector"

When combining lists or vectors with indexes or enumerations, the properties of the left argument will be
preserved. Kerf will never spontaneously promote vectors or lists to indexes or enumerations.

KeRF> join(#["foo","bar"], ["quux"])
#["foo", "bar", "quux"]

KeRF> join(["quux"], #["foo", "bar"])
["quux", "foo", "bar"]

KeRF> join(=[3,7,2,1], 4)
=[3, 7, 2, 1, 4]

KeRF> join(4, =[3,7,2,1])
(4, 3, 7, 2, 1]

31

5 Syntax

5.1 Expressions

Calling (or applying) a function in Kerf resembles most conventional languages- use the name of the function
followed by a parenthesized, comma-separated list of arguments:

KeRF> add(1, 2)
3

If a function takes exactly one argument, the parentheses are optional. We call this style “prefix” function
application:

KeRF> negate(3)
-3

KeRF> negate 3
-3

This syntax makes it easy to “chain” together a series of unary functions:

KeRF> last sort unique "ALPHABETICAL"
~ IITH

KeRF> last(sort(unique ("ALPHABETICAL")))
= IITH

If a function takes no arguments, you must remember to include parentheses- otherwise the function will be
returned as a value instead of called:

KeRF> exit

exit
KeRF> exit ()
>

If a function takes exactly two arguments, it can be placed between the first and second argument as an
“infix” operator:

KeRF> 1 add 2
3

Many of the most frequently used functions have symbolic aliases. For example, + can be used instead of
and * can be used instead of There is no functional difference between the spelled-out names for
these functions and the symbols.

KeRF> 3 * &5
15

KeRF> times(3, 5)
15

KeRF> 3 + 5
8

KeRF> 3 plus 5
8

KeRF> plus(3, 5)
8

32

That said, note that the symbolic operators do not bind with parentheses in the same way as the textual
operators. Here the parenthetical expression is not evaluated as an argument, and so returns merely the last
item in the expression, which is then operated on by the symbolic operator.

KeRF> -(3, 5)
-5

Operators have uniform precedence in Kerf. Expressions are evaluated strictly from right to left unless
explicitly grouped with parentheses:

KeRF> 3 * 4 + 1

15

KeRF> 4 + 1 * 3
7

KeRF> (4 + 1) * 3
15

Kerf’s flexible syntax often provides many alternatives for writing the same expression. Select the arrange-
ment that you feel is most clear. Adding parentheses to confusing-seeming expressions never hurts!

KeRF> 0.5 * 3*x2
4.5

KeRF> times(1/2, 3**2)
4.5

KeRF> divide(1, 2) * exp(3, 2)
4.5

KeRF> ((1 / 2) * (3 x*x 2))
4.5

33

Symbol

) — N ¥+

= H O 3R

Unary Function
negatd

transpose
first

whic

Binary Function

B
B
=
w0

insl/and

[y
o
M.
=]

make map)

(o8 K
[ad ke
(2]

BB |ojoa |—}—j0s || o
ofojlQiBjojuisjio|Q
ticic|o|n ofjn|c
[oN Kol EoA BN RO (o8 K20 B
e} Hicjo ct =
wnjo o 7]
H [a]
[]

[0]
]
o)

Symbolic Aliases of Built-in Functions

34

5.2 Indexing

Kerf has a uniform syntax for accessing elements of lists, maps and tables. Use square brackets to the right
of a variable name or expression with an index or key to look up:

KeRF> 3 7 15[1]
7

KeRF> {a: 24, b: 29}["a"]
24

If the provided index or key does not exist, indexing will return an appropriate type-specific null value, as

provided by the built-in function:

KeRF> 3 7 15[9]
NAN

KeRF> 3 7 15[-1]
NAN

KeRF> "ABC"[9]

S

Floating-point indices to lists will be truncated, for convenience:

KeRF> 3 7 15[0.5]
3

KeRF> 3 7 15[1.6]
7

Indexing is right-atomic. If the indices are a list, the indexing operation will accumulate a list of results:

KeRF> "ABC"[2 1 0 0 2 3 0 0 1]
"CBAAC AAB"

KeRF> 34 19 55 32[0 1 0 1 2 2]
[34, 19, 34, 19, 55, 55]

One application of this type of collective indexing is the basis of

KeRF> a: 27 15 9 55 0
[27, 15, 9, 55, 0]
KeRF> alascend al
[0, 9, 15, 27, 55]

The shape of the result of indexing will always match the shape of the indices. Consider this example, where
we index a list with a 2x2 matrix and get back a 2x2 matrix:

KeRF> 11 22 33 44[[0 1, 2 3]]
[[11, 221,
[33, 44]]

Indexing a particular element from a multidimensional structure requires several indexing operations:

KeRF> [11 22, 33 44][0][1]
22

35

5.3 Assignment

Kerf uses the colon (:) as an assignment operator, unlike the convention of “=” from many other programming
languages. SQL uses = as a comparison operator, JSON uses : as an assignment operator in map literals
and Kerf syntax attempts to be a superset of both JSON and SQL.

Values may be assigned to variables with : and retrieved by using the variable name:

KeRF> a: 3 7 19

(3, 7, 19]
KeRF> a

[3, 7, 19]
KeRF> al1]

7

Assignment may be combined with indexing to assign to specific cells of a list or keys of a map:

KeRF> a: range 4
(o, 1, 2, 3]
KeRF> al1]: 99
[0, 99, 2, 3]
KeRF> a
[0, 99, 2, 3]
KeRF> b: {bravo: 3, tango: 6};
KeRF> b["bravo"]: 99
{bravo:99, tango:6}

Note Kerf’s copy-on-write semantics:

KeRF> a: 0 1 2 3;

KeRF> b: a

[0, 1, 2, 3]
KeRF> b[1]:99

[0, 99, 2, 3]
KeRF> a

[0, 1, 2, 3]

As with indexing, it is possible to perform collective “spread” assignment:

KeRF> a: 8 take O

[0, 0, 0, 0, 0, 0, 0, O]
KeRF> a1 2 5]:99

[0, 99, 99, 0, 0, 99, 0, 0]
KeRF> b: 8 take O

[0, 0, 0, 0, 0, 0, 0, 0]
KeRF> b[1 2 5]:11 22 33

(o, 11, 22, 0, 0, 33, 0, 0]

36

It is also possible to perform compound assignment, treating : like a combinator which takes a binary
function as a left argument and applies the old value and the right argument to this function before performing
the assignment:

KeRF> a: 0 0 O

[0, 0, 0]
KeRF> a#: 99
[0, 0, 0, 99]

KeRF> a join: 47
[0, 0, 0, 99, 47]

Ordinarily, referencing an uninitialized variable is an error. In some situations, including compound assign-
ment, the variable will instead act as though initialized with an empty map. Try to avoid depending on this
behavior:

KeRF> x
Undefined token error
KeRF> xi#:2

({}, 2

Compound assignment can be combined with indexing. Be warned, this can get confusing fairly quickly:

KeRF> a: 0 0 0
[0, 0, 0]
KeRF> al[1]+:4
[0, 4, 0]
KeRF> al0 2]+:1
[1, 4, 1]
KeRF> a0 2]#:55
[[1, 55], 4, [1, 55]1]
KeRF> al0 2]#:3 4
[[1, 55, 31, 4, [1, 55, 4]]

To modify an element of a multidimensional structure, use multiple indexing expressions:

KeRF> a:[11 22, 33 44]

[[11, 221,
[33, 44]]
KeRF> a[0] [1]:99
[[11, 991,
[33, 44]]

KeRF> al0 1] [0]#:0
[C[11, oI, 991,
[[33, 0], 44]1]

37

5.4 Control Structures

Kerf has a familiar, simple set of general-purpose control structures. Parentheses and curly braces are never
optional for control structures.

5.4.1 Conditionals

Kerf has a C-style if statement with optional else if and else clauses. Like the C ternary operator (7:),
Kerf if statements can be used as part of an expression. Each curly-bracketed clause returns the value of
its last expression.

KeRF> if (2 < 3) { 25 } else { 32 }
25

KeRF> if (2 > 3) { 25 } else { 32 }
32

In Kerf, newlines are statement separators. Conditional statements spread across multiple lines must adhere
to a specific, consistent indentation style:

if (a < b) {

c : 100

} else if (a == b) {
c : 200

} else {
c : 400

}

Multiline conditionals must not be written with a newline before else if or else clauses.
Implied (and undesirable) statement separators are shown in red:

if (a < b) {

c : 100

¥

else if (a == b) {
c : 200

¥

else {
c : 400

}

Another incorrect indentation style:

if (@ < b) {c: 100 };
else if (a == b) { ¢ : 200 };
else { ¢ : 400 };

38

5.4.2 Loops

Kerf provides a C-style for loop. The header consists of an initialization expression, a predicate and an
updating expression. Note that the for loop itself returns null:

KeRF> for (i: 0; i < 4; i: i+1) { display 2#i }
0

2
4
6

KeRF>

Kerf also provides a C-style while loop. Note how in this example the loop returns its final calculation:

KeRF> t: 500; while(t > 32) { display t; t: floor t/2 }
500
250
125
62
31

KeRF>

If you simply want to repeat an expression a fixed number of times, use do:

KeRF> do (3) { display 42; 43 }
42
42
42
43

KeRF>

If it is necessary to prematurely exit a loop, break the loop into its own function and use return.

Combinators and built-in functions can be substituted for loops in many situations:

KeRF> display mapdown range(0, 8, 2);
0

2
4
6

KeRF> {[t] t>32 } {[t] display t; floor t/2 } converge 500
500
250
125
62
31

KeRF> display mapdown take(3, 42);
42
42
42

39

5.4.3 Function Declarations

Functions can be declared using the function or def keywords and providing a parenthesized argument list.
The final statement in a function body will be implicitly returned, and at any point in a function body you
can instead use the return keyword to explicitly return.

function is_even(n) {
return (n % 2) ==
}

def divisible(a, b) {
return (a % b) ==
}

It is also possible to define anonymous functions as part of an expression. Some languages refer to these
as lambdas, in reference to the lambda calculus, a formal model of computation based on the manipulation
of anonymous functions. Anonymous functions are enclosed in curly brackets and may provide a square-
bracketed ([and 1) argument list:

KeRF> {[a, b] 2*a+b }(3, 5)
16

Storing a lambda in a variable is precisely equivalent to defining a function with function or def.

KeRF> divisible: {[a, b] (a % b) == 0 }
{la, b] (a % b) == 0}

KeRF> divisible(6, 3)
1

KeRF> divisible(7, 2)
0

Kerf uses lexical scope. This means that when variables are referenced, the definition textually closest to the
reference will be used:

x: 35
function outer_1() {
x: 25
function inner() {
return x
}
return inner;
}
function outer_2() {
x: 15
1: outer_10)
x: 45
return 10)
}
display outer_2()

This example will print 25, because inner captures the definition of x in outer_1 when it is created. The
definitions of x in outer_2 are not used when this function is evaluated, nor is the top-level definition of x.

40

6 SQL

Kerf understands SQL (Structured Queried Language), a popular programmatic interface for relational
databases. You can blend SQL-style queries with imperative statements and access the full range of Kerf
predicates and logical operators while filtering and selecting results.

SQL keywords are not case-sensitive, but for clarity the following examples will use uppercase exclusively.
When describing the syntax of SQL statements, sections which can contain table names, field names or other
types of subexpressions will be shown in bold. If a section is optional, it will be enclosed in bold square
brackets ([and 1). For example:

’SELECT fields [AS name] FROM table ...

6.1 Scoping

When the target of a write like INSERT or UPDATE is a variable name, the variable is resolved as if it were in
the global scope, even when the statement occurs inside of a function. This is done for convenience: database
code is typically written like this, and this is the most common use case. To use INSERT or UPDATE as if they
were functional methods, either parenthesize your variable or wrap it in the ident function, then save the
result into another local variable.

insert into t values b:4,c:b
t: insert into (t) values b:4,c:5

41

6.2 INSERT

INSERT is the simplest type of SQL statement. It is used for creating or appending to tables. INSERT can
perform single or bulk insertions, the latter of which is much more efficient.

INSERT INTO table VALUES data

The value table can be an object such as table literal, or it can be the name of a variable containing a table.
In the latter case, the table will be modified in-place. The value data can be a list, matrix, map or table.

To insert a row, use an ordinary square-bracketed Kerf list. You can also use a map, which more explicitly
shows column names in the source data. For bulk inserts, you can insert a table.

KeRF> INSERT INTO {{name, email, level}} VALUES ["bob", "b@ob.com", 7]

name |email level

bob | bQob. com 7

KeRF> INSERT INTO {{name, email, level}} VALUES {name: "bob", level: 7, email: "b@ob.com"}

name |email level

bob | bQob. com 7

KeRF> INSERT INTQ {{}} VALUES {{name:["bob","jim"], level:7 8, email:["b@ob.com","j@im.com"]}}

name |email level
bob | bQob. com 7
jim|j@im.com 8

42

Note that a map which is to be inserted must have ezractly the same key set as the destination table:

KeRF> INSERT INTO {{name, email, level}} VALUES {name: "bob", level: 7}
INSERT INTO {{name, email...

Length error
KeRF> INSERT INTO {{name, email, level}} VALUES {name: "bob", level: 7, hobbies: "needlepoint"}

INSERT INTO {{name, email...

Column error

The examples above show INSERT for creating tables. The more common use case involves inserting into
an already existing table. For clarity sake:

KeRF> t:{{a:1 2,b:3 4,c:99.9 10}}

KeRF> INSERT INTO t VALUES {a:99, b:-10, c:1.1}

a |b c
1 3199.9
4110.0
99|-10| 1.1

KeRF> INSERT INTO t VALUES [[8,9],[44, 55],[82.1, -8.8]]

a |b c

N
=
= O ©
0~ = O ©

99(-10
4418

9]
N

43

Bulk insertions require either a matrix or a table:

KeRF> employees: [["bob","alice","jerry"]

["bGob.com", "alice@gmail.com", "jerryQ@zombo.com"]
(7, 9, 4311;
KeRF> INSERT INTO {{name, email, level}} VALUES employees
name |email level
bob b@ob. com 7
alice|alice@gmail.com 9
jerry|jerry@zombo.com 43

An empty table will accept an INSERT from any map or table. List or matrix elements will be assigned
default column names:

KeRF> INSERT INTO {{}} VALUES {legume: "Black Bean", dish: "Casserole"}

legume dish

Black Bean|Casserole

KeRF> INSERT INTQ {{}} VALUES employees

col |coll col2

bob bQob. com 7
alice|alice@gmail.com 9
jerry|jerry@zombo.com| 43

44

6.3 DELETE

DELETE is used for removing rows from a table. Kerf’s columnar representation of tables means that a DELETE
runs in linear time with respect to the number of rows in the table. Keep this in mind, and avoid repeated
DELETESs over large (on-disk) datasets.

DELETE FROM table [WHERE condition]

table can be a table literal or the name of a variable containing a table. In the latter case, the table will
be modified in-place. condition can be any Kerf expression, using the names of columns from table as
variables. For more information about WHERE, see the discussion of SELECT.

If provided a reference to a table stored in a variable, DELETE will return the name of that variable. Otherwise,
it will return the modified table itself:

KeRF> t: {{a:range(5000), b:rand(5000, 100.0)}}

alb

16.4771
27.3974
28.3558
12.2126
45.1148
81.5326

95.726
38.1769

~N O Ok W= O

KeRF> count t
5000
KeRF> DELETE FROM t WHERE b between [0, 50]
g
KeRF> count t
2474
KeRF> DELETE FROM {{a:range(10), b:rand(10, 100.0)}} WHERE (a%2) = 1

alb

0(75.3017
2 67.3
4119.4571
6|66.3412
8| 66.116

As you might expect, if you don’t use a WHERE clause, DELETE will remove all the rows of a table:

KeRF> DELETE FROM t
||t||
KeRF> t

alb

45

6.4 SELECT

SELECT performs queries. It can be used to extract, aggregate or transform the contents of tables, producing
new tables.

SELECT fields [AS name] FROM table
[WHERE condition]
[GROUP BY aggregate]

In its simplest form, SELECT can be used to slice a desired set of columns out of a table:

KeRF> people

name age|gender | job

Hamilton Butters| 37 M Janitor
Emma Peel| 29 F Secret Agent
Jacques Maloney| 48 M|Private Investigator
Renee Smithee| 31 F Programmer
Karen Milgram| 16 F Student
Chuck Manwich| 29 M Janitor
Steak Manhattan| 18 M Secret Agent
Tricia McMillen| 29 F Mathematician

KeRF> SELECT name, gender FROM people

name gender

Hamilton Butters
Emma Peel
Jacques Maloney
Renee Smithee
Karen Milgram
Chuck Manwich
Steak Manhattan
Tricia McMillen

MR R

Selected columns can be renamed by specifying an AS clause for each:

KeRF> SELECT age AS person_age, gender AS sex FROM people

person_age|sex

37
29
48
31
16
29
18
29

mMEEmmET R

46

SELECT can also be used to reorder, duplicate, or add columns:

KeRF> SELECT gender, age, age AS years FROM people

gender |age |years
M| 37 37
F| 29 29
M| 48 48
F| 31 31
F| 16 16
M| 29 29
M| 18 18
F| 29 29

KeRF> other: {{ b: range len people }}

[Noowrwnvero] o |

KeRF> SELECT other.b AS id, * FROM people

id|name age|gender | job

O|Hamilton Butters| 37 M Janitor
1 Emma Peel| 29 F Secret Agent
2| Jacques Maloney| 48 M|Private Investigator
3 Renee Smithee| 31 F Programmer
4 Karen Milgram| 16 F Student
5 Chuck Manwich| 29 M Janitor
6| Steak Manhattan| 18 M Secret Agent
7| Tricia McMillen| 29 F Mathematician

47

The wildcard * can be used to refer to all columns in a table. It is also possible to use a variety of collective
functions like [count|or [avg when selecting columns. When calculated columns are not given a name explicitly
via AS, a default name will be supplied.

KeRF> SELECT count (*), sum(age), avg(age) AS average_age FROM people

col|age|average_age

81237 29.625

It is possible to reference user-defined functions in a SELECT, but if they are not atomic you may need to
explicitly apply them to elements of a column using combinators:

KeRF> revname: {[x] p:explode("" ",x); implode(", ", reverse p)};
KeRF> from_dogyears: {[x] if (x < 21) { x/10.5 } else { x/4 }};
KeRF> SELECT revname mapdown name, from_dogyears mapdown age AS dog_age FROM people

name dog_age

Butters, Hamilton 9.25
Peel, Emma 7.25
Maloney, Jacques 12.0
Smithee, Renee 7.75
Milgram, Karen|1.52381
Manwich, Chuck 7.25
Manhattan, Steak|1.71429
McMillen, Tricia 7.25

When working with the results of a SELECT query, sometimes you don’t actually want a table- you just want
a single result. You can destructure tables explicitly with the primitives[xkeys|and xvals| Alternatively, use
the more convenient context-senstive function [extract] which turns single-column tables into an appropriate
atom or list:

KeRF> SELECT min(age) FROM people

age

16

KeRF> extract SELECT min(age) FROM people
16

48

6.4.1 WHERE

The WHERE clause permits filtering of results. Only rows which adhere to the contraints given as the
condition will be returned:

KeRF> SELECT * FROM people WHERE age > 30

name age|gender | job
Hamilton Butters| 37 M Janitor
Jacques Maloney| 48 M|Private Investigator
Renee Smithee| 31 F Programmer

You can form a conjunction with several conditions by separating them with commas. Given a conjunction,
the result is only selected if all conditions are satisfied. This is equivalent to performing a logical AN D:

KeRF> SELECT * FROM people WHERE gender = "M", age > 30

name age|gender | job
Hamilton Butters| 37 M Janitor
Jacques Maloney| 48 M|Private Investigator

You can also form a conjuction by using the Kerf operator, but in this case you must parenthesize
subexpressions. Remember: Kerf evaluates expressions right to left unless otherwise parenthesized, so a =
b and ¢ > dis equivalent toa = (b and (¢ > d)):

KeRF> SELECT * FROM people WHERE gender = "M" and age > 30
gender = "M" and age > 30
Type error

KeRF> SELECT * FROM people WHERE (gender = "M") and (age > 30)

name age|gender | job
Hamilton Butters| 37 M Janitor
Jacques Maloney| 48 M|Private Investigator

49

6.4.2 GROUP BY

The GROUP BY clause can be used to gather together sets of rows which match on a particular column.
You may often want to use collective functions to reduce each list of results:

KeRF> SELECT count(name) AS num, avg(age) FROM people GROUP BY job

job num|age
Janitor| 2|33.0

Secret Agent| 2(23.5

Private Investigator 1148.0

Programmer 1131.0

Student| 1(16.0

Mathematician| 1(29.0

50

6.5 UPDATE

UPDATE modifies a table in-place, altering the values of some or all columns of rows which match a query.

UPDATE table SET assignments
[WHERE condition]
[GROUP BY aggregate]

In its simplest form, UPDATE transforms or reassigns one or more of the columns of the table. The right side
of each clause of assignments can be any Kerf expression. Note that the SET clause can use the symbols
= or : to represent assignment, for compatibility with familiar SQL engines. In practice, favor using : to
avoid ambiguity.

KeRF> UPDATE {{a:10 20 30}} SET a=ax2

a

20
40
60

KeRF> UPDATE {{a:10 20, b: 40 50}} SET a:1l+a, b=5

a |b

215
31(5

KeRF> UPDATE {{a:0 1 2, b: 3 4 5}} SET b:5

alb

N
o]

Assignments are carried out left to right:

KeRF> UPDATE {{a:"First", b:"Second"}} SET a=b, b=a

a b

Second |Second

51

6.5.1 WHERE

An UPDATE can be restricted to only modify a specific subset of rows by using a WHERE clause, as in SELECT:

KeRF> UPDATE {{a:0 1 2, b:7 3 7}} SET b=99 WHERE b=7

alb

(@)

99
1] 3
99

[\

6.5.2 GROUP BY

UPDATE also supports the GROUP BY clause, operating on sets of rows which match on a particular column:

KeRF> t: {{a: 012345, b: 011023, c: 00000 O0}};
KeRF> UPDATE t SET c=count(b);
KeRF> t

albl|c

g W NN O
NN O = = O
[e)BNe)BNe) BNe) BN INe)]

KeRF> UPDATE t SET c=count(b) GROUP BY b;
KeRF> t

albl|c

g W NN O
W N O~ = O
o NN NN

KeRF> UPDATE t SET c=enlist(a) GROUP BY b;
KeRF> t

albl|c

(o, 3]
[1, 2]
[1, 2]
(o, 3]
(4]
(5]

g W N O
W N O+~ = O

52

UPDATE. . .GROUP BY can also modify columns in place:

KeRF> t: {{a: 99 99 37 99 37 479}};
KeRF> UPDATE t SET a=count(a) GROUP BY a;
KeRF> t©

a

3

3

2

3

2

1
6.6 Joins

Kerf provides built-in functions [Left_join|and [asof_join| which can be used to align and combine tables:

KeRF> livesin

name nationality
Hamilton Butters USA
Emma Peel UK
Jacques Maloney France
Renee Smithee France
Karen Milgram USA
Chuck Manwich Canada
Tricia McMillen UK

KeRF> SELECT name, age, nationality FROM left_join(people, livesin, '"name"

name age|nationality
Hamilton Butters| 37 USA
Emma Peel| 29 UK
Jacques Maloney| 48 France
Renee Smithee| 31 France
Karen Milgram| 16 USA
Chuck Manwich| 29 Canada
Steak Manhattan| 18 null
Tricia McMillen| 29 UK

53

6.6.1 Left Join

A left join includes every row of the left table (x), and adds any additional columns from the right table
(y) by matching on some key column (z). Added columns where there is no match on z will be filled with

type-appropriate null values as generated by

KeRF> t: {{a:1 2 2 3, b:10 20 30 40}}

alb

10
20
30
40

W NN =

KeRF> u: {{a:2 3, c:1.5 3}}

KeRF> left_join(t, u, "a")

alb |c

10 [nan
20
30
40

W NN -
W - -
S o1 O

If z is a list, require a match on several columns:

KeRF> u: {{a:2 3, b:30 40, c:1.5 3}};
KeRF> left_join(t, u, ["a","b"])

alb |c

10|nan
20 |nan
30|1.
40(3.0

W NN =
[62]

54

If z is a map, associate columns from x as keys with columns from y as values, permitting joins across tables
whose column names differ.

KeRF> u: {{z:2 3, c:1.5 3}};
KeRF> left_join(t, u, {’a’:’z’})

alb |c

10|nan
20
30
40

W NN =
w = =
(@R INe]

6.6.2 Asof Join

Behaves as for the first three arguments. The fourth argument is a string, list or map indicating
columns which will match if the values in y are less than or equal to x. Often this operation is applied to
timestamp columns, but it works for any other comparable column type.

KeRF> t: {{a: 1 22 3, b: 10 20 30 40}}

alb

10
20
30
40

W NN =

KeRF> u: {{b: 19 17 32 8, c: ["A","B","C","D"]}}

19
17
32

O wr>=

KeRF> asof join(t, u, [], "b")

10
20
30
40

W NN -
Q = = O

55

6.7 Limiting

If you wish to retrieve the first n items of a query, as in a SQL LIMIT clause, you can use |[first

KeRF> first(2, SELECT name, age FROM people WHERE gender = "F'")

name age

Emma Peel| 29
Renee Smithee| 31

But beware- if the result has fewer than n rows, this approach will replicate them:

KeRF> first(2, SELECT name, age FROM people WHERE name = "Emma Peel")

name age

Emma Peel| 29
Emma Peel| 29

A better approach is to define a new function which takes the minimum of n and the length of the result:

KeRF> limit_rows: {[n, t] first(min(count t, n), t)};
KeRF> limit_rows(2, SELECT name, age FROM people WHERE name = "Emma Peel")

name age

Emma Peel| 29

6.8 Ordering

If you wish to sort tables along a column, as in a SQL ORDER BY clause, you can use the built-in functions
[ascend| or [descend| along with indexing:

KeRF> people[ascend SELECT job FROM people]

name age|gender | job
Hamilton Butters| 37 M Janitor
Chuck Manwich| 29 M Janitor
Tricia McMillen| 29 F Mathematician
Jacques Maloney| 48 M|Private Investigator
Renee Smithee| 31 F Programmer
Emma Peel| 29 F Secret Agent
Steak Manhattan| 18 M Secret Agent
Karen Milgram| 16 F Student

56

6.9 Performance

WHERE clauses have a special understanding of certain Kerf verbs and can achieve significant performance
boosts in the right circumstances.

KeRF> n: 200000;

KeRF> i: range(n);

KeRF> v: rand(n, 100.0);

KeRF> iv: indexed v;

KeRF> find: {[x] SELECT count(*) FROM {{i:i, v:x}} WHERE v < 23.7};

KeRF> timing 1;

KeRF> find v;
15 ms

KeRF> find iv;
6 ms

For best results, order WHERE conjunctions to perform the largest reduction of data first, or take advantage
of [indexed| or [enum| columns as early as possible:

KeRF> n: 200000;
KeRF> t: {{a: range(n), b: rand(n, 100.0), c: rand(n, 6)}}

alb c

0| 82.268
1180.5227
2(13.5797
3(80.2291
4161.5329
5|67.2546
6(64.5684
7129.7027

N O W W ON

KeRF> timing 1;
KeRF> SELECT * FROM t WHERE b > 50, c = 1;

25 ms

KeRF> SELECT * FROM t WHERE ¢ = 1, b > 50;
13 ms

KeRF> SELECT * FROM t WHERE (c = 1) and (b > 50);
14 ms

57

7 Input/Output

Kerf provides a rich set of built-in IO functions for displaying, serializing, importing and exporting data.
Beyond the capabilities described here, Kerf provides a general purpose foreign-function interface- see [FFI]

7.1 General I/0O
The function [out|(x) will print a string x to standard output. Non-string values are ignored:

KeRF> out "foo"
foo

KeRF> out 65
KeRF>

The function [display|(x) will print a display representation of data to standard output. A key difference
between calling this function from the REPL and using the REPL’s natural value printing is that
will print the entire result:

KeRF> range 50

o, t, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, ...]
KeRF> display range 50
o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]

The function [shell](x) will execute a string x containing a shell command as if from /bin/sh -c¢ x and
return the lines of the result:

KeRF> out implode("\n", shell("cal"))
November 2015

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

KeRF> shell("echo Hello, World!'™)
["Hello, World!'"]

58

7.2 FileI/O
The function lists the files and directories at a path. It can optionally provide full path names:

KeRF> dir_1s("/Users/john/Sites")

[".DS_Store", ".localized", "images", "index.html", "subforum.php"]
KeRF> dir_ls("/Users/john/Sites", 1)

["\/Users\/john\/Sites\/.DS_Store"

"\ /Users\/john\/Sites\/.localized"

"\/Users\/john\/Sites\/images"

"\/Users\/john\/Sites\/index.html"

"\ /Users\/john\/Sites\/subforum.php"]

The function Iines|(filename, n) loads lines from a plain text file into a list of strings. The argument n is
optional, and specifies the maximum number of lines to read.

KeRF> lines("example.txt")

["First line", "Second line", "Third line"]
KeRF> lines("example.txt", 2)
["First line", "Second line"]

The function [write_text|(filename, x) writes a raw string to a file, refurning the number of bytes written.
If x is not already a string it will be converted to one as by [json_from kerf| To perform the inverse of

[Lines| use[write_text|(filename, [implode|("\n", x)).

KeRF> write_text("example.txt", 5)
1

KeRF> write_text("example.txt", 99)
2

KeRF> shell("cat example.txt")
["99"]

Kerf has a proprietary binary serialization format. The function write_to_path|(filename) writes a Kerf
object to a file, creating it if necessary, and returns 0 if the operation was successful. Objects can then be
reconstituted from binary files by calling [read_from_path|(filename).

KeRF> write_to_path("example.bin", 23 24 25)

0
KeRF> shell("wc -c example.bin")
" 64 example.bin"]

KeRF> out implode("\n", shell("hexdump example.bin"))

0000000 06 90 00 fe 01 OO 0O 0O 03 00 00 OO 00 OO OO 00
0000010 17 00 00 00 00 00 00 0O 18 00 00 0O 00 00 00 00
0000020 19 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00
0000030 00 00 00 00 OO0 OO 0O 00 00 00 00 00 00 00 00 00

0000040
KeRF> read_from_path("example.bin")
[23, 24, 25]

Kerf also has built-in functions which make it easy to read and write common tabular data formats.
[read_table_from delimited_file|loads data, [write_delimited file from_table|writes data, and several
wrapper functions are available which read and write CSV or TSV files using this functionality.

Kerf can load data from text files with fixed-width columns with [read _table from fixed filel See the
built-in function reference discussion of this function for additional details.

59

7.3 Striped Files

Kerf is also capable of working with “striped” files. This serialization format writes each nested component
of an object (the items of a list, or the columus of a table, for example) as a separate file within a directory
structure. Striped files are more space-efficient for sparse structures, and permit significantly faster appends.

To create a striped file from an object, use write_striped_to_path|(path, x):

KeRF> write_striped_to_path("stripe_example", {{a: 1 2 3, b: 4 5 6}});
KeRF> out "\n" implode shell "tree stripe_example"
stripe_example

2
0
L base.dat
1
L pase.dat
base.dat
base.dat

3 directories, 4 files

To load a striped file, use [read_striped_from_path|(path):

KeRF> read_striped_from_path("stripe_example")

alb

)]

For high-performance data storage, Kerf provides a set of alternatives to the “read_table_"-prefixed methods
which begin with “create_table_”, like [create_table from csvl Instead of simply reading a file into
memory, these routines load data into a memory-mapped, disk-backed data structure, deleting any pre-
existing destination file if necessary. These routines will use striped files preferentially, but also support
conventional serialized Kerf objects. The create_table_ functions allow you to work efficiently with large
data files which may not fit in memory at once.

There are also a series of “append_table_"-prefixed equivalents which, as you might expect, append data to
any pre-existing destination file or create a new file if none exists.

60

7.4 Parceled tables

A natural way of storing large amounts of time series data is parceling the data by day into separate
subdirectories which are named by day. This allows for easier updates, backups and error recovery. Kerf
provides a table type which logically connects the separate daily parcels. The requirements are that the
subdirectories are named by the correct days. In the following example, we will create a small table with
two days worth of data, create a directory in the /tmp directory, write out the tables with the data from
the given days, then read the table in as a parceled table using [read_parceled_from_path|(path):.

KeRF> twodays: {{timedate: {[x] 1999.01.01 + 8h*x } mapright range(6), vals: range(6)}}

timedate vals

1999.01.01
1999.01.01T08:00:00.000
1999.01.01T16:00:00.000

1999.01.02
1999.01.02T08:00:00.000
1999.01.02T16:00:00.000

g W N e O

KeRF> mkdir ("/tmp/p");

KeRF> write_striped_to_path("/tmp/p/1999.01.01",select * from twodays where timedate <1999.01.02);
KeRF> write_striped_to_path("/tmp/p/1999.01.02",select * from twodays where timedate >=1999.01.02)
KeRF> twoparcels: read_parceled_from_path("/tmp/p");

Parceled tables automatically have a virtual “date” column.

KeRF> select avg(vals) from twoparcels where date=1999.01.01

vals

1.0

Parceled tables are distinct from standard tables, and this is reflected in the Kerf repl.

KeRF> kerf type_name twoparcels
"parceled table"

Since the parceling logically divides by day, there is an implied grouping by day.

KeRF> select min(vals),min(timedate) from twoparcels

vals|timedate

o

1999.01.01
1999.01.02

w

61

7.5 Network I/O (IPC)

Kerf has a specialized remote procedure call system built on TCP which permits distributing tasks across
multiple processes or machines. This is sometimes described as Inter-Process Communication (IPC). To
spawn a Kerf process which listens for IPC calls, invoke kerf with the -p command-line argument and
specify a TCP port number:

> ./kerf -p 1234
Kerf Server listening on port: 1234
KeRF>

The function [open_socket|(host, port) opens a connection to a remote Kerf instance at hostname host
and listening on port and returns a connection handle. Both host and port must be strings. Once opened,

a connection handle may be closed via|close_socket|(handle).

KeRF> open_socket("localhost", "1234")
4

The function [send_async|(handle, x) will send a string x to a remote Kerf instance without waiting for a
reply. x will be [evalkd on the remote server, returning 1 on a successful send.

The function [send_sync|(handle, y) will send a string y to a remote Kerf instance, waiting for a reply.
y will be [evalkd on the remote server, and the result will be returned.

KeRF> c: open_socket("localhost", "1234")
4

KeRF> send_async(c, "foo: 2+3")
1

KeRF> foo
{}

KeRF> send_sync(c, "[foo, fool")
[5, 5]

KeRF> send_sync(c, "sum range 1000")
499500

Network IPC is automatically compressed if Kerf determines that will reduce transfer times. Compression
and decompression takes places transparently on each end, so the user typically need not think about it.
Kerf will not attempt to recompress already zipped items. It will also not attempt to zip small messages
that would not benefit from compression, such as single atoms.

During IPC execution, the constant contains the current client’s unique handle:

KeRF> open_socket("localhost", "10101")
6

KeRF> send_sync(6, ".Net.client")
6

KeRF> .Net.client
0

62

If defined, an IPC server will call the single-argument function with a client handle when
that client closes its connection:

KeRF> .Net.on_close: {[x] out ’client closed: ’ join (string x) join ’\n’};
KeRF>

server: new connection from 127.0.0.1 on socket 6

client closed: 6

Data can be sent to the foreign process using [send_sync| or [send_async| when using these verbs with three
arguments. Kerf assumes that the third argument is a list, so if a higher order construct is sent over, it must
be payloaded as a list. Arguments are retrieved on the remote side with $1.

KeRF> c: open_socket("localhost", "1234")
4

KeRF> send_async(c, "foolist: $1", [range(10)])
1

KeRF> send_sync(c,"tbl:$1",[a:[1, 2 ,3],b:["a", "b", "c"]])

alb

63

7.5.1 Starting an HTTP Server

Starting Kerf with the command-line argument -P 8080 will start Kerf with an HTTP server opened on the
provided port, in this case 8080. The global variable|.Net.parse_request|is pre-populated with a browser-
compatible HTML response. This variable is a one-argument function and may be changed as desired.

7.5.2 Backgrounding a Kerf Server

We recommend the UNIX command screen for backgrounding Kerf servers. It’s possible to use nohup or
some related form of daemonization, but this has the downside of closing stdin, which means that you
cannot recover the ability to interact with Kerf via the terminal. The screen utility avoids this downside.
The process will run in the background, even if you disconnect, and later on you can still type in the console.

Some helpful shell commands:

#Try screen instead of nohup

#Installing screen

#1f necessary, choose one
sudo yum -y install screen
sudo apt-get install screen
brew install screen

#and so on...

#start a screen session in the background with a Kerf server on port 1234
screen -dm ./kerf -p 1234

#0Optional: bring the screen to foreground/terminal
screen —-dRR

#Test with another client using the attached test script.
./kerf test-client.kerf

#This has the benefit of retaining STDIN to the server and the server output. (nohup kills stdin.)

test-client.kerf

//open server: ./kerf -p 1234
// client: ./kerf test-client.kerf

s: open_socket("localhost","1234")
display send_async(s,"a:$1+1", [range 999])
display send_sync(s, "a:$1", [range led])

64

8 Foreign Function Interface

Kerf provides a Foreign Function Interface (FFI) which makes it possible to call out to C libraries from Kerf
and call into Kerf from C. The FFI permits users to supplement Kerf with new 10 capabilities, make use of
pre-existing libraries and fine-tune high performance applications. In this section we will discuss how to use
this facility and describe the data structures and the native API exposed by the Kerf executable.

8.1 C from Kerf

To compile a dynamic library for use with Kerf, you will need kerf_api.h, which should be included with
the Kerf binary and other documentation. This contains the signatures of exposed kerf_api_ functions
you can use in building dynamic libraries as well as a number of useful constants. If your C source code
is stored in example. c and this header is in the current directory, compile it from the command line as follows:

For OSX:

>cc -m64 -flat_namespace -undefined suppress -dynamiclib example.c -o example.dylib

The -m64 option requests code be generated for a 64-bit architecture. The -flat_namespace and ~undefined
suppress are necessary to create a dynamic library which can be linked against the Kerf binary at runtime-
this is how your dynamic library can access built-in utility methods from the interpreter itself. The -o option
specifies a name for the output file, which we suffix with .dylib by convention.

For Linux:

>cc -m64 -shared -fpic example.c -o example.dylib

Linux also requires -m64, but by contrast uses -fpic and -shared to build a shared library which can be
dynamically linked to Kerf at runtime. While Linux generally uses . so rather than .dylib suffixes for shared
objects, we will stick to the OSX naming convention for these examples for the sake of consistency.

With this dynamic library compiled, the built-in function can be used to load the library and create
a wrapper function for a specific function from the library which can then be invoked in Kerf as if it were
an ordinary Kerf function. The Kerf FFI does not marshal Kerf’s native data representations into C types-
if another representation is desired you must close the gap in your code. This approach simplifies the FFI
implementation and permits very efficient data exchange, but requires a great deal of care and attention
from library authors.

65

All values in Kerf are internally stored in KERF structures. This struct is what is called a tagged union- some
fields have different interpretations dependent on the value of a tag field. In our case, the typecode field t
permits this discrimination.

typedef struct kerfO {
char m;
char a;
char h;
char t;
int32_t r;
union {
int64_t i;
double f;
char C;
char* S;
struct kerfOx k;
struct {
int64_t n;
char gl[];
¥
s
} *KERF, KERFO;

Some of the fields of a KERF structure are for internal use by the interpreter and should not be manipulated
directly in well-behaved dynamic libraries. The next section will describe the internal representation of
various Kerf types in terms of KERF structures. Three fields are of general interest:

e The r field contains a reference count for the object. Examining this field explicitly is sometimes useful
for debugging memory corruption problems. Your code should treat it as read-only.

o The t field indicates the object’s typecode, identical to the typecodes given by Negative
values indicate vector types.

e The a field contains attribute flag bits which provide the interpreter with metadata that alters the
behavior of values or permits runtime optimizations.

Functions called from Kerf will always take some number of KERF structures as arguments and return a KERF

structure. In the event that your function doesn’t produce a meaningful return value, return 0- Kerf will
coerce this into the equivalent of null.

66

8.2 Kerf from C

It is easy to call Kerf methods from C. The Kerf binary is compiled using -rdynamic, which allows other
binaries to load it directly as a shared library. This makes the regular Kerf binary similar to a .so shared
object file. All of Kerf’s symbols are exposed in this manner, although you should limit yourself to the
methods beginning with kerf_api_ as described in kerf_api.h. The private Kerf symbols may change at
any time. The methods exposed via the API are wrapped and guaranteed to be future-proof.

When calling Kerf from C, remember to call to initialize the Kerf process if it has not already
had a chance to initialize itself. Failure to do so may result in undefined behavior.

The following C source file kerf _from_c.c illustrates how to call the plain Kerf binary from a C executable.
See the comments for compilation instructions. If you prefer, you can load each function individually by
using d1lsym, avoiding the need to suppress unresolved symbols as we do here for the sake of brevity:

#include <dlfcn.h>
#include "kerf_api.h"

int main() {
void *1ib = dlopen("/full/path/to/kerf/binary", RTLD_NOW|RTLD_GLOBAL);
if (11ib) printf ("A dynamic linking error occurred: (%s)\n", dlerror());

kerf_api_init();
KERF s = kerf_api_new_int(33);
kerf_api_show(s);

kerf_api_release(s);

KERF ¢ = kerf_api_new_charvec("1+1");
kerf_api_show(c);

KERF k = kerf_api_interpret(c);
kerf_api_show(k);

kerf_api_release(k);

return O;

8.2.1 Kerf .a archive and .o object files

Depending on your arrangement, you may be granted access to Kerf object files. These .a and .o files
will similarly expose the Kerf methods, with the exception that they may be statically compiled into other
binaries. In most cases this is unnecessary, as the regular -rdynamic Kerf binary will suffice.

67

8.3 Reference Counting

Kerf manages dynamically allocated memory using a strategy called reference counting. Each KERF object
contains a counter of how many references to the object exist throughout the runtime. Whenever an object
is used or stored, its reference count is incremented. When an object is no longer needed (perhaps a function
using the object completes and returns) this count is decremented. When an object has a reference count of
0, the Kerf runtime knows that it is free to deallocate the object and reclaim the associated memory.

Reference counting is contrasted with garbage collection, another popular method of managing dynamic
memory. A garbage collector actively searches for references to objects and automatically frees objects when
they are no longer reachable. Garbage collectors remove the need to explicitly maintain reference counts, but
generally incur runtime overhead for performing their heap scanning. Kerf uses reference counting because
it has low runtime overhead and, by giving programmers more explicit awareness of memory management,
permits more predictable runtime performance.

If the reference counts on an object are not maintained properly, a variety of bugs can occur. If references
are not released when an object is no longer needed, memory will leak- it is no longer useful but cannot
be reclaimed for other purposes. In long-running processes this can eventually exhaust system memory. If
references are not retained when an object is still needed, they can be deallocated out from under your code,
allowing data to be overwritten and creating a variety of potential intermittent failures.

Some objects require special consideration. For efficiency purposes, Kerf will sometimes allocate objects
which can be passed as arguments to your dynamic libraries on the stack instead of its reference-counted
heap. Stack-allocated objects typically have a reference count of -1 and cannot be retained indefinitely
without copying. These and other special cases mean that simply decrementing or incrementing the r field
of a KERF object is not sufficient for controlling reference counts correctly. The Kerf native API exposes
two functions- kerf_api_release| and [kerf_api_retainl for this purpose which perform all the necessary
bookkeeping. Do not directly modify the r field of KERF objects!

8.3.1 Releasing

As a general rule, if a KERF object is allocated in a function (as with any of the functions) it

must either be returned from that function or released with [kerf_api_release|before the function returns.
The following routine leaks a KERF_CHARVEC. Can you see why?

KERF leaky_demo (KERF monad) {
return kerf_api_call_monad(monad, kerf_api_new_charvec("Hello!"));
}

A corrected version would be as follows:

KERF leaky_demo (KERF monad) {
KERF string = kerf_api_new_charvec("Hello!");
KERF result = kerf_api_call_monad(monad, string);
kerf_api_release(string);
return result;

Any objects which were allocated inside [kerf_api_call_monad|are the responsibility of that routine, and the
result it returns can be freely returned from our routine. Objects passed into our routine are the responsibility
of the code which called our routine, and will be automatically deallocated unless we explicitly retain them.
This idea of local responsibility is the key to understanding reference counting.

68

8.3.2 Retaining

In many situations, simply releasing objects you allocate is sufficient, but in some situations we need to
explicitly retain an object to ensure it is not deallocated too soon. Consider this pass-through function
which prints information about reference counts:

KERF show_refcount (KERF x) {
printf("incoming reference count: %d\n", x->r);
KERF result = kerf_api_retain(x);
printf ("outgoing reference count: %d\n", result->r);
return result;

The calling function which passed the arguments into our dynamic library function is responsible for dis-
carding those arguments when our function returns. If we want to return a value that was originally passed
to us as an argument, we must retain it to counteract this.

KeRF> refcount: dlload("example.dylib", "show_refcount", 1);

KeRF> refcount (5)

incoming reference count: -1

outgoing reference count: 1
5

KeRF> refcount([1,2,3])

incoming reference count: 2

outgoing reference count: 3
(1, 2, 3]

KeRF> a: 4 5 6;

KeRF> refcount(a)

incoming reference count: 3

outgoing reference count: 4
(4, 5, 6]

In the first example above, the value was stack-allocated, and the call to [kerf_api_retain|copied this value
to the heap, returning a pointer to the new object. Always use the result of a call to kerf_api _retain|
instead of the original value.

69

Retaining is also important if you want to stash a value for later use

library functions which hang onto state:

. Here’s an example of some dynamic

KERF stashed_value = 0;

KERF state_init(KERF value) {
stashed_value = kerf_api_retain(value);
return O;
}
KERF state_double() {
KERF result = stashed_value;

return result;
KERF state_free(KERF value) {

kerf_api_release(stashed_value);

stashed_value = 0;

return O;

stashed_value = kerf_api_new_int((result->i) * 2);

We retain the initial value passed in, since it would otherwise be destroyed when the function returns, as in
the previous example. In subsequent calls to state_double, we can return the stashed value, relinquishing
control of it. The new value we construct each time has a reference count of 1 and can also be returned
when the time comes. Freeing our stashed state is included for completeness.

KeRF> init: dlload("example.dylib", "state_init", 1);
KeRF> step: dlload("example.dylib", "state_double", 0);
KeRF> free: dlload("example.dylib", "state_free", 0);
KeRF> init(5);
KeRF> step()

5
KeRF> step()

10
KeRF> step()

20
KeRF> free();

70

8.4 Internal Representations

To work with KERF structures, it is necessary to understand certain details of how they are represented.
The implementation of some data structures, however, is kept intentionally opaque. Even dynamic libraries
should not depend on distinguishing the internal structure of an enumeration or an index from a mixed-type
list, for example. For low-level operations, KERF structures can be directly consulted, and for operations on
higher-level datatypes the native API exposes helper functions.

8.4.1 Integers

Kerf Integers have a typecode of KERF_INT, and store their values in the i field of a KERF structure as a
signed 64-bit integer.

8.4.2 Floats

Kerf Floats have a typecode of KERF_FLOAT, and store their values in the f field of a KERF structure as an
IEEE-754 double-precision floating point number.

8.4.3 Characters

Kerf Characters have a typecode of KERF_CHAR, and store their values in the c field of a KERF structure as
UTF-8 characters.

8.4.4 Stamps

Kerf Timestamps have a typecode of KERF_STAMP, and store their values in the i field of a KERF structure
as a signed 64-bit count of nanoseconds since Unix Epoch.

8.4.5 Vectors

Vectors store their data in the g field of a KERF structure as a raw, packed array, and use the n field to indicate
the number of elements they contain. Vectors are typically slab-allocated, and may contain extra allocated
space beyond the item count given in n, but do not assume this will be the case. See kerf_api_new kerf|for
an example of how to create a vector from scratch.

71

8.5 Attribute Flags

The a field of a KERF structure is an integer which represents a vector of single-bit flag values. Each flag
attached to a value represents a boolean piece of metadata which describes properties or configuration
settings of the value. Kerf uses many attribute flags for internal bookkeeping, but a few of these flags
represent information that could be generally useful for your dynamic libraries.

To test for the presence of a flag, bitwise AND the flag constant with the a field:

int flag_is_set = ((x->a) & KERF_ATTR_Y) != 0; ‘

To set a flag, bitwise OR the flag constant into the a field:

’ (x->a) |= KERF_ATTR_Y; ‘

To clear a flag, bitwise AND the a field with the bitwise complement of the flag constant.
Think of it as “keep everything except this flag”:

’(X—>a) &= "KERF_ATTR_Y; ‘

The KERF_ATTR_SORTED flag indicates that the elements of a vector or list is sorted in ascending order. The
same information can be queried in Kerf using the built-in function.

KERF is_sorted(KERF list) {
return kerf_api_new_int((list->a & KERF_ATTR_SORTED) != 0);
}

KeRF> f: dlload("example.dylib", "is_sorted", 1);
KeRF> f(1 2 3)

1
KeRF> (3 1 2)

0

The KERF_ATTR_BYTES flag applies specifically to character vectors. If set, their contents will be pretty-printed
as a series of hexadecimal bytes with a Ox prefix instead of as characters.

KERF demo_attr_bytes_set(KERF charvec) {
charvec = kerf_api_retain(charvec);
charvec->a |= KERF_ATTR_BYTES;
return charvec;

KeRF> dlload("example.dylib", "is_sorted", 1) ("ABCDE")
0x4142434445

72

The KERF_ATTR_DISK flag indicates whether a value is located in disk-backed storage, and should be con-
sidered a read-only attribute. The same information is reflected in the is_disk column of the results from

meta tablel

KERF demo_attr_disk_get (KERF x) {
return kerf_api_new_int((list->a & KERF_ATTR_DISK) != 0);

}
KeRF> b: create_table from csv('"breakfast.bin", "breakfast.csv", "SI", 1)
Ingredient Quantity
Bacon
Egg

English Muffin
Bearnaise Sauce

= =N o

KeRF> f: dlload("example.dylib", "demo_attr_disk_get", 1);
KeRF> f b

1
KeRF> f {{foo: 1 2}}

0

73

8.6 Native API

The signatures of the following methods are described in a machine-readable form in kerf_api.h.

8.6.1 kerf_ api_append - Append to List
KERF kerf_api_append(KERF x, KERF y)
Append an object y to the list x. If the original list can be referenced from elsewhere (if it is stored in a

global, for example), you must retain it before appending. It is safe to call kerf_api_append| on a list you
construct yourself without any special work.

KERF append_demo (KERF base) {
KERF tail = kerf_api_new_int(54);
KERF list = kerf_api_append(kerf_api_retain(base), tail);
kerf_api_release(tail);
return list;

KeRF> f: dlload("example.dylib", "append_demo", 1);
KeRF> £([])

[54]
KeRF> f(1 2 3)

[1, 2, 3, 54]
KeRF> f(5)

(5, 54]
KeRF> a: 4 5 6;
KeRF> f(a)

(4, 5, 6, 54]
KeRF> a

[4, 5, 6]

Note that the value stored in the global a was not modified- we altered a copy.

8.6.2 kerf_ api_call _dyad - Call Dyad
kerf_api_call dyad(KERF func, KERF x, KERF y)

Call a dyadic (binary) function and return the result.

KERF dyad_demo(KERF dyad) {
KERF al = kerf_api_new_int(3);
KERF a2 = kerf_api_new_int(5);
KERF ret = kerf_api_call_dyad(dyad, al, a2);
kerf_api_release(al);
kerf_api_release(a2);
return ret;

KeRF> dlload("example.dylib", "dyad_demo", 1) ({[x,y] [x,y,x+y,x*xyl})
[3, 5, 8, 15]

74

8.6.3 kerf_api_call monad - Call Monad

kerf_api_call monad(KERF func, KERF x)

Call a monadic (unary) function and return the result.

KERF monad_demo (KERF monad) {
KERF arg = kerf_api_new_int(17);
KERF ret = kerf_api_call_monad(monad, arg);
kerf_api_release(arg);
return ret;

KeRF> dlload("example.dylib", "monad_demo", 1) ({[x] [x,0,2*x,x*x]})
[17, 0, 34, 289]

8.6.4 kerf_api_callnilad - Call Nilad

kerf_api_call nilad(KERF func)

Call a niladic function (one which takes no arguments) and return the result.

KERF nilad_demo (KERF nilad) {
KERF temp = kerf_api_call_nilad(nilad);
kerf_api_show(temp);
kerf_api_release(temp);
return kerf_api_call_nilad(nilad);

KeRF> a: [25]

[25]
KeRF> dlload("example.dylib", "nilad_demo", 1) ({[] al0]l+:1; [3,2,al011})
[3, 2, 26]

(3, 2, 27]

8.6.5 kerf_api_copy-on write - Copy On Write
KERF kerf_api_copy-on_write(KERF x)
If x is referenced by multiple owners or stack-allocated, make a shallow copy and return this copy. Otherwise,

it is safe to modify x in place. kerf_api_copy_on_write| may free the object passed in, so if you don’t want
the original destroyed it must be retained first.

75

8.6.6 kerf api_get - Kerf Get
KERF kerf_api_get(KERF x, KERF index)

Index into the KERF list x. Equivalent to the normal Kerf expression x [index].

KERF get_demo(KERF list, KERF index) {
KERF zero = kerf_api_new_int(0);
KERF first = kerf_api_get(list, zero);
kerf_api_show(first);
kerf_api_release(zero);
kerf_api_release(first);
return kerf_api_get(list, index);

KeRF> f: dlload("example.dylib", "get_demo", 2);
KeRF> f("ABCD", 2)

“npn
“uge
KeRF> £(1 3 7 10, 2 0 2)
1
(7, 1, 71

8.6.7 kerf api_init - Initialize the Kerf Process

int kerf_api_init()

Call this method at the beginning of any API interaction where Kerf is not the initiating process. This
will ensure Kerf is initialized. Loading Kerf as a shared object from C (or any other language) will require
If Kerf launches on its own, then it will call this function internally, but it is still good
practice to include the initialization in code loaded as dynamic libraries. There is no harm in calling the
initialization multiple times, beyond wasted effort.

76

8.6.8 kerf_api_interpret - Interpret String

KERF kerf_api_interpret (KERF charvec)

Execute a KERF_CHARVEC (string) as if via the function

KERF interpret_demo() {
KERF s1 = kerf_api_new_charvec("a: 1+2");
KERF s2 = kerf_api_new_charvec("2*range a");
KERF rl = kerf_api_interpret(sl);
KERF r2 = kerf_api_interpret(s2);
kerf_api_release(sl);
kerf_api_release(s2);
kerf_api_show(rl);
kerf_api_show(r2);
kerf_api_release(rl);
kerf_api_release(r2);

return O;
}
KeRF> dlload("example.dylib", "interpret_demo", 0) ()
3
[0, 2, 4]

8.6.9 kerf_api_len - Kerf Length

int64_t kerf_api_len(KERF x)

Determine the length of a KERF object x, as given by the function This routine is more general than
consulting the n field of a KERF structure, and will produce sensible results for non-vector types.

KERF len_demo() {

KERF string = kerf_api_new_charvec("Hello, C!");

KERF number = kerf_api_new_int(43);

KERF list = kerf_api_new_list();

printf ("%d %d %d\n",
(int)kerf_api_len(string),
(int)kerf_api_len(number),
(int)kerf_api_len(list)

)

kerf_api_release(string);

kerf_api_release(number) ;

kerf_api_release(list);

return O;

KeRF> dlload("example.dylib", "len_demo", 0) ();
910

7

8.6.10 kerf_api new_charvec - New Kerf String

KERF kerf_api new_charvec(char* cstring)

A wrapper for kerf_api_new kerf| which allocates and initializes a KERF_CHARVEC (string) from a null-
terminated C string. The supplied string will be copied into the new vector; subsequent mutations will not
propagate from one to the other.

8.6.11 kerf api new float - New Kerf Float
KERF kerf_api new_float(double n)

A wrapper for [kerf_api_new kerf| which allocates and initializes a single Kerf Float from an IEEE-754
double-precision floating point number n.

8.6.12 kerf api new_int - New Kerf Integer

KERF kerf_api new_int(int64_t n)

A wrapper for kerf_api_new kerf| which allocates and initializes a single Kerf Integer from a signed 64-bit
C integer n.

8.6.13 kerf_api new kerf - New Kerf Object
KERF kerf_api-new_kerf(char type, int64_t length)
Allocate a raw KERF structure with a given type. For scalar types like KERF_INT, length should be 0. For

vector types, length will be the number of entries the object will contain. This routine allocates space in
Kerf’s internal memory pool and initializes reference counts appropriately.

KERF intvec_demo (KERF base, KERF count) {
KERF ret = kerf_api_new_kerf (KERF_INTVEC, count->i);
for(int x = 0; x < count->i; x++) {
((int64_t*) (ret->g)) [x] = (base->i) + x;
}

return ret;

KeRF> f: dlload("example.dylib", "intvec_demo", 2);
KeRF> v: £(70000, 5)

[70000, 70001, 70002, 70003, 70004]
KeRF> kerf type_name v

"integer vector"

78

8.6.14 kerf_api new list - New Kerf List

KERF kerf_api new_1list()

Allocate an empty list. Useful in combination with kerf_api_append|

KERF list_demo() {
return kerf_api_new_list();
}

KeRF> v: dlload("example.dylib", "list_demo", 0) ()
0
KeRF> kerf type v
6
KeRF> kerf type_name v
"list"
KeRF> len v
0

8.6.15 kerf_api newmap - New Kerf Map

KERF kerf_api newmap()

Allocate an empty map.

KERF map_demo() {
return kerf_api_new_map();
}

KeRF> v: dlload("example.dylib", "map_demo", 0) ()

KeRF> kerf type v
7

KeRF> kerf type_name v
||mapll

KeRF> len v
1

79

8.6.16 kerf api new _stamp - New Kerf Timestamp

KERF kerf_api new_stamp(int64_t nanoseconds)

A wrapper for kerf_api new kerf (Dhich allocates and initializes a single Kerf Stamp from a signed 64-bit
count of nanoseconds since Unix Epoch n.

KERF stamp_demo (KERF ns) {
KERF epoch = kerf_api_new_stamp(0);
kerf_api_show(epoch) ;
kerf_api_release(epoch);
return kerf_api_new_stamp(ns->i);

}
KeRF> t: dlload("example.dylib", "stamp_demo", 1) (3000000)
00:00:00.000
00:00:00.003
KeRF> t[["year", "month", "day"]]
[1970, 1, 1]

8.6.17 kerf_api nil - Kerf Nil

KERF kerf_apinil()

Allocate an object representing nil/null.

KERF nil_demo() {
return kerf_api_nil();
}

KeRF> v: dlload("example.dylib", "nil_demo", 0)();

KeRF> kerf type v
5

KeRF> kerf_ type_name v
"null"

KeRF> len v
1

8.6.18 kerf api release - Release Kerf Reference

void kerf_api_release(KERF x)

Reduce the reference count for a KERF object. Any objects which are allocated in a dynamic library call and
not returned or otherwise stored must be manually released, or they will not be reclaimed.

8.6.19 kerf api retain - Retain Kerf Reference

KERF kerf_api_retain(KERF x)

Increase the reference count for a KERF object. This process may require making a copy of the source object.

80

8.6.20 kerf_api_set - Kerf Set
KERF kerf_api_set(KERF x, KERF index, KERF replacement)
Index into the KERF list x and replace the element with replacement, returning the modified list. Similar

to the normal Kerf expression x[index] :replacement, but incapable of spread assignment. This operation
will modify x in place.

KERF set_demo(KERF list, KERF index, KERF rep) {
return kerf_api_set(kerf_api_retain(list), index, rep);
}

KeRF> f: dlload("example.dylib", "set_demo", 3);
KeRF> (1 2 3, 1, 99)
(1, 99, 3]

8.6.21 kerf_api_show - Show Kerf Object
KERF kerf_api_show(KERF x)

Print a prettyprinted representation of a KERF structure x to stdout, as displayed by the REPL, and return
the structure unchanged. This routine primarily exists for debugging purposes.

KERF show_demo (KERF argument) {
kerf_api_show(argument) ;
KERF string = kerf_api_new_charvec("Hello, C!");
kerf_api_show(string);
kerf_api_release(string);

return O;
KeRF> dlload("example.dylib", "show_demo", 1) (1 2 3);
1, 2, 3]
"Hello, C!"

81

8.7 The Kerf IPC Protocol (KIP)

Another way for other languages to interoperate with Kerf is networked IPC. In this section we will provide
a description of this protocol sufficient for writing connectors in another language of your choice. Example
libraries in C, Python and Java are available on the Kerf website or by request, and
provides a step-by-step explanation of building such a connector. See for additional

information.

The Kerf IPC protocol (referred to hereafter as KIP for the sake of brevity) uses TCP as its transport
layer. Individual messages consist of a header followed by a payload. The header contains information about
the type of message and its size. The payload can take several forms, depending on message type. The
entire message is 0-padded to an even power of two, which helps avoid memory fragmentation in low-level
impementations of the protocol and makes a raw memcpy () of the message safe.

To execute code on a remote Kerf instance it must be started with the -p flag. Your application can then
open a TCP connection, transmit a message and wait for a response. Note that if the TCP connection is
closed before the response has been transmitted, any in-progress execution on the remote Kerf instance will
be aborted. After you receive a response you may send another message or close the connection.

The binary representation of serialized Kerf data structures is beyond the scope of this document and highly
subject to change in future revisions of the language, but it is also possible to send a payload as a UTF-8
encoded JSON string. We will describe this mode of operation in detail. Note that when transmitting JSON
data a message is restricted to roughly 4 gigabytes, but this limitation is not present for other message types.
If transmission of bulk data is a limiting factor in your application, consider using a pair of communicating
Kerf processes rather than a custom connector.

The structure and content of the header may change slightly in future versions of Kerf, so this document
will focus only on the most essential fields.

8 bits 8 bits 8 bits 8 bits
0x00 0x00 0x00 0x00
Execution Type Response Type Display Type 0x00
0x00 0x00 0x00 0x00
Wire Size
Shard Size 0x00 0x00 0xFF
0x01 0x00 0x00 0x00
Payload Size
0x00 0x00 | 0x00 0x00

KIP Header Structure

8.7.1 Execution Type

An 8-bit signed integer indicating how a message should be executed by the recipient. For our purposes, this
will always be 4, which indicates the payload is a JSON-encoded string.

8.7.2 Response Type

An 8-bit signed integer indicating the way the response should be formatted. 0 indicates no response is
desired, 1 requests the complete JSON-encoded response.

82

8.7.3 Display Type

An 8-bit signed integer indicating how the Kerf process should display incoming messages, if at all. 0
indicates nothing should be printed when a message comes in, 1 indicates the incoming message content
should be printed, 2 indicates the result of executing a message should be printed and 3 indicates that both
should be printed. 3 is useful for debugging, but 0 or 1 may be most desirable in real applications.

8.7.4 Wire Size

A 32-bit unsigned integer in network byte order (big-endian) indicating the size, in bytes, of the payload
plus 16. Note that this value is precisely the same as pow(2, shard size).

8.7.5 Shard Size
An 8-bit signed integer indicating the logs of the length of the payload in bytes plus 16.

8.7.6 Payload Size

A 32-bit unsigned integer in native byte order (little-endian) indicating the size, in bytes, of the payload.
The wire size will always exceed this size, and after the header and payload the remainder of a message will
be 0-padded.

83

9 Built-In Function Reference

9.1 abs - Absolute Value

abs (x)

Calculate the absolute value of x. Atomic.

KeRF> abs -4 7 -2.19 NaN
[4, 7, 2.19, nan]

9.2 acos - Arc Cosine

acos(x)

Calculate the arc cosine (inverse cosine) of x, expressed in radians, within the interval [-1,1]. Atomic. The
results of acos will always be floating point values.

KeRF> acos 0.5 -0.2 1
[1.0472, 1.77215, 0]

KeRF> cos(acos 0.5 -0.2 1 4)
[0.5, -0.2, 1, nan]

9.3 add - Add
add(x, y)

Calculate the sum of x and y. Fully atomic.

KeRF> add(3, 5)
8

KeRF> add(3, 9 15 -7)
[12, 18, -4]

KeRF> add(9 15 -7, 3)
[12, 18, -4]

KeRF> add(9 15 -7, 1 3 5)
[10, 18, -2]

The symbol + is equivalent to when used as a binary operator:

KeRF> 2 4 3+9
[11, 13, 12]

9.4 and - Logical AND
and(x, y)

Calculate the logical AND of x and y. This operation is equivalent to the function Fully atomic.

KeRF> and(1 1 0 0, 1 0 1 0)
[1, 0, 0, 0]

KeRF> and(1 2 3 4, 0 -4 9 0)
[0, -4, 3, 0]

84

The symbol & is equivalent to when used as a binary operator:

KeRF> 1 1 00 & 1010
(1, 0, 0, 0]

9.5 append table from csv - Append Table From CSV File

append_table_from csv(tableFile, csvFile, fields, n)

Equivalent to [create_table_from_csv| which appends to any pre-existing file instead of overwriting.

9.6 append table from fixed file - Append Table From Fixed-Width File

append_table from fixed_file(tableFile, fixedFile, attributes)

Equivalent to|create_table from fixed file|which appends to any pre-existing file instead of overwriting.

9.7 append table from psv - Append Table From PSV File

append_table_from psv(tableFile, psvFile, fields, n)

Equivalent to [create_table_from psv| which appends to any pre-existing file instead of overwriting.

9.8 append table from tsv - Append Table From TSV File

append_table_from tsv(tableFile, tsvFile, fields, n)

Equivalent to [create_table_from_tsv| which appends to any pre-existing file instead of overwriting.

9.9 ascend - Ascending Indices

ascend(x)

For a list x, generate a list of indices into x in ascending order of the values of x.

KeRF> t:5 2 3 1
(5, 2, 3, 1]

KeRF> ascend t
(3, 1, 2, 0]

KeRF> t[ascend t]
[1, 2, 3, 5]

Strings are sorted in lexicographic order:

KeRF> ascend ["Orange","Apple","Pear","Aardvark","A"]
(4, 3, 1, 0, 2]

When applied to a map, will sort the keys by their values and produce a list:

KeRF> ascend {"A":2, "B":9, "C":0}
[ncu "A" "B”]

85

The symbol < is equivalent to when used as a unary operator:

KeRF> <5 2 3 1
(3, 1, 2, 0]

9.10 asin - Arc Sine

asin(x)

Calculate the arc sine (inverse sine) of x, expressed in radians, within the interval [-1,1]. Atomic. The results
of will always be floating point values.

KeRF> asin 0.5 -0.2 1
[0.523599, -0.201358, 1.5708]

KeRF> sin(asin 0.5 -0.2 1 4)
[0.5, -0.2, 1, nan]

9.11 asof_join - Asof Join

asof_join(x, y, k1, k2)

Perform a “fuzzy” [left_join| See|Joins|

9.12 atan - Arc Tangent

atan(x)

Calculate the arc tangent (inverse tangent) of x, expressed in radians. Atomic. The results of will
always be floating point values.

KeRF> atan 0.5 -0.2 1 4

[0.463648, -0.197396, 0.785398, 1.32582]
KeRF> tan(atan 0.5 -0.2 1 4)

(0.5, -0.2, 1, 4]

9.13 atlas - Atlas Of

atlas(map)

Create an atlas from a map or list of maps. An atlas is the schemaless NoSQL equivalent of a table. This
gives tables in Kerf the option of being unstructured, or schema-less, for dealing with highly irregular data.
Atlases are automatically indexed in such a way that all key-queries are indexed. Atlases allow for NoSQL
queries.

KeRF> atlas({name: ["bob", "alice", "oscar"l, id:[123, 421, 233]})
atlas[{name: ["bob", "alice", "oscar"], id:[123, 421, 233]}]

86

9.14 atom - Is Atom?

atom(x)

A predicate which returns 0 if x is a list or vector, and 1 if x is a non-list (atomic) value.

KeRF> atom ~"A"

1

KeRF> atom "A String"
0

KeRF> atom 37
1

KeRF> atom -0.2
1

KeRF> atom 2015.03.31
1

KeRF> atom null
1

KeRF> atom [2, 5, 16]
0

KeRF> atom {a: 45, b: 76}
1

9.15 avg - Average
avg (x)

Calculate the arithmetic mean of the elements of a list x. Equivalent to (sum| x) X.

KeRF> avg 3 7 12.5 9
7.875

87

9.16 bars - Time Bars, Sample Buckets, etc.

bars(x, y)

Round the elements of a list y to multiples of x. Particularly useful in the context of “time bucketing”
sample data. Equivalent to x * y/x.

KeRF> bars(2, [1, 1.2, 1.4, 2, 2.5, 3, 3.1, 5])
[0, 0, 0, 2, 2, 2, 2, 4]

KeRF> t: [1:02, 1:03, 1:14, 1:15, 1:35];

KeRF> bars (15, t[’minute’])
(o, 0, 0, 15, 30]

The bars function is also defined for simple relative date-times when used on timestamps for generating bars
on tables that are across time boundaries. This is generally faster and more convenient than the equivalent
multiple “group by” statement on multiple clocks.

KeRF> ts: {{value:range(10),time: 1999.01.01 + 1i * mapright range(10)}}

value|time

1999.01.01
1999.01.01T00:01:00.000
1999.01.01T00:02:00.000
1999.01.01T00:03:00.000
1999.01.01T00:04:00.000
1999.01.01T00:05:00.000

g W N = O

KeRF> select avg(value) from ts group by bars(2i,time)

time value

1999.01.01 0.5
1999.01.01T00:02:00.000 2.5
1999.01.01T00:04:00.000 4.5

When using bars with relative date-times, it may be useful to define a starting point as an optional third
argument.

KeRF> select avg(value) from ts group by bars(2i,time,1999.01.01T00:01:00)

time value

1998.12.31T23:59:00.000
1999.01.01T00:01:00.000
1999.01.01T00:03:00.000
1999.01.01T00:05:00.000
1999.01.01T00:07:00.000
1999.01.01T00:09:00.000

© N 0w~ O
O o1 o o o O

88

9.17 between - Between?

between(x, y)

Predicate which returns 1 if x is between the first two elements of the list y. Equivalent to (x >= y[0]) &
(x <= y[1D).

KeRF> between(2 5 17, 3 10)
[0, 1, 0]

Be careful- will always fail if y is not a list or does not have the correct length:

KeRF> between(2 5 17, 3)

[0, 0, 0]
KeRF> 3[1]
NAN

9.18 btree - BTree

btree(x)

Equivalent to

9.19 bucketed - Bucket Values

bucketed(x, y)

Equivalent to FToo] y) o+ x / fEoud y.

9.20 car - Contents of Address Register

car (x)

Select the first element of the list x. Atomic types are unaffected by this operation. Equivalent to [first
is a reference to the Lisp primitive of the same name, which selected the first element of a pair. See

KeRF> car 32 83 90
32

KeRF> car 409
409

KeRF> nil = car []
1

9.21 cdr - Contents of Decrement Register
cdr (x)
Select all the elements of the list x except for the first. Atomic types are unaffected by this operation.

Equivalent to [drop|(1, x). is a reference to the Lisp primitive of the same name, which selected the
second element of a pair. See

89

KeRF> cdr 32 83 90
[83, 90]

KeRF> cdr 409
409

9.22 ceil - Ceiling

ceil(x)

Compute the smallest integer following a number x. Atomic.

KeRF> ceil -3.2 0.4 0.9 1.1
[-3, 1, 1, 2]

Taking the ceiling of a string or char converts it to uppercase:

KeRF> ceil "Hello, World!"
"HELLO, WORLD'"

9.23 char - Cast to Char

char (x)

Cast a number or list x to a char or string, respectively. To reverse this operation, use

KeRF> char 65
~ IIAH

KeRF> char 66.7
~ IIBH

KeRF> char 72 101 108 108 111 44 32 75 101 82 70 33
"Hello, KeRF!"

9.24 checksum - Object Hashcode

checksum(x)

Produce an integer hashcode for any Kerf object x. The precise algorithm used by checksum is not specified
and may change, but results will be consistent across runs and any two objects for which produces 1
will have the same hashcode.

KeRF> checksum 1 2 3
-7744665892335545863

KeRF> checksum 5
1200461294887951755

9.25 close_socket - Close Socket

close_socket (handle)

Given a socket handle as obtained with close the connection. See|[Network 1/0|

90

9.26 combinations - Combinations

combinations(x, n)
combinations(x, n, repeats)

Produce a list of all the distinct subsets of x which contain n elements. Normally this will operate on the
unique elements of x, but if repeats is truthy all elements will be preserved:

KeRF> combinations(6 7 8, 2)
[[6, 71,
(6, 81,
(7, 8]]

KeRF> combinations(3 5 5 7, 3)
[[3, 5, 71]

KeRF> combinations(3 5 5 7, 3, 1)
[[3, 5, 51,
(3, 5, 71,
(3, 5, 71,
(5, 5, 711

If x is a map, operate on its keys:

KeRF> combinations({foo: 1, bar: 2, quux: 3}, 2)
[[Hfooll’ llbarﬂ:l s
[”fOO", "qqu"] s
["bar" s nqqun]]

9.27 compressed - Compressed Vector Of

compressed (x)
compressed(x, type)

Create a zip, or compressed vector, from a vector x. Compressed vectors consume less memory at runtime,
and if serialized to disk will consume less disk space. Precise savings will be data-dependent. Otherwise, they
may be treated like an ordinary vector. Note that it is invalid to apply to a non-vectorizable
object.

KeRF> compressed 1 2 3
COMPRESSED[1, 2, 3]

KeRF> compressed [12:00, 11:58]
COMPRESSED[12:00:00.000, 11:58:00.000]

If is provided with a second character argument, type, you can specify a variety of specialized
compressed vector types using typecodes as described for [Delimited File 10] These specialized types can
save additional space by reducing the number of bytes used to represent numbers, at the cost of some
precision. Presently all compressed vectors use LZ4 compression for its favorable balance of speed and
compression ratio. In the future additional algorithms may be available via typecodes which are better
suited to specific types of data.

91

9.28 cos - Cosine

cos (%)

Calculate the cosine of x, expressed in radians. Atomic. The results of will always be floating point
values.

KeRF> cos 3.14159 1 -20
[-1, 0.540302, 0.408082]
KeRF> acos cos 3.14159 1 -20
[3.14159, 1, 1.15044]

9.29 cosh - Hyperbolic Cosine

cosh(x)

Calculate the hyperbolic cosine of x, expressed in radians. Atomic. The results of will always be
floating point values.

KeRF> cosh 3.14159 1 -20
[11.5919, 1.54308, 2.42583e+08]

9.30 count - Count

count (x)
Equivalent to

9.31 count_nonnull - Count Non-Nulls

count_nonnull (x)

Determine the number of elements in x which are not null. Equivalent to X.

KeRF> count nonnull 1 2 3
3

KeRF> count nonnull [nan, null, 45]
1

9.32 count_null - Count Nulls

count_null (x)

Determine the number of elements in x which are null. Equivalent to X.

KeRF> count null 1 2 3
0

KeRF> count null [nan, null, 45]
2

92

9.33 create_table_from csv - Create Table From CSV File

create_table_from_csv(tableFile, csvFile, fields, n)

Load a Comma-Separated Value file and create a table which is serialized on disk. If the table file already
exists, this operation will overwrite. tableFile and csvFile are filenames on disk. fields is a string which
indicates the expected datatype of each column in the CSV file- see [read_table from delimited file| for
the supported column types and their symbols. n indicates how many rows of the file are treated as column

headers- generally 0 or 1. See

9.34 create_table from fixed file - Create Table From Fixed-Width File
create_table_from_fixed file(tableFile, fixedFile, attributes)
Load a file with fixed-width columns and create a table which is serialized on disk. If the table file already

exists, this operation will overwrite. tableFile and fixedFile are filenames on disk. attributes is a map
specifying the format of the fixed-width file, as in [read_table from fixed file|l See[Striped Files|

9.35 create table from psv - Create Table From PSV File

create_table _from psv(tableFile, psvFile, fields, n)

Equivalent to|create_table_from csv|which processes pipe-delimited fields (|) instead of comma-delimited
fields.

9.36 create_table from tsv - Create Table From TSV File

create_table_from_tsv(tableFile, tsvFile, fields, n)

Equivalent to[create_table_from_csv]which processes tab-delimited fields instead of comma-delimited fields.

93

9.37 cross - Cartesian Product

cross(x, y)

Pair up each element of x with each element of y. If x or y is a map, use the values:

KeRF> cross(b, 3 4 6)
[[5, 3],
(5, 4],
(5, 611
KeRF> cross(1 2 3, 4 5)
[[1, 4],
(1, 51,
[2, 4],
[2, 5],
[3, 4],
[3, 511
KeRF> cross(1l 2 3, {a:4, b:5})
[[1, 4],
(1, 5],
[2, 47,
(2, 51,
(3, 41,
[3, 511

9.38 deal - Deal

deal (count)
deal (count, x)

Select count random elements from the list x without repeats.

KeRF> deal(5, 21 31 41 51 61 71 81)
[81, 21, 61, 51, 41]

KeRF> deal(4, "ABCD")
"CDBA"

If x is a map or table, select keys.

KeRF> deal(3, {a: 99, b: 22, c: 41, d: 55})
["d" nau ubu]

KeRF> deal(2, {{a: 99 98, b: 21 22, c: 33 34}})
[”C" ”b"]

If x is a number, select from [range|(x):

KeRF> deal (10, 10)

(7, 4, 0, 2, 9, 8, 1, 6, 3, 5]
KeRF> deal(5, 5.0)

[2, 3, 1, 0, 4]

When x is omitted, the of count is used as the list.

KeRF> deal(3)
[0, 2, 1]

94

9.39 delete keys - Delete Keys

delete keys(x, y)

Remove elements from a list x at a specified index or indices y. All the supplied indices must fall within the
dimensions of the original list.

KeRF> "ABCDEF" delete_keys 2
"ABDEF"

KeRF> "ABCDEF" delete_keys 2 4
"ABDF"

If x is a map or table, remove a set of entries with keys y:

KeRF> delete_keys({a:4, b:9, c:1}, ["c¢", "a", "c", "f"])

{p:9}

KeRF> delete_keys({{a:4, b:9, c:1}}, ["c", "a", "c", "£"])

9.40 descend - Descending Indices

descend (x)

For a list x, generate a list of indices into x in descending order of the values of x.

KeRF> t:5 2 3 1
(5, 2, 3, 1]

KeRF> descend t
[0, 2, 1, 3]

KeRF> t[descend t]
[5, 3, 2, 1]

Strings are sorted in lexicographic order:

KeRF> descend ["Orange","Apple","Pear","Aardvark","A"]
[2, 0, 1, 3, 4]

When applied to a map, will sort the keys by their values and produce a list:

KeRF> ascend {”A”:Q, "B":9, "C":0}
[”B" Lyl ucn:l

The symbol > is equivalent to when used as a unary operator:

KeRF> >5 2 3 1
(0, 2, 1, 3]

95

9.41 dir 1s - Directory Listing

dir_1s(path)
dir_1s(path, full)

List the files and directories at a filesystem path. If full is provided and truthy, list complete paths to the
elements of the directory. Otherwise, list only the base names. See

9.42 display - Display
display(x)

Print a display representation of data to standard output. See [General I/O)|

9.43 distinct - Distinct Values

distinct (x)

Select the first instance of each item in a list x. Atomic types are unaffected by this operation.

KeRF> distinct "BANANA"
||BANII

KeRF> distinct 2 3 3 53 4 5
(2, 3, 5, 4]

The symbol % is equivalent to[distinct| when used as a unary operator:

KeRF> 7,"BANANA"
||BANII

9.44 divide - Divide

divide(x, y)

Divide x by y. Fully atomic. The results of will always be floating point values.

KeRF> divide(3, 5)
0.6
KeRF> divide(-1, 0)
-inf
KeRF> divide(3, 2 4 5 0)
[1.5, 0.75, 0.6, inf]
KeRF> divide(1 3 4 0, 9)
[0.111111, 0.333333, 0.444444, 0.0]
KeRF> divide(10 5 3, 7 9 3)
[1.42857, 0.555556, 1.0]

The symbol / is equivalent to when used as a binary operator:

KeRF> 10 53 / 7 9 3
[1.42857, 0.555556, 1.0]

96

9.45 dlload - Dynamic Library Load

dlload(filename, function, argcount)
Load a dynamic library function and return a Kerf function which can be invoked to call into it. filename

is the name of the library, function is the name of the function and argcount is the number of arguments
the function takes. The current implementation of permits a maximum argcount of 8.

Let’s look at a very simple C function which can be called from Kerf:

#include <stdio.h>
#include "kerf_api.h"

KERF foreign_function_example(KERF argument) {
int64_t value = argument->i;
printf("Hello from C! You gave me a %d.\n", (int)value);
return O;

KeRF> f: dlload("example.dylib", "foreign_ function_example", 1)
{OBJECT:foreign_function_example}

KeRF> f(42)

Hello from C! You gave me a 42.

For more information about writing dynamic libraries for use in Kerf, see [FF1]

9.46 dotp - Dot Product
dotp(x, y)

Calculate the dot product (or scalar product) of the vectors x and y. Equivalent to XXY.

KeRF> dotp(1 2 3, 1 2 5)
20

9.47 drop - Drop Elements

drop(count, x)

Remove count elements from the beginning of the list x. Atomic types are unaffected by this operation.

KeRF> drop(3, "My Hero")

"Hero"

KeRF> drop(5, 9 2 0)
(]

KeRF> drop(3, 5)
5

The symbol _ is equivalent to when used as a binary operator:

KeRF> 3 _ "My Hero"
||Hero n

97

9.48 emu_debug mode - Toggle Bytecode Debugger

emu_debug_mode (x)

If x is truthy, enable the bytecode debugger. Otherwise, disable it. The bytecode debugger displays infor-
mation about each bytecode as it is executed by Kerf’s inner interpreter. This feature only works on debug
builds of Kerf and will otherwise have no effect. The details of the information exposed by this feature are
subject to change and beyond the scope of this document.

KeRF> emu_debug_mode 1

[DEBUG] puts.c:30: ======frame top =========

Stack 7 (t:2 n:1): 1

Stack 6 (t:2 n:0): 0

Stack 5 (t:2 n:0): O

Stack 4 (£:2 n:0): 0

Stack 3 (t:2 n:0): 0

Stack 2 (t:0 n:72354530896904192): [$1].Net.client: $1
Stack 1 (£:2 n:0): 0

Stack 0 (t:2 n:0): 0

[DEBUG] puts.c:36: ======stack bottom=========

Stack: framept: 8, framebot: 8
Execute instruction: 20

9.49 enlist - Enlist Element

enlist(x)

Wrap any element x in a list.

KeRF> enlist "A"
["a"]

KeRF> enlist 22 33
[[22, 33]]

9.50 enum - Enumeration

enum (x)

Equivalent to hashed

9.51 enumerate - Enumerate Items

enumerate (x)

If x is a number, generate a range of integers from 0 up to but not including x. Equivalent to til.

KeRF> enumerate 0O

INT[]
KeRF> enumerate 3
[0, 1, 2]

KeRF> enumerate 5.3
(o, 1, 2, 3, 4]

98

If x is a map, extract its keys.

KeRF> enumerate b:43, a:999
["b" nau]

If x is a list, generate the Cartesian Product over the ranges of each element of x. This operation is sometimes
called odometer, for the way the resulting lists resemble the rolling digits of a car’s odometer.

KeRF> enumerate 2 3
([0, 0],
(o, 11,
(o, 21,
(1, o],
(1, 171,
(1, 211
KeRF> enumerate 2 2 2
(fo, o, o,
[0, 0, 11,
(o, 1, 07,
(o, 1, 11,
(1, 0, 0],
(1, 0, 11,
(1, 1, 0],
(1, 1, 111

The symbol ~ is equivalent to when used as a unary operator:

KeRF> "9
(0, 1, 2,3, 4,5,6,7, 8]

9.52 equal - Equal?

equal(x, y)

A predicate which returns 1 if x is equal to y. Equivalent to Fully atomic.

KeRF> equal (5, 13)
0
KeRF> equal(5, 5 13)
(1, 0]
KeRF> equal(5 13, 5 13)
[1, 1]
KeRF> equal(.1, .100000000000001)
0
KeRF> equal (nan, nan)
1

The symbols = and == are equivalent to when used as binary operators:

KeRF> 3 == 1 3 5
[0, 1, 0]

99

9.53 equals - Equals?
equals(x, y)

Equivalent to

9.54 erf - Error Function
erf (x)

Compute the Gauss error function of x. Atomic.

KeRF> erf -6 -.2 0 .2 .3 12
[-0.5205, -0.222703, 0, 0.222703, 0.328627, 0.842701, 0.995322]

9.55 erfc - Complementary Error Function

erfc(x)

Compute the complementary Gauss error function of x. Equivalent to 1 - [erf|(x). Atomic.

KeRF> erfc -.5 -.2 0 .2 .31 2
[1.5205, 1.2227, 1, 0.777297, 0.671373, 0.157299, 0.00467773]

9.56 eval - Evaluate

eval (x)

Evaluate a string x as a Kerf expression. Atomic down to strings.

KeRF> a

KeRF> eval (["2+43", "a: 24", "a: 999"])
[5, 24, 999]

KeRF> a
999

9.57 except - Except

except(x, y)

Remove all the elements of y from x. Equivalent to x x y].

KeRF> except ("ABCDDBEFB", "ADF")
"BCBEB"

If x is atomic, the result will be enclosed in a list:

KeRF> except(2, 3 4)
(2]

100

9.58 exit - Exit

exit ()
exit(code)

Exit the Kerf interpreter. If a number is provided, use it as an exit code.
Otherwise, exit with code 0 (successful).

KeRF> exit (1)

9.59 exp - Natural Exponential Function

exp (x)
exp(x, y)

Calculate e*, the natural exponential function. If y is provided, calculate z¥. Fully atomic.

KeRF> exp 1 2 5

[2.71828, 7.38906, 148.413]
KeRF> exp(2, 0 1 2)

[1, 2, 4.0]

The symbol ** is equivalent to

KeRF> #*1 2 5

[2.71828, 7.38906, 148.413]
KeRF> 2%x0 1 2

[1, 2, 4.0]

9.60 explode - Explode

explode (key, x)

Violently and suddenly split the list x at instances of key. To reverse this process, use

KeRF> explode("e", "A dream deferred")
[llA dr", "am d”, nfn’ III.I.II, ”d”]
KeRF> explode(0, 1 1 2 0 2 0 5)
(fL, 1, 21, (21, [&]]

explode| does not search for subsequences.

Splitting on a 1-length string is not the same as splitting on a character:

KeRF> explode("rat", "drat, that rat went splat.")
["drat, that rat went splat."]

KeRF> explode("e", "A dream deferred")
["A dream deferred"]

101

9.61 extract - Extract From Table

extract (x)

Isolate simple vector or scalar values from a table. is mainly intended for unpacking the results
from [SELECT]| queries. If the table has a single row and a single column, will retrieve a scalar value.
A single row and multiple columns naturally becomes a list:

KeRF> extract SELECT a FROM {{a:55, b:27}}
55

KeRF> extract SELECT a,b FROM {{a:55, b:27}}
[55, 27]

A single column and multiple rows (or no rows) will be unpacked into a vector:

KeRF> extract SELECT a FROM {{a:55 67, b:27 99}}
[55, 67]

KeRF> extract SELECT a FROM {{a:55 67, b:27 99}} WHERE a=0
INT (]

In other cases, is roughly equivalent to

KeRF> extract {{a:1 2, b:3 4}}
(l1, 21, [3, 4]1]

KeRF> xvals {{a:1 2, b:3 4}}
(f1, 21, [3, 4]1]

9.62 filter - Filter

filter(f, x)

Apply a predicate f to each element of x, and return a list of elements where £ produces a truthy value:

KeRF> (not isnull) filter [3, null, 27, nil, 39]
(3, 27, 39]

KeRF> {[x] x > 100} filter 20 19 130 5 -2 200 119
[130, 200, 119]

KeRF> {[x] len(x) = 4} filter ["apple","pear",'"knife","lock","spider"]
[npearu’ ”lOCk”]

If x is a map, will operate on the values of x and produce a map result:

KeRF> filter(isnull, {a:23,b:null,c:22,e:null})
{b:null, e:null}

KeRF> {[x] len(x) > 1} filter {foo:1 2 3, bar:4, quux:5 6}
{foo:[1, 2, 3], quux:[5, 6]}

For tables, prefer using SQL syntax and the more convenient WHERE clause.

102

9.63 first - First

first(x)
first(x, y)

When provided with a single argument, select the first element of the list x. Atomic types are unaffected by
this operation.

KeRF> first(43 812 99 23)
43

KeRF> first(99)
99

When provided with two arguments, select the first x elements of y, repeating elements of y as necessary.

Equivalent to

KeRF> first(2, 43 812 99 23)
[43, 812]
KeRF> first(8, 43 812 99 23)
[43, 812, 99, 23, 43, 812, 99, 23]

9.64 flatten - Flatten

flatten(x)

Concatenate the elements of the list x. To join elements with a delimiter, use

KeRF> flatten(["foo", "bar", "quux"])
"foobarquux"

KeRF> flatten([2 3 4, 9 7 8, 14])
(2, 3, 4, 9, 7, 8, 14]

Note that only removes one level of nesting. To completely flatten an arbitrarily nested structure,
combine it with

KeRF> n: [[1,2],[3,4],[5,[6,7]11];
KeRF> flatten n

[1, 2, 3, 4, 5, [6, 71]
KeRF> flatten converge n

(1, 2, 3, 4, 5, 6, 7]

9.65 float - Cast to Float
float(x)

Cast x to a float. Atomic.

KeRF> float O 7 15
[0, 7, 15.0]

When applied to a string, parse it into a number:

KeRF> float "97"
97.0

103

9.66 floor - Floor

floor(x)

Compute the largest integer preceding a number x. Atomic.

KeRF> floor -3.2 0.4 0.9 1.1

(-4, 0, 0, 1]
KeRF> int -3.2 0.4 0.9 1.1
[-3, 0, 0, 1]

Taking the floor of a string or char converts it to lowercase:

KeRF> floor "Hello, World!"
"hello, world!"

The symbol _ is equivalent to when used as a unary operator:

KeRF> _ 37.9 14.2
[37, 14]

9.67 format - Format String

format(x, y)

Convert the elements of a list y into a single formatted string based on the string x. [Format] provides a subset
of the functionality of the ubiquitous C printf function, with some Kerf-specific convenience features.

A format string contains one or more format sequences. Each format sequence corresponds sequentially to
one of the elements of y. Format sequences begin with the character % and end with a format character
which specifies how to interpret the argument. The special combination %% produces a literal %, character in
output, and all characters outside format sequences will likewise be preserved as-is.

Between the % and the format character there may optionally be a width and/or precision, separated by a
decimal point. The interpretation of each of these arguments depends on the format character. If the format
character were X, the following would be valid format sequences:

%X
%12X

% .5X
%12.5%

104

Character | Behavior

% Literal character %. This sequence does not consume an argument.

S Format the argument as a string. Non-string arguments will be converted
to strings as by the primitive Results will be padded by preceding
spaces if less than width characters long when specified. precision is
ignored.

d Format the argument as a decimal (integer) number. Floating point
numbers will be truncated. Results will be padded by preceding spaces
if less than width characters long when specified. Numeric results will
be padded with preceding zeroes if less than precision digits long when
specified.

f Format the argument as a float. Results will be padded by preceding
spaces if less than width characters long when specified. Numeric results
will be shown with precision decimal places when specified.

Format Characters

Let’s look at a few examples:

KeRF> "Us %d %% %f " format ["text", 5, 7.8]
"text 5 % 7.800000"

KeRF> "%s | %s | [%5s]" format ["foo", 1 2 3, "abc"]
"foo | [1, 2, 3] | [abcl"

KeRF> "[%f] [%.2f] [%6.2f]1" format take(3, 1.23456)
"[1.234560] [1.23] [1.23]"

KeRF> "[%d] [%6d] [%.8d] [%6.4d]" format take(4, 123)
"[123] [123] [00000123] [0123]"

9.68 format_stamp - Format Timestamp

format_stamp(x, y)

Convert a timestamp y into a string representation based on the string x. Right-atomic. The format string x
builds on the the capabilities of the standard C strftime function, adding support for display of milliseconds
or nanoseconds. To turn a formatted string back into a Kerf timestamp, see

As in a format string contains one or more format sequences. Each format sequence corresponds
sequentially to one of the elements of y. Format sequences begin with the character % and end with a format
character which specifies how to interpret the argument. All characters outside format sequences will be
preserved as-is.

KeRF> out "%t%D %T.%q" format_stamp now()
04/29/16 18:18:10.316715000
KeRF> "Thank god it’s %A!" format_stamp now()
"Thank god it’s Friday!"

105

Character

NN K< X S <Ce @ Ooen 28 E8 =IO Qe "o JaQo Wo » e X

Behavior

Literal character %.

Abbreviated weekday name

Full weekday name

Abbreviated month name

Full month name

Alias for %a %b %d %T %Y

Year divided by 100 and truncated to integer (00-99)
Day of the month, zero-padded (01-31)
Alias for %m/%d/%y

Day of the month, space-padded (1-31)
Alias for %Y-%m-%d
Week-based year, last two digits (00-99)
Week-based year

Alias for %b

Hour in 24h format (00-23)

Hour in 12h format (01-12)

Day of the year (001-366)

Month as a decimal number (01-12)
Minute (00-59)

Literal newline character

Decimal nanoseconds (Kerf-specific)
AM or PM designation

Decimal milliseconds (Kerf-specific)
Decimal microseconds (Kerf-specific)
Alias for %I:7%M:%S %p"

Alias for 7%H: %M

Second (00-61)

Literal tab character

Alias for %H:%M:%S (ISO 8601 time)
ISO 8601 weekday as number with Monday as 1 (1-7)
Week number from Sunday (00-53)

ISO 8601 week number (00-53)
Weekday as a decimal number from Sunday (0-6)
Week number from Monday (00-53)
Alias for %D

Alias for %T

Year, last two digits (00-99)

Year

ISO 8601 offset from UTC in timezone
Abbreviated timezone name, if any

Example

b

Fri

Friday

Apr

April

Fri Apr 29 16:23:24 2016
20

29
04/29/16
29
2016-04-29
16

2016

Apr

16

04

120

04

23

997456000
PM

997

997456
04:23:24 PM
16:23

24

16:23:24
5

17

17

5

17
04/29/16
16:23:24
16

2016
-0700
UTC

Timestamp Format Characters

106

9.69 greater - Greater Than?

greater(x, y)

A predicate which returns 1 if x is greater than y. Fully atomic.

KeRF> greater(l 2 3, 2)

[0, 0, 1]

KeRF> greater([5], [[1, [3], [2 91D)
(o, 1, 0]

KeRF> greater("apple", ["a", "aa", "banana"])
(1, 1, 0]

The symbol > is equivalent to when used as a binary operator:

KeRF> 3 4 7 > 190
(1, 0, 1]

9.70 greatereq - Greater or Equal?

greatereq(x, y)

A predicate which returns 1 if x is greater than or equal to y. Fully atomic.

KeRF> greatereq(l 2 3, 2)
(o, 1, 1]

The symbol >= is equivalent to when used as a binary operator:

KeRF> 3 4 57 > 1950
(1, 0, 1, 1]

9.71 has_column - Table Has Column?

has_column(table, key)

A predicate which returns 1 if table has a column with the key key.

KeRF> has_column({{a: 1 2 3; b: 4 2 1}}, "a")
1

KeRF> has_column({{a: 1 2 3; b: 4 2 1}}, "fictional")
0

107

9.72 has key - Has Key?
has key(x, key)

A predicate which returns 1 if a map x contains the key key.

KeRF> m: {alphonse: 1, betty: 3, oscar: 99};
KeRF> has_key(m, "alphonse")

1
KeRF> has_key(m, "alphys")

0

If x is a list, return 1 if key is a valid index into x:

KeRF> 1: 45 99 10 15;
KeRF> has_key(1l, -1)
0
KeRF> has_key(1l, 2)
1
KeRF> has_key(1l, 2.2)
1
KeRF> 1[2.2]
10
KeRF> 1[-1]
NAN

If x is a table, equivalent to [has_column|(x, key).

9.73 hash - Hash

hash (x)

Equivalent to hashed

9.74 hashed - Hashed
hashed (x)

Create a list containing the elements of x, with hashmap-backed local interning. Interning will minimize the
storage consumed by values which occur frequently and permit much more efficient sorting.

KeRF> data: rand(10000, ["apple", "pear", "banana'l);
KeRF> write_to_path("a.data", data);
KeRF> write_to_path("b.data", #data);
KeRF> shell "wc -c a.data'
[" 1048576 a.data"]
KeRF> shell "wc -c b.data"
[" 262144 b.data"]

The symbol # is equivalent to when used as a unary operator:

KeRF> #["a", "b", "a"]
[uan R ||b|| R ||a||]

108

9.75 help - Help Tool
help(x)

Query the global table. Calling with an empty string lists the help subjects. Calling with a subject
or entry will provide a table describing usage.

9.76 ident - Identity

ident (x)

Unary identity function. Returns x unchanged.

KeRF> ident 42
42

The symbol : is equivalent to when used as a unary operator:

KeRF> :42
42

9.77 ifnull - If Null?
ifnull (x)

Equivalent to

9.78 implode - Implode

implode (key, x)

Violently and suddenly join the elements of the list x intercalated with key. To reverse this process, use

KeRF> implode("_and_", ["BIFF", "BOOM", "POW"])
"BIFF_and_BOOM_and_PQW"

KeRF> implode(23, 10 4 3 15)
(10, 23, 4, 23, 3, 23, 15]

9.79 in - In?

in(key, x)

A predicate which returns 1 if each key is an element of x. Atomic over key.

KeRF> in(3, 8 7 3 2)
(1]

KeRF> in(3 4, 8 7 3 2)
[1, 0]

KeRF> in("a", "cassiopeia')
(1]

109

9.80 index - Index

index(x)

Equivalent to

9.81 indexed - Indexed

indexed(x)

Create an indexed version of a list x. This constructs an associated B-Tree, permitting faster searches and
range queries. Do not use[indexed)if you know the list must always be ascending. The command
can be used to determine whether Kerf thinks a list is already sorted. Indexed columns in tables can help
with performance if the column is time oriented, or a float/int which is often used as a query key. Indexes
incur memory overhead, so prefer a on a primary column.

KeRF> indexed 3 7 0 5 2
=[3, 7, 0, 5, 2]

The symbol = is equivalent to when used as a unary operator:

KeRF> =3 2
=[3, 2]

9.82 int - Cast to Int

int (%)

Cast x to an int, truncating. Atomic.

KeRF> int 33.6 -12.5 4 nan
[33, -12, 4, NAN]

KeRF> floor 33.6 -12.5 4 nan
[33, -13, 4, NAN]

When applied to a character or string, produce character codes. To reverse this operation, use If you
want the numeric equivalent of a string, see

KeRF> int A

65
KeRF> int "100"
[49, 48, 48]

KeRF> int "Hello, Kerf!"
[72, 101, 108, 108, 111, 44, 32, 75, 101, 114, 102, 33]

9.83 intersect - Set Intersection

intersect(x, y)

Find unique items contained in both x and y. Equivalent to[distinct|(x) [which| [distinct|(x) yl.

110

KeRF> intersect(4, 4 5 6)

[4]

KeRF> intersect(3 4, 1 2 3 4 5 6)
[3, 4]

KeRF> intersect("ABD'", "BCBD")
||BD||

9.84 isnull - Is Null?

isnull(x)

A predicate which returns 1 if x is null. Atomic.

KeRF> isnull([(), nan, 2, -3.7, [, {a:5}])
(1, 1, 0, 0, [1, {a:0}]

9.85 join - Join
join(x, y)

Form a list by catenating x and y.

KeRF> join(1, 2)
[1, 2]
KeRF> join(2, 3 4)
[2, 3, 4]
KeRF> join(2 3, 4 5)
[2, 3, 4, 5]
KeRF> join(2 3, 4)
(2, 3, 4]
KeRF> join(2 3, "ABC")
[2, 3, “"A", “"B", “"C"]
KeRF> join({a:23, b:24}, {b:99})
[{a:23, b:24}, {b:99}]

The symbol # is equivalent to when used as a binary operator:

KeRF> 2 3 # 9
[2, 3, 9]

KeRF> "foo “#(rep 23)#"M 1"
"foo 23!"

9.86 json_from kerf - Convert Kerf to JSON

json_from kerf (x)

Convert a Kerf data structure x into a JSON (IETF RFC-4627) string.

KeRF> json_from_kerf({a: 45, b: [1, 3, 5.0]})
"{\"a\":45,\"b\": [1,3,5]}"

KeRF> json_from_kerf({{a: 1 2 3, b: 4 5 6}})
f\"a\":[1,2,3],\"b\": [4,5,6],\"is_json_table\": [1]}"

111

9.87 kerf from json - Convert JSON to Kerf

kerf_from_json(string)

Convert a JSON (IETF RFC-4627) string into a Kerf data structure. Note that booleans become the
numbers 1 and 0 during this conversion process. Kerf-generated JSON strings generally contain the metadata
necessary to round-trip without information loss, but JSON strings produced by another program may not.

KeRF> kerf_ from_json("[23, 45, 9]")
[23, 45, 9]
KeRF> kerf_ from_json("[true, false]")
(1, 0]
KeRF> kerf_from_json("{\"a\":[1,2,3],\"b\":[4,5,61}")
a:[1, 2, 3], b:[4, 5, 6]
KeRF> kerf_from_json("{\"a\":[1,2,3],\"b\":[4,5,6],\"is_json_table\": [1]}")

a

b

1

3

4

215

6

9.88 kerf type - Type Code

kerf_type(x)

Obtain a numeric typecode from a Kerf value.

KeRF> kerf type 45.0

3
Type Example |kerf_type_na.me| |kerf _type|
Timestamp Vector | [2000.01.01] stamp vector -4
Float Vector [0.1] float vector -3
Integer Vector [1] integer vector -2
Character Vector mAN character vector -1
Function {[x] 1+x} function 0
Character A character 1
Integer 1 integer 2
Float 0.1 float 3
Timestamp 2000.01.01 stamp 4
Null O null 5
List (] list 6
Map {a:1} map 7
Enumeration enum ["a"] enum 8
Index index [1,2] sort 9
Table {{a:1}} table 10
Atlas atlas {a:1} atlas 11
Zip compressed [1,2] zip 13

Kerf types

112

9.89 kerf type_name - Type Name

kerf_type_name (x)

Obtain a human-readable type name string from a Kerf value. See

KeRF> kerf type_name "Text"
"character vector"

9.90 1last - Last

last (x)
last(count, x)

When provided with a single argument, select the last element of the list x. Atomic types are unaffected by
this operation.

KeRF> last (43 812 99 23)
23

KeRF> last(99)
99

When provided with two arguments, select the last count elements of x, repeating elements of x as necessary.
Equivalent to [take](-count, x).

KeRF> last(2, 43 812 99 23)
[99, 23]

KeRF> last(7, 43 812 99 23)
[812, 99, 23, 43, 812, 99, 23]

9.91 1left_join - Left Join

left_join(x, y, =z)

Peform a left join of the tables x and y on the column z. See

9.92 1len - Length

len(x)

Determine the number of elements in x. Equivalent to Atomic elements have a count of 1. The
length of a table is the number of rows it contains.

KeRF> len 4 7 9
3

KeRF> len [4 7 9, 23 32]
2

KeRF> len 5
1

KeRF> len {a:23, b:45}
1

KeRF> len {{a:1 2 3 4 5}}
5

113

9.93 1less - Less Than?

less(x, y)

A predicate which returns 1 if x is less than y. Fully atomic.

KeRF> less(1 2 3, 2)

[1, 0, O]

KeRF> less([5], [[1, [3], [2 9]1)
[1, 0, 1]

KeRF> less("apple", ["a", "aa", "banana"])
[0, 0, 1]

The symbol < is equivalent to when used as a binary operator:

KeRF> 3 4 7 <190
[0, 1, 0]

9.94 1lesseq - Less or Equal?
lesseq(x, y)

A predicate which returns 1 if x is less than or equal to x. Fully atomic.

KeRF> lesseq(l 2 3, 2)

[1, 1, 0]

KeRF> lesseq([5], [[1, [3], [5], [2 9]1])
[1, 0, 0, 1]

KeRF> lesseq("apple", ["a", "aa", "apple", "banana"l)
(0, 0, 1, 1]

The symbol <= is equivalent to when used as a binary operator:

KeRF> 3 4 17 <=1910
(0, 1, 1, 0]

9.95 1g - Base 2 Logarithm
1g(x)

Calculate log, (). Equivalent to[Logl(2, x). Atomic.

KeRF> 1g 128 512 37
[7, 9, 5.20945]

9.96 1lines - Lines From File

lines(filename)
lines(filename, n)

Load lines from filename into a list of strings. If n is present, limit loading to n lines. See

114

9.97 1n - Natural Logarithm

In(x)

Calculate log,(z). Atomic.

KeRF> 1n 2 3 10 37
[0.693147, 1.09861, 2.30259, 3.61092]

9.98 1load - Load Source

load(filename)

Load and run Kerf source from a file. Given an example file:

a: 7+range 10
b: range 10
a*xb

Loading the file from the Repl:

KeRF> load("manual/example.kerf")
KeRF> a

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
KeRF> b

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Note that the value of the raw expression a * b is not printed when you a file. If this is desired, use

in the script.

9.99 1log - Logarithm

log(x)
log(x, y)

Calculate the base x logarithm of y. If only one argument is provided, [Log|(10, x) is assumed. Fully atomic.

KeRF> log 3 8 10 16 100

[0.477121, 0.90309, 1, 1.20412, 2.0]
KeRF> log(2, 3 8 10 16 100)

[1.58496, 3, 3.32193, 4, 6.64386]
KeRF> log(2 3 4, 8)

[3, 1.89279, 1.5]

115

9.100 1sq - Least Squares Solution
1sq(A, B)

Solve Az = B for x, where A is a matrix and B is a matrix or vector.

KeRF> 1sq([1 2;4 4], [3 4])
[[1, 0.5]1]

KeRF> 1sq([0 .5;2 0], [0 1;1 0])
[[2, 0.0,
[0, 0.5]]

The symbol \ is equivalent to when used as a binary operator:

KeRF> [0 .5;2 0J\[0 1;1 0]
[[2, o.0],
[0, 0.51]

9.101 map - Make Map

map (keys, values)

Make a map from a list of keys and a list of values. These lists must be the same length. A map-based

equivalent of

KeRF> map("ABC'", 44 18 790)
{*"A":44, ~"B":18, *"C":790}

The symbol ! is equivalent to when used as a binary operator:

KeRF> "ABC' | 44 18 790
{"A":44, “"B":18, ""C":790}

9.102 match - Match?

match(x, y)

A predicate which returns 1 if x is identical to y. While compares atoms, is not atomic and
compares entire values.

KeRF> match(5, 3 5 7)
0

KeRF> match(3 5 7, 3 5 7)
1

The symbol ~ is equivalent to when used as a binary operator:

KeRF> 3 57 7 3 57
1

116

9.103 mavg - Moving Average
mavg(x, y)

For a series of sliding windows of size x ending at each element of the list y, find the arithmetic mean of
valid (not nan and in range of the list) elements. Equivalent to msuml(x, y)/mcount|(x, y).

KeRF> mavg(3, 1 24 2 1 nan 0 4 6 7)
[1, 1.5, 2.33333, 2.66667, 2.33333, 1.5, 0.5, 2, 3.33333, 5.66667]

9.104 max - Maximum

max (x)

Find the maximum element of x. Roughly equivalent to x, but much more efficient.

KeRF> max 7 0 15 -1 8
15

KeRF> max O -inf -5 nan inf
inf

9.105 maxes - Maximums

maxes (x, y)

Find the maximum of x and y. Fully atomic.

KeRF> maxes(1 3 7 2 0 1, -4 320 1 9 4)
[1, 3, 20, 2, 9, 4]

KeRF> maxes(8, -4 3 20 1 9 4)
[8, 8, 20, 8, 9, 8]

The symbol | is equivalent to when used as a binary operator:

KeRF> -4 3 20 1 9 4 | 15
[15, 15, 20, 15, 15, 15]

9.106 mcount - Moving Count

mcount (x, y)

For a series of sliding windows of size x ending at each element of the list y, count the number of valid (not

nan and in range of the list) elements. Equivalent to (x, y).

KeRF> mcount(3, 1 2 3 nan 4 5 nan nan nan)
(1, 2, 3,2, 2, 2,2, 1, 0]

117

9.107 median - Median

median(x)

Select the median of a list of numbers x:

KeRF> median 1 3 19 7 4 2
3.5

9.108 meta_table - Meta Table

meta_table(table)

Produce a table containing debugging metadata about some some table:

KeRF> meta_table {{a: 1 2 3, b: 3.0 17 4}}

column |type|type_name is_ascending|is_disk
a| -2|integer vector 1 0
b| -3| float vector 0 0

9.109 min - Minimum

min(x)

Find the minimum element of x. Roughly equivalent to %, but much more efficient.

KeRF> min 7 0 15 -1 8
-1

KeRF> min O —-inf -5 nan inf
-inf

9.110 mins - Minimums

mins(x, y)

Find the minimum of x and y. Fully atomic.

KeRF> mins(1 37 2 0 1, -4 320 1 9 4)
-4, 3, 7, 1, 0, 1]

KeRF> mins(8, -4 3 20 1 9 4)
-4, 3, 8, 1, 8, 4]

The symbol & is equivalent to when used as a binary operator:

KeRF> -4 3 20 1 9 4 & 15
(-4, 3, 15, 1, 9, 4]

118

9.111 minus - Minus

minus(x, y)

Calculate the difference of x and y. Fully atomic.

KeRF> minus(3, 5)

-2

KeRF> minus(3, 9 15 -7)
(-6, -12, 10]

KeRF> minus(9 15 -7, 3)
(6, 12, -10]

KeRF> minus(9 15 -7, 1 3 5)
(s, 12, -12]

The symbol - is equivalent to when used as a binary operator:

KeRF> 2 4 3 - 9
(-7, -5, -6]

9.112 minv - Matrix Inverse

minv(x)

Calculate the inverse of a matrix x.

KeRF> minv([1 2;3 4])
[[-2, 117,
[1.5, -0.5]]

9.113 mkdir - Create directory
mkdir (x)

Create the directory specified by x.

KeRF> mkdir("dir/subdir")

9.114 mmax - Moving Maximum

mmax (x, y)

For a series of sliding windows of size x ending at each element of the list y, find the maximum element.
Equivalent to (x-1) [mapback| [converge] y.

KeRF> mmax(3, 0 1 0 2 0 1 0)
o, 1, 1,2, 2,2, 1]

9.115 mmin - Moving Minimum

mmin(x, y)

For a series of sliding windows of size x ending at each element of the list y, find the minimum element.
Equivalent to (x-1) mapback| [converge] y.

119

KeRF> mmin(3, 4 0 3 02 0 4 5 6)
(4, 0, 0, 0, 0, 0, 0, 0, 4]

9.116 mmul - Matrix Multiply

mmul (x, y)

Multiply the matrix or vector x by the matrix or vector y. Equivalent to x y.

KeRF> mmul ([1 2;3 4], [5 6])
[[15, 18],
[35, 42]]
KeRF> mmul ([1 2;3 4], [0 1;1 0])
[[2, 11,
(4, 3]]

9.117 mod - Modulus
mod(x, y)

Calculate x modulo y. Equivalent to x - y * [fLoor](x/y). Left-atomic.

KeRF> mod(0 1 2 3 456 7, 3)
[0, 1, 2, 0, 1, 2, 0, 1]

KeRF> mod(-4 -3 -2 -1 0 1 2, 2)
[0, 1, o, 1, 0, 1, 0]

The symbol ¥ is equivalent to when used as a binary operator:

KeRF> 0 1 234567 7% 3
(0, 1, 2,0, 1, 2, 0, 1]

9.118 msum - Moving Sum

msum(x, y)

Calculate a series of sums of each element in a list y and up to the x previous values, ignoring nans and
nonexistent values.

KeRF> msum(2, 10 20 30 40)
(10, 30, 50, 70]

KeRF> msum(2, 1 2 2 nan 1 2)
(1, 3, 4, 2, 1, 3.0]

KeRF> msum(3, 10 10 14 10 25 10 Nan 10)
[10, 20, 34, 34, 49, 45, 35, 20.0]

msum|(1, y) can be used to remove nan from data:

KeRF> msum(1, 4 2 1 nan 2)
(4, 2, 1, 0, 2.0]

120

9.119 negate - Negate

negate (x)

Reverse the sign of a number x. Equivalent to -1 * x. Atomic.

KeRF> negate 2 4 -77
(-2, -4, 77]

The symbol - is equivalent to when used as a unary operator:

KeRF> -(2 4 -77)
(-2, -4, 77]

9.120 negative - Negative

negative (x)

Equivalent to

9.121 ngram - N-Gram

ngram(n, x)

Break a list x into non-overlapping subsequences of length n.
Equivalent to [split|(range|(0,/count|(x) ,n), x).

KeRF> ngram(3, "Prisencolinensinainciusol")

[llpriﬂ "Sen“ ||Colll llineﬂ Hnsiﬂ ||nail| ||nci|l lluSOH ||1||]
KeRF> ngram(2, 34 12 44 19 29 90)

[[34, 12], [44, 19], [29, 90]]

9.122 not - Logical Not

not (x)

Calculate the logical NOT of x. Atomic.

KeRF> not (1 0)
[0, 1]

KeRF> not ([0, -4, 9, nan, []])
(1, 0, 0, 0, (1]

The symbol ! is equivalent to when used as a unary operator:

KeRF> !1 0 8
[0, 1, 0]

121

9.123 noteq - Not Equal?
noteq(x, y)

A predicate which returns 1 if x is not equal to y. Equivalent to Fully atomic.

KeRF> noteq(5, 13)
1
KeRF> noteq(5, 5 13)
(o, 1]
KeRF> noteq(5 13, 5 13)
[0, 0]
KeRF> noteq(.1, .100000000000001)
1
KeRF> noteq(nan, nan)
0

The symbols != and <> are equivalent to when used as binary operators:

KeRF> 3 1= 1 3 5
(1, 0, 1]

9.124 now - Current DateTime

now()

Return a stamp containing the current date and time in UTC.

KeRF> now()
2015.10.31T21:14:09.018

9.125 now_date - Current Date

now_date ()

Return a stamp containing the current date only in UTC.

KeRF> now date()
2015.10.31

9.126 now_time - Current Time

now_time ()

Return a stamp containing the current time only in UTC.

KeRF> now_time()
21:14:09.018

122

9.127 open_socket - Open Socket

open_socket (host, port)

Establish a connection to a remote Kerf instance at hostname host and listening on port and return a

connection handle. Both host and port must be strings. See [Network 1/O|

9.128 open_table - Open Table

open_table(filename)

Load a serialized table from the binary file filename. See |[File I/O|
9.129 or - Logical OR

or(x, y)

Calculate the logical OR of x and y. This operation is equivalent to Fully atomic.

KeRF> or(1 1 00, 1 01 0)

(1, 1, 1, 0]
KeRF> or(1 2 3 4, 0 -4 9 0)
(1, 2, 9, 4]

The symbol | is equivalent to [or] when used as a binary operator:

KeRF> 1 1 00 | 1010
[1, 1, 1, 0]

9.130 order - Order

order (x)

Generate a list of indices showing the relative ascending order of items in the list x. Equivalent to <<x.

KeRF> order "ABCEDF"
[0, 1, 2, 4, 3, 5]
KeRF> order 2 4 1 9
[1, 2, 0, 3]
KeRF> <2 4 1 9
[2, 0, 1, 3]
KeRF> <<2 4 1 9
[1, 2, 0, 3]

9.131 out - Output

out (x)

Print a string x to standard output. See |(General 1/0O|

123

9.132 parse float - Parse Float From String

parse_float(string)

Parse a string to obtain a floating point number. Atomic down to strings.

KeRF> parse_float "1"
1.0

KeRF> parse_float "2e4"
20000.0

KeRF> parse_float ["10","11","15"]
[10, 11, 15.0]

9.133 parse_int - Parse Integer From String

parse_int (string)
parse_int(string, radix)

Parse a string to obtain an integer. If no radix (numerical base) is provided, assume 10. The radix must
be between 2 and 36, inclusive. Atomic over the left argument down to strings.

KeRF> parse_int "+337"

337

KeRF> parse_int("1010011", 2)
83

KeRF> parse_int("100", 16)
256

KeRF> parse_int(["Ab", "cD", "eF"], 16)
[171, 205, 239]

9.134 parse_stamp - Parse Timestamp From String

parse_stamp (format, x)

Parse a string to obtain a timestamp, according to the specified format. See for details on
permissible timestamp formats. Atomic over the right argument down to strings.

KeRF> parse_stamp("%S:%M:%H", "56:34:12")
12:34:56.000

KeRF> parse_stamp("yM", ["1", "2", "3"])
[00:01:00.000, 00:02:00.000, 00:03:00.000]

KeRF> f: "JH:7M:%S.%Q";

KeRF> t: now()
2016.05.23T00:26:31.688

KeRF> parse_stamp(f, format_stamp(f, t))
00:26:31.688

124

9.135 part - Partition

part (x)

Produce a map from unique elements of a list x to lists of the indices at which these elements could originally
be found.

KeRF> part 3 57 7 5
{3:[01, 5:[1, 41, 7:[2, 3]}

KeRF> part ["apple", "frog", "frog", "kumquat"]
{apple: [0], frog:[1, 2], kumquat:[3]}

does not affect atomic types:

KeRF> part {a: 23 45, b: 9}
{a: [23, 45], b:9}

KeRF> part 23
23

The symbol & is equivalent to when used as a unary operator:

KeRF> &2 2 1 2
{2:[0, 1, 31, 1:[2]}

9.136 permutations - Permutations

permutations (x)
permutations(x, repeats)

Generate a list of all possible orderings of the elements of x. Normally this will operate on the unique
elements of x, but if repeats is truthy all elements will be preserved:

KeRF> permutations(l 2 2)
[f1, 2, 21,
(2, 1, 271,
(2, 2, 111
KeRF> permutations(l 2 2, 1)
(1, 2, 21,
(1, 2, 21,
(2, 1, 21,
(2, 2, 1],
(2, 1, 21,
(2, 2, 11]

If x is a map, operate on its keys:

KeRF> permutations({foo: 27, bar: 38})
[[”fOO“, lI'baI.H] R
["bar", ”fOO”]]

9.137 plus - Plus
plus(x, y)

Equivalent to

125

9.138 pow - Exponentiation

pow (x)
pow(x, y)

Equivalent to

9.139 powerset - Power Set

powerset (x)

Produce a list of all possible sublists of x. If x is a map, generate a powerset of its keys:

KeRF> powerset 45 67 33
[INT[],
[33],
(671,
(67, 337,
(457,
(45, 331,
(45, 671,
(45, 67, 33]]
KeRF> powerset ({foo: 23, bar: 94})
(o,
["bar"],
["foo"],
["foo", "bar"]]

9.140 rand - Random Numbers

rand ()
rand (x)
rand(x, y)

Generate a random vector of x numbers from 0 up to but not including y.

KeRF> rand (10, 3)
[0, 2,1, 2, 1,2,1, 2,0, 2]
KeRF> rand(5, 3.0)
[0.74465, 1.72491, 0.79121, 2.53097, 0.573115]

If y is a list, select random elements from y.

KeRF> rand (6, "ABC")
"CBCBBA"

126

If y is not provided, generate a single random number from 0 up to but not including x. As above, if x is a
list, choose a single random element.

KeRF> rand(10)
1

KeRF> rand(10)
8

KeRF> rand(10.0)
6.77151

KeRF> rand(10.0)
0.401473

KeRF> rand ("ABCDE")
~ugn

It is given no arguments, generate a single random float from 0 up to but not including 1.

KeRF> rand()
0.389022

The symbol 7 is equivalent to when used as a binary operator:

KeRF> 572
(0, 0, 1, 0, 0]

9.141 range - Range

range (x)
range(x, y)
range(x, y, z)

If is provided with one argument, generate a vector of integers from 0 up to but not including x:

KeRF> range 5
(0, 1, 2, 3, 4]

If is provided with two arguments, generate a vector of numbers from x up to but not including y,
spaced 1 apart:

KeRF> range (10, 15)
(10, 11, 12, 13, 14]
KeRF> range(10.5, 16.5)
[10.5, 11.5, 12.5, 13.5, 14.5, 15.5]

If is provided with three arguments, generate a vector of numbers from x up to but not including y,
spaced z apart:

KeRF> range(l, 3, .3)
(1, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8]

9.142 read_from path - Read From Path

read_from path(filename)

Load a serialized Kerf data structure from the binary file filename. See|File 1/O|

127

9.143 read parceled from path - Read Parceled Table From Path

read_parceled_from path(path)

Load a parceled Kerf data structure from the directory path. See [Parceled Tables|

9.144 read striped from path - Read Striped File From Path

read_striped_from_path(path)

Load a striped Kerf data structure from the directory path. See [Striped Files

9.145 read_table_from csv - Read Table From CSV File
read_table_from_csv(filename, fields, n)

Load a Comma-Separated Value file into a table. fields is a string which indicates the expected datatype

of each column in the CSV file- see read _table from delimited file|for the supported column types and
their symbols. n indicates how many rows of the file are treated as column headers- generally 0 or 1.

Equivalent to read_table_from_delimited_file(",", filename, fields, n).
9.146 read_table from_ delimited_file - Read Table From Delimited File
read_table_from_delimited_file(delimiter, filename, fields, n)

Load the contents of a text file with rows separated by newlines and fields separated by some character
delimiter into a table. fields is a string which indicates the expected datatype of each column. n
indicates how many rows of the file are treated as column headers- generally 0 or 1.

Symbol | Datatype
I Integer
Float
String
Enumerated String (see
IETF RFC-4122 UUID
IP address as parsed by C’s inet_pton()
Nanoseconds since UNIX Epoch (Timestamp)
Custom Datetime. (see|.Parse.strpt ime_formatD
Custom Times. (see | Parse. strptime,format2|)
Skipped field
64-bit (8 byte) |compressed|integer
32-bit (4 byte) [compressed|integer
16-bit (2 byte) |compressed|integer
8-bit (1 byte) [compressed| integer
64-bit |compressed| float
32-bit |compressed| float
64-bit [compressed| decimal (see notes)
compressed| timestamp (see |.Parse o strptime_formatl)
compressed| STR32 (see notes)

WOOoO<Ck,r NP = % <N®>=2@M@HnnT™

Symbols accepted as part of fields

128

Columns with a datatype are compressed into memory as the file is parsed. The STR32 type
is capable of representing a vector of strings no longer than 32 characters, which may not contain the null
character \0. The decimal type D is stored as a fixed-point integer, retaining 4 decimal places.

Given a file like the following:

Language&Lines&Runtime
C&27140.101
Java&89&0 .34
Python&62&3.79

KeRF> read table from delimited file("&", "code.txt", "SIF", 1)

Language |Lines |[Runtime

C 271 0.101
Java 89 0.34
Python 62 3.79

As another example, let’s take a look at how some specialized types are handled. Observe how strings in the
STR32 column are truncated as necessary, and the decimal column retains only the first 4 decimal places:

Label&Float

First&10.5

Second&0.123456

Third&90000

A considerably longer string which won’t fit.&320

KeRF> t: read table from delimited file("&", "delimited.txt", "3D", 1)

Label Float

First 10.5
Second| 0.1234
Third|90000.0
A considerably longer string whi| 320.0

KeRF> t["Label"]

COMPRESSED["First", "Second", "Third", "A considerably longer string whi']
KeRF> kerf_type_name t["Label"]

||Zipl|
KeRF> kerf_type_name t["Float"] [2]

"float"

129

9.147 read_table from fixed file - Read Table From Fixed-Width File

read_table_from fixed_file(filename, attributes)
Load the contents of a text file with fixed-width columns. The map attributes specifies the details of the
format:

Key Type Optional | Description
fields String No As in |read,table,from,delimited,filel
widths Integer Vector No The width of each column in characters.
line limit Integer Yes The maximum number of rows to load.
titles List of String Yes Key for each column in the resulting table.
header_rows Integer Yes How many rows are treated as column headers.
newline_separated Boolean Yes if false, do not expect newlines separating rows.

Settings described in attributes

Symbol | Datatype
R NYSE TAQ symbol
Q NYSE TAQ time format (HHMMSSXXX)

Additional symbols accepted as part of fields in fixed-width files

Given a file like this list of ingredients for my famous pizza dough:

Eggs 2.0 -
Flour 5.0 cups
Honey 2.0 tbs
Water 2.0 cups
Olive 0il 2.0 tbsp
Yeast 1.0 tbsp

KeRF> fmt: { fields: "SFS", widths: [10, 4, 5], titles: ["Ingredient", "Amount", "Unit"] };
KeRF> read_table_from_fixed_file("dough.txt", fmt)

Ingredient | Amount |Unit
Eggs 2.0 -
Flour 5.0|cups
Honey 2.0|tbsp
Water 2.0|cups
Olive 0il 2.0|tbsp
Yeast 1.0|tbsp

9.148 read table from tsv - Read Table From TSV File

read_table_from_tsv(filename, fields, n)

Load a Tab-Separated Value file into a table. fields is a string which indicates the expected datatype of
each column in the TSV file- see [read_table from delimited file| for the supported column types and
their symbols. n indicates how many rows of the file are treated as column headers- generally 0 or 1.

Equivalent to |read _table from delimited file|("\t", filename, fields, n).

130

9.149 rep - Output Representation
rep(x)

Convert a value x into a printable string representation. If you only wish to convert the atoms of x into

strings, use

KeRF> rep 45

||45|l
KeRF> rep 2 5 3
"[2, 5, 3]"
KeRF> rep {a:4}
”{314}"

KeRF> rep "Some text"
”\"SOHIS text\“ n

9.150 repeat - Repeat

repeat(n, x)

Create a list containing n copies of x. Equivalent to n X.

KeRF> repeat(2, 5)
[5, 5]
KeRF> repeat (4, "AB")
["AB", "AB", "AB", "AB"]
KeRF> repeat (0, "AB")
(]
KeRF> repeat (-3, "AB")
(]

9.151 reserved - Reserved Names

reserved ()
Print and return an unsorted list of Kerf’s reserved names, including reserved literals such as true.

9.152 reset - Reset

reset ()
reset (drop-args)

Reset the Kerf interpreter, clearing the workspace and cleaning up any open resources. If a truthy argument
is supplied, reset the interpreter as if invoked without any command-line arguments.

> ./kerf —q
KeRF> a: 437;
KeRF> reset ()
KeRF> a

Undefined token error

KeRF>

131

9.153 reverse - Reverse

reverse (x)

Reverse the order of the elements of the list x. Atomic types are unaffected by this operation.

KeRF> reverse 23 78 94
[94, 78, 23]

KeRF> reverse "backwards"
"sdrawkcab"

KeRF> reverse 5
5

KeRF> reverse {a: 23 56, b:0 1}
a:[23, 56], b:[0, 1]

The symbol / is equivalent to when used as a unary operator:

KeRF> /"example text"
"txet elpmaxe"

9.154 rsum - Running Sum

rsum(x)

Calculate a running sum of the elements of the list x, from left to right. nans are ignored.

KeRF> rsum 1
1
KeRF> rsum 1 2
[1, 3]
KeRF> rsum 1 2 5
[1, 3, 8]
KeRF> rsum 1 2 5 7 8
(1, 3, 8, 15, 23]
KeRF> rsum 1 2 3 nan 4
(1, 3, 6, 6, 10.0]
KeRF> rsum []
(]

9.155 run - Run

run(filename)

Load and run Kerf source from a file. Equivalent to

132

9.156 search - Search

search(x, y)

Look for x in y. If found, return the index. If not found, return NAN:

KeRF> search(3, 0 3 17 30)
1

KeRF> search(30, 0 3 17 30)
3

KeRF> search(15, 0 3 17 30)
NAN

KeRF> search("F", "AEIQU")
NAN

9.157 seed prng - Set random seed
seed_prng(x)

Sets random number generator seed used in to x.
9.158 send_async - Send Asynchronous
send_async(x, y)

Given a connection handle x, as obtained with send a string y to a remote Kerf instance and
do not wait for a reply. See [Network I/O)|

9.159 send_sync - Send Synchronous

send_sync(x, y)

Given a connection handle x, as obtained with send a string y to a remote Kerf instance,
waiting for a reply. See [Network I/O)|

9.160 setminus - Set Disjunction

setminus(x, y)

Equivalent to

9.161 shell - Shell Command

shell (x)

Execute a string x containing a shell command as if from /bin/sh -c x. See

133

9.162 shift - Shift

shift(n, x)
shift(n, x, fill)

Offset the list x by n positions, filling shifted-in positions with £i11.

KeRF> shift(4, 1 2 34 5 6 7, 999)
[999, 999, 999, 999, 1, 2, 3]
KeRF> shift(-1, 1 2 3 45 6 7, 999)

[2, 3, 4, 5, 6, 7, 999]

If £i11 is not provided, use a type-appropriate null value as generated by

KeRF> shift (3, "ABCDE")
n ABII
KeRF> shift (-3, "ABCDE")
WDE
KeRF> shift(2, 1 2 3 4)
[NAN, NAN, 1, 2]
KeRF> shift(2, 1.0 2.0 3.0 4.0)
[nan, nan, 1, 2.0]

9.163 shuffle - Shuffle

shuffle(x)

Randomly permute the elements of the list x. Equivalent to [rand/(-Ien|(x), x).

KeRF> shuffle "APPLE"
"PAEPL"

KeRF> shuffle "APPLE"
"LEAPP"

KeRF> shuffle "APPLE"
"LEPAP"

9.164 sin - Sine

sin(x)

Calculate the sine of x, expressed in radians. Atomic. The results of will always be floating point values.

KeRF> sin 3.14159 1 -20
[2.65359e-06, 0.841471, -0.912945]

KeRF> asin sin 3.14159 1 -20
[2.65359e-06, 1, -1.15044]

134

9.165 sinh - Hyperbolic Sine

sinh(x)

Calculate the hyperbolic sine of x, expressed in radians. Atomic. The results of will always be floating
point values.

KeRF> sinh 3.14159 1 -20
[11.5487, 1.1752, -2.42583e+08]

9.166 sleep - Sleep

sleep(x)

Delay for at least x milliseconds and then return x.

KeRF> timing 1;
KeRF> sleep 50
50
51 ms
KeRF>

9.167 sort - Sort

sort (x)

Sort the elements of the list x in ascending order. Equivalent to x x].

KeRF> sort "ALPHABETICAL"
"AAABCEHILLPT"
KeRF> sort 27 18 4 9
(4, 9, 18, 27]
KeRF> sort unique "how razorback jumping frogs can level six piqued gymnasts"

abcdefghi jklmnopqrstuvwxyz"

Sort when run on a table sorts in column order, so for maximum performance on time oriented joins, put
the time column first in the table.

135

9.168 sort_debug - Sort Debug
sort_debug(x)
Return a map containing debugging information about the list or table x which is relevant to the performance

and internal datapaths of searching and sorting. If the input is a table which is actually sorted, it will set
global attr_sorted flag if not already set.

KeRF> sort_debug range(4)
{attr_sorted:1, is_array:1, is_enum:0, is_actually_sorted_array:1, is_index:0,
is_index_working:0, is_table:0, is_table_sorted:O}

KeRF> sort_debug "ACED"
{attr_sorted:O, is_array:1, is_enum:0, is_actually_sorted_array:0, is_index:0,
is_index_working:0, is_table:0, is_table_sorted:0}

KeRF> sort_debug 27
{attr_sorted:1, is_array:0, is_enum:0, is_actually_sorted_array:0, is_index:0,
is_index_working:0, is_table:0, is_table_sorted:0}

KeRF> sort_debug {{a: 4 2 1}}
{attr_sorted:0, is_array:0, is_enum:0, is_actually_sorted_array:0, is_index:0,
is_index_working:0, is_table:1, is_table_sorted:0}

For tables, the sort attribute is for the first column of the table.

9.169 split - Split List

split(x, y)

Subdivide the list y at the index/indices given by x. Equivalent to y [lxvals| part| [rsum| (xkeys| y) x].

KeRF> split(4 9, "SomeWordsTogether")
["Some", "Words", "Together"]

KeRF> 3 split "ABCDEF"
["ABC", "DEF"]

KeRF> split(0 1 3 5, 11 22 33 44 55)
[[11], [22, 33], [44, 55]]

9.170 sqrt - Square Root

sqrt (x)

Calculate the square root of x. Atomic.

KeRF> sqrt 2 25 100
[1.41421, 5, 10.0]

136

9.171 stamp - Cast to Stamp

stamp (x)

Cast x to a timestamp. Atomic down to strings. To convert a string to a timestamp using a custom format,

see |parse_stamp

KeRF> stamp []
STAMP (]

KeRF> stamp [0, "2001.02.03"]
[00:00:00.000, 2001.02.03]

9.172 stamp diff - Timestamp Difference

stamp_diff (x, y)

Calculate the difference between the timestamps x and y in nanoseconds.

KeRF> t: now(); sleep(10); stamp_diff(now(), t)
10302000

KeRF> t: now(); sleep(10); stamp_diff(t, now())
-10874000

9.173 std - Standard Deviation
std(x)

Calculate the standard deviation of the elements of the list x. Equivalent to

KeRF> std 4 7 19 2 0 -2
6.87992

KeRF> std {a: 4 1 0}
{a:1.69967}

9.174 string - Cast to String

string(x)

Convert the value x to a string. Atomic. If you wish to recursively convert an entire data structure to a

string, use

KeRF> string 990
eTeToll

KeRF> string 15 9 10
[n15u ngn ||10||:|

KeRF> string {a:4 5}
{a: [||4|| s ||5||]}

9.175 subtract - Subtract

subtract (x, y)

Equivalent to

137

9.176 sum - Sum

sum(x)

Calculate the sum of the elements of the list x.

KeRF> sum 4 3 9
16

KeRF> sum 5
5

KeRF> sum []
0

9.177 table - Make Table

table(columns, values)

Make a table from a list of column names and a matrix of values. A table-based equivalent of

KeRF> table(["foo", "bar"],[1 2 3, 2001.1.1 2001.1.2 2001.1.3])

foo|bar

—

2001.01.01
2001.01.02
2001.01.03

w N

9.178 tables - Tables

tables ()

Generate a list of the names of all currently loaded tables.

KeRF> tables()

(]
KeRF> t: {{a: 1 2 3, b: 4 5 6}};
KeRF> tables()

["t"]

138

9.179 take - Take

take(x, y)

Create a list containing the first x elements of y, looping y as necessary. If x is negative, take backwards
from the last to the first. Equivalent to [first

KeRF> take(3, ~"A")
"AAA"

KeRF> take(2, range(5))
[0, 1]

KeRF> take(8, range(5))
[0, 1, 2, 3, 4, 0, 1, 2]

KeRF> take (-3, range(5))
[2, 3, 4]

The symbol " is equivalent to when used as a binary operator:

KeRF> 37 "ABCDE"
"ABC

9.180 tan - Tangent

tan (x)

Calculate the tangent of x, expressed in radians. Atomic. The results of will always be floating point
values.

KeRF> tan 0.5 -0.2 1 4

[0.546302, -0.20271, 1.55741, 1.15782]
KeRF> atan(tan 0.5 -0.2 1 4)

[0.5, -0.2, 1, 0.858407]

9.181 tanh - Hyperbolic Tangent

tanh (%)

Calculate the hyperbolic tangent of x, expressed in radians. Atomic. The results of will always be
floating point values.

KeRF> tanh 3.14159 1 -20
[0.996272, 0.761594, -1.0]

139

9.182 times - Multiplication

times(x, y)

Calculate the product of x and y. Fully atomic.

KeRF> times(3, 5)
15
KeRF> times(1 2 3, 5)
[5, 10, 15]
KeRF> times(3, 5 8 9)
[15, 24, 27]
KeRF> times(10 15 3, 8 2 4)
[80, 30, 12]

The symbol * is equivalent to when used as a binary operator:

KeRF> 1 2 3%2
[2, 4, 6]

9.183 timing - Timing

timing(x)

If x is truthy, enable timing. Otherwise, disable it. Returns a boolean timing status. When timing is active,
all operations will print their approximate runtime in milliseconds after completing.

KeRF> timing(1)
1

KeRF> sum range exp(2, 24)
140737479966720

203 ms
KeRF> timing(0)
0

9.184 tolower - To Lowercase

tolower (x)

Convert a string x to lowercase. Equivalent to

9.185 toupper - To Uppercase

toupper (x)

Convert a string x to uppercase. Equivalent to

140

9.186 transpose - Transpose

transpose (x)

Take the transpose (flip the x and y axes) of a matrix x. Has no effect on atoms or lists of atoms.

KeRF> transpose [1 2 3, 456, 7 8 9]
[r1, 4, 71,
(2, 5, 8],
(3, 6, 91]
KeRF> transpose 1 2 3
[1, 2, 3]

Atoms will “spread” as needed to produce a rectangular matrix if the list contains any sublists:

KeRF> transpose [2, 3 4 5, 6]

[[2, 3, 6],
(2, 4, 6],
[2, 5, 6]]

The symbol + is equivalent to when used as a unary operator:

KeRF> +[1 2, 3 4]
[[1, 371,
[2, 41]

9.187 +trim - Trim

trim(x)

Remove leading and trailing whitespace from strings. Atomic.

KeRF> trim(" some text ")
"some text"

KeRF> trim [" some text ", " another", "\tab\t"]
["some text", "another", "ab"]

9.188 typenull - Type Null
type-null (x)

Generate the equivalent type-specific null value for x.

KeRF> type_null("ABC")

KeRF> type null(1.0)
nan

KeRF> type _null(1l)
NAN

KeRF> type_null(now())
00:00:00.000

141

9.189 uneval - Uneval

uneval (x)

Equivalent to|json_from kerf]|

9.190 wunion - Set Union

union(x, y)

Construct an unsorted list of the unique elements in either x or y. Equivalent to

KeRF> union(2, 4 5)
[2, 4, 5]

KeRF> union([], 2)
[2]

KeRF> union(2 3 4, 1 3 9)
[2, 3, 4, 1, 9]

9.191 unique - Unique Elements

unique (x)

Equivalent to|distinct

9.192 unzip - Decompress Object

unzip(x)

Decompress a string, as produced by to reconstruct a Kerf object.

KeRF> unzip zip 2048 take "ABCD"
""ABCD
ABCD
ABCDABCDABCDABCDA. . ."

9.193 var - Variance

var (x)

Calculate the variance of the elements of a list x. Equivalent to (x - [avg] x)**2) X.

KeRF> var []
nan

KeRF> var 4 3 8 2
5.1875

KeRF> sqrt var 4 3 8 2
2.27761

142

9.194 which - Which

which(x)

For each index ¢ of the list x, produce x[i] copies of i:

KeRF> which 1 2 1 4

0, 1, 1, 2, 3, 3, 3, 3]
KeRF> which 1 2 3

o, 1, 1, 2, 2, 2]
KeRF> which 1 1 1

[0, 1, 2]

This operation is most often used to retrieve a list of the indices of nonzero elements of a boolean vector:

KeRF> which 0 0 1 01 1 0 1
(2, 4, 5, 7]

The symbol ? is equivalent to when used as a unary operator:

KeRF> 70 0 1 0 1 1 0 1
[2, 4, 5, 7]

143

9.195 write_csv_from_table - Write CSV From Table

write_csv_from_table(filename, table)

Write table to disk as a Comma-Separated Value file called filename.
Equivalent to jwrite_delimited file from table|(",", filename, table).

9.196 write_delimited file from table - Write Delimited File From Table

write_delimited_file_from_table(delimiter, filename, table)
Write table to disk as filename using newlines to separate rows and delimiter to separate columns. The

file will be written with a header row corresponding to the keys of the columns of table. Returns the number
of bytes written to the file.

KeRF> t: {{a: 1 2 3, b:["one", "two", "three"]l}};

KeRF> write_delimited_file_from_table("|", "example.psv", t)
23

KeRF> shell("wc -c example.psv'")
" 23 example.psv"]

KeRF> shell("cat example.psv")
["alb", "1lone", "2|two", "3|three"]

9.197 write striped to_path - Write Striped File To Path

write_striped_to_path(path, x)

Write x to disk at path as a striped file. See [Striped Files

9.198 write_text - Write Text

write_text(filename, x)

Write the value x to a text file filename, creating the file as necessary. See

9.199 write_to_path - Write to Path

write_to_path(filename, x)

Write the value x to a binary file filename, creating the file as necessary. See

144

9.200 xkeys - Object Keys
xkeys (x)

Produce a list of keys for a map, table or list x.

KeRF> xkeys 33 14 9
o, 1, 2]

KeRF> xkeys {a: 42, b: 49}
["a", "b"]

KeRF> xkeys {{a: 42, b: 49}}
[nau’ "b"]

9.201 xvals - Object Values

xvals (x)

Produce a list of values for a map or table x. If x is a list, produce a list of valid indices to x.

KeRF> xvals 33 14 9
(o, 1, 2]

KeRF> xvals {a: 42, b: 49}
[42, 49]

KeRF> xvals {{a: 42, b: 49}}
([42], [49]]

9.202 zip - Compress Object
zip(x)

Produce a string representing a compressed version of x suitable for reconstruction with

KeRF> count 2048 take "ABCD"
2048

KeRF> count zip 2048 take "ABCD"
1316

KeRF> zip 2048 take "ABCD"
"{{\"sJ\u0000\u0000\u0000\u00ca\u0000\u0000\u0000\u00ca\u0000\uo000\u000o . . .

145

10 Combinator Reference

10.1 converge - Converge

Given a unary function, apply it to a value repeatedly until it does not change or the next iteration will
repeat the initial value. Some functional languages refer to this operation as fixedpoint.

KeRF> {[x] floor x/2} converge 32
0
KeRF> {[x] mod(x+1, 5)} converge O
4
KeRF> {[x] display x; mod(x+1, 5)} converge 3

N = O b W

If a numeric left argument is provided, instead repeatedly apply the function some number of times:

KeRF> 3 {[x] floor x/2} converge 32

4

KeRF> 3 {[x] x*2} converge 32
256

KeRF> 5 {[x] join("A", x)} converge "B"
"AAAAAB"

Applied to a binary function, is equivalent to

10.2 deconverge - Deconverge
is similar to except it gathers a list of intermediate results.

KeRF> {[x] floor x/2} deconverge 32
[32, 16, 8, 4, 2, 1, 0]

KeRF> {[x] mod(x+1, 5)} deconverge 1
(1, 2, 3, 4, 0]

KeRF> 3 {[x] floor x/2} deconverge 32
[32, 16, 8, 4]

KeRF> 3 {[x] x*2} deconverge 32
[32, 64, 128, 256]

Applied to a binary function, is equivalent to

146

10.3 fold - Fold

Given a binary function, apply it to pairs of the elements of a list from left to right, carrying the result
forward on each step. Some functional languages refer to this operation as foldl.

KeRF> add fold 1 2 3 4
10

KeRF> {[a,b] join(enlist a, b)} fold 1 2 3 4
(C1, 21, 31, 4]

Note that the function will not be applied if [folded over an empty or 1-length list:

KeRF> {[a,b] out "nope"; a+b} fold [5]

5
KeRF> {[a,b] out "nope"; atb} fold 1 2
nope 3

It is also possible to supply an initial value for the as a left argument:

KeRF> 0 {[a,b] join(enlist a, b)} fold 1 2 3
([[o, 11, 21, 3]

KeRF> 7 {[a,b] out "yep"; atb} fold 5

yep 12

The symbol \/ is equivalent to

KeRF> add \/ 1 2 3
6

KeRF> 7 add \/ 5
12

Applied to a unary function, [fold|is equivalent to

10.4 mapback - Map Back

Given a binary function, pairs up each value of a list with its predecessor and applies the function
to these values. The first item of the resulting list will be the first item of the original list:

KeRF> join mapback 1 2 3

(1,
2, 11,
(3, 211

A common application of is to calculate deltas between successive elements of a list:

KeRF> - mapback 5 3 2 9
(5, -2, -1, 7]

If a left argument is provided, it will be used as the previous value of the right argument’s first value:

KeRF> 1 join mapback 2 3 4

(2, 11,
(3, 21,
(4, 311

147

The symbol \~ is equivalent to

KeRF> 0 =\~ 1101000
(1, 0,1, 1, 1,0, 0]

10.5 mapcores - Map to Cores

Similar to except it distributes work to multiple CPU cores (as available) and performs work in
parallel. There is some overhead to distributing work and collecting results, so only use after
careful profiling. For a realistic use case, see the discussion of optimizing a [Base64 Encoder]

KeRF> time: {[f] s:now(); v:£f(Q; [v, stamp_diff(now(), s)I1};

KeRF> time {[] {[x] sleep 100; x*2} mapdown 1 3 7 9}
[[2, 6, 14, 18], 404506000]

KeRF> time {[] {[x] sleep 100; x*2} mapcores 1 3 7 9}
[[2, 6, 14, 18], 184118000]

Every parallel worker is given its own independent environment tree, and writes to global variables are
discarded after results are gathered. Side effects to IO devices are performed in an arbitrary order unless
otherwise synchronized.

KeRF> a: [0];

KeRF> {[x] a[0]:2#x; a[0]} mapdown 1 3 7 9
(2, 6, 14, 18]

KeRF> a
[18]

KeRF> a: [0];

KeRF> {[x] a[0]:2*x; al0]} mapcores 1 3 7 9
(2, 6, 14, 18]

KeRF> a
(0]

KeRF> {[x] display x; 2*x} mapcores 1 3 7 9
3

7
9
1

[2, 6, 14, 18]

Uses of can be nested, generally with diminishing returns. The current implementation arbitrarily
caps nesting at 2:

KeRF> {[x] {[x] 2#x} mapcores range x} mapcores 3 2 5
[[o, 2, 4],
(o, 21,
[0, 2, 4, 6, 8]]

KeRF> {[x] {[x] {[x] 2#x} mapcores range x} mapcores range x} mapcores 2 3
...nge X} mapcores range x} mapcores 2 3

Parallel execution error

148

10.6 mapdown - Map Down

Apply a unary function to every element of a list, yielding a new list of the same size. Some functional
programming languages refer to this as simply map. can be used to achieve a similar effect to how
atomic built-in functions naturally “push down” onto the values of lists.

KeRF> negate mapdown 2 -5

-2, 5]
KeRF> {[n] 3*n} mapdown 2 5 9
(6, 15, 27]

Given a binary function and a left argument, pairs up sequential values from two equal-length lists
and applies the function to these pairs. Some functional programming languages refer to this as zip, meshing
together a pair of lists like the teeth of a zipper:

KeRF> 1 2 3 join mapdown 4 5 6
01, 41,
(2, 51,
[3, 611

also works with maps and tables:

KeRF> count mapdown {a: 1 2, b: 3 4 5, c: 6}
(2, 3, 1]

KeRF> reverse mapdown {{a: 1 2, b: 3 4}}
(2, 11, 14, 211

The symbol \= is equivalent to

KeRF> {[n] 3*n} \= 2 5 9
(6, 15, 27]

10.7 mapleft - Map Left

Given a binary function, apply it to each of the values of the left argument and the right argument, gathering
the results in a list.

KeRF> 1 2 3 join mapleft 4

[[1, 471,
[2, 41,
[3, 411

The symbol \< is equivalent to

10.8 mapright - Map Right

Given a binary function, apply it to a left argument and each of the values of the right argument, gathering
the results in a list. mapright| like mapdown| provides a way of “pushing a function down onto” data or
overriding existing atomicity:

KeRF> 1 join mapright 2 3 4

(re, 21,
[1, 31,
(1, 41]

149

mapright|and mapleft|can be used to take the cartesian product of two lists:

KeRF> 0 1 2 add 0 1 2
[0, 2, 4]
KeRF> 0 1 2 add mapright 0 1 2
(fo, 1, 2],
(1, 2, 3],
(2, 3, 41]

The symbol \> is equivalent to

10.9 reconverge - Reconverge

Equivalent to

10.10 reduce - Reduce
Equivalent to

10.11 refold - Refold
Equivalent to

10.12 rereduce - Re-Reduce
Equivalent to

10.13 wunfold - Unfold

is similar to [fold] except it gathers a list of intermediate results. This can often provide a useful
way to debug the behavior of

KeRF> add unfold 1 2 3 4
(1, 3, 6, 10]
KeRF> 100 add unfold 1 2 3 4
(101, 103, 106, 110]
KeRF> {[a,b] join(enlist a, b)} unfold 1 2 3 4

[1)
(1, 21,
(1, 21, 31,

(CCL, 21, 31, 411

The symbol \\ is equivalent to

KeRF> add \\ 1 2 3
[1, 3, 6]

KeRF> 7 add \\ 5
[12]

Applied to a unary function, is equivalent to

150

11 Global Reference

11.1 Environment
11.1.1 .Argv - Arguments

A list of the arguments provided to Kerf at the command line.

>kerf —-q foo
File handle status failed during directory check.: No such file or directory
KeRF> .Argv

["kerf", "-q", "foo"]

11.1.2 .Help - Function Reference

A table which can be examined at the command line, listing subject, name of item of interest, usage and
description. See for more information.

11.2 Math
11.2.1 .Math.BILLION - Billion

Constant representing |10°].

11.2.2 .Math.E-E
Constant representing Euler’s number. 2.7182818284590452353602.

11.2.3 .Math.TAU - Tau
Constant representing 2w. 6.2831853071795864769252.

11.3 Net

11.3.1 .Net.client - Client

During IPC execution, contains a constant representing the current client’s unique handle. See
11.3.2 .Net.on_close - On Close

If defined, an IPC server will call this single-argument function with a client handle when that client closes
its connection. See [Network I/O|

11.3.3 .Net.parse_request - Parse Request

An HTTP server will call this single-argument function with the text of a completed GET request. The
return value will be passed to the browser, provided the type is character vector. See [Network I/0O|

151

11.4 Parse
11.4.1 .Parse.strptime format - Time Stamp Format

Specifies the format used for formatting and parsing dates and time stamps from delimited files when the
field specifier is Z or 9. Builds directly on the standard C function strptime. See for details.

By default, %d-%b-%y %H:%M:%S.

11.4.2 .Parse.strptime format2 - Time Format

Specifies the format used for formatting and parsing timestamps from delimited files when the field specifier
is Y. Used for parsing time-only columns in data files where dates and times are in separate columns.

11.5 Print
11.5.1 .Print.stamp_format - Print Stamp Format

If set, specifies the format used for printing timestamps. See for details. Setting this global
is particularly useful if you want to see a finer-grained display of timestamps which includes nanoseconds.

152

12 Programming Techniques

This section contains case studies illustrating how Kerf can be used to solve problems, ranging from simple
to complex. We will build up solutions step by step and consider tradeoffs in performance and style.

12.1 Reversing a Map

A map links a set of keys with a set of values. It is easy and efficient to use a key to look up the associated
value. Sometimes is desirable to go the other way- using a value to look up the associated key. One way
to approach this problem might be to iterate through each key in the map until we found one which is
associated with our target value:

def find_key(m, val) {
keys: xkeys m
for(i: 0; i < len(keys); i: i+1) {
if (m[keys([i]l] == val) { return keys[i] }
}

return null

As the number of keys in the map scales up, the amount of time this function takes to run increases
proportionally. If we need to perform many repeated reverse lookups against a large map, this approach will
be prohibitively slow.

As a general rule of thumb when programming, if something is too expensive to calculate, cache it. By
writing a function which analyzes a map and constructs a new map which “reverses” the keys and values of
the original, we can pay this construction cost once and then achieve efficient reverse-lookups.

There are several ways to approach this problem. A programmer used to imperative programming languages
might come up with something like this:

def map_reverse_1(m) {
v {)
keys: xkeys m
vals: xvals m
for(i: 0; i < len(keys); i: i+1) {
rlvals[i]]: keys[i]
}

return r

Perhaps you want to get fancy and try to represent the same algorithm using the combinator [fold}’

{} {Im, €] mlel0]]: el[1]} fold transpose([xvals m, xkeys m]) ‘

The simplest approach is to take advantage of the built-in function:

def map_reverse_2(m) {
return map(xvals m, xkeys m)
}

153

All of these solutions are making an unsafe assumption. The keys of a map are always unique by definition,
but what happens if the values are not unique?

KeRF> map_reverse_2({a: "A", b:"B", c:"C"})
o n "n B . n n
{A:"a", B:"b", C:"c"}
KeRF> map_reverse_2({a: "A", b:"B", c:"A"})
{A: g , B: ”b"}

We've lost information! A more robust map reversal routine should gather the keys of repeated values as a
list, producing a result more like:

KeRF> map_reverse_3({a: "A", b:"B", c:"C"})
{AI [HaH’IICll] s B: [ubu]}

First, let’s look at an imperative approach to solving the problem. We can iterate through the keys of the
original map, as before. Instead of storing the key directly in the result map, we will append it to a list
stored in the map. This requires us to first ensure that any slot in the result map is initialized with an empty
list:

def map_reverse_3(m) {
r: {}
keys: xkeys m
vals: xvals m
for(i: 0; i < len(keys); i: i+1) {
if (not r has_key vals([i]) { rlvals[ill: [J }
rlvals[i]]: join(r([vals[i]], enlist keys[i])

}

return r

The is important here- without it, string keys would be mashed together:

KeRF> join([], "foo")

"foo"

KeRF> join("foo", "bar")
"foobar"

KeRF> join([], enlist "foo")
["foo"]

KeRF> join(["foo"], enlist "bar")
[”fOO" s |lbarll]

We can simplify this slightly by using “spread assignment” to initialize our result map with empty lists in
every entry:

rlvals]: [[]]
for(i: 0; i < len(keys); i: i+1) {

r[vals[i]]: join(r([vals[i]], enlist keys[i])
}

What happens if we leave out this initialization entirely? Try it!

154

Now let’s look at a functional approach to solving this problem. If we partition the value set of the original
map, we obtain lists of the indices of the values which are identical:

KeRF> m: {a: "A", b:"B", c:”A”}
{a:“A" b:"B" C:HAI!}

KeRF> xvals m
[mA" ngn A

KeRF> part xvals m
{a:[0, 2], B:[1]}

Since the key and value vectors produced by [xkeys| and [xvals|line up, we could also use those indices to
obtain the corresponding keys for each group of values. Kerf’s powerful indexing facilities make this simple:

KeRF> xkeys m
[llaﬂ llb|l IICH]

KeRF> xvals part xvals m
([0, 21, [1]1]

KeRF> (xkeys m) [xvals part xvals m]
[[uan ”C”] [”b"]]

Now we have what we need to assemble the result, so we use to join the unique elements of the original
value set with the lists of corresponding keys we computed previously. The function collects results
in the order they appear, just like so everything will line up properly:

def map_reverse_4(m) {
nk: unique xvals m
nv: (xkeys m) [xvals part xvals m]
return map(nk, nv)

Notice how we were able to use the Kerf REPL and a single working example to experiment interactively
and then distill the results into a general definition. It is very natural to develop functional solutions to
problems in this manner. Manipulating an entire data structure at once often results in a simpler solution
with fewer conditionals and loops than trying to solve a problem “one step at a time”.

It is also possible to write this as a more compact one-liner by avoiding intermediate variables and using
some of the symbolic shorthands for (1), pnique| (%), [enumerate| (*) and (&), but the result is
much harder to read and understand at a glance:

{[m] (%xvals m)!("m) [xvals(&xvals m)]}

Shorthand is a nice way to save typing at the REPL, but favor a more relaxed, verbose style when writing
larger programs- future maintainers (yourself included) will be thankful! Use Kerf’s syntactic alternatives-
infix function calls, optional parentheses, function aliases, etc.- to write your programs in the clearest, most
readable way possible.

155

12.2 Run-Length Encoding

Run-Length Encoding (RLE) is a simple means of compressing data. Wherever there is a repeated run of
identical elements, instead of storing each element store a single copy of the element and the length of the
run. We will use this problem as an opportunity to gain familiarity with more of Kerf’s combinators and
the elegance of tacit definitions.

If our input list looked like:

’"AAABBAAAAAAA" ‘

An RLE-compressed representation might look like:

][[3, “uan], [2, “"B"], [7, “"A"]] \

Let’s start by writing a decompressor- given an RLE-compressed list, reconstruct the original. For a given
element of the list, we can use to create a run:

KeRF> p: [3, ""A"]

[3’ ~||A||]
KeRF> take(pl[0], pl[1])
WAAAM

One way to apply a binary function to a pair of arguments is to use the combinator A fold is like
placing a function between the elements of a list. Thus, these two expressions are equivalent:

KeRF> take fold p
||AAAII

KeRF> p[0] take pl[1]
||AAAII

We really want to apply to each pair in the original list. The combinator applies a unary
function to each element of a list, returning a list of results:

KeRF> (take fold) mapdown [[3, “Al,[2, “Bl,[7, “A]]
[”AAA”, |lBB”’ ”AAAAAAA”]

The parentheses are not required- in this case they are simply making it clearer that the function mapdown|is
applying to each element of the list to the right is ‘ftake|fold]. When combinators are attached to functions,
they form new compound functions which can be passed around or stored in variables just like any other
function:

KeRF> take fold mapdown [[3, “Al],[2, "B],[7, “Al]
["AAA"™, "BB", "AAAAAAA"]

KeRF> take fold
take fold

To reproduce the original sequence from this list of runs, we need to join all the runs together. The built-in
function does exactly what we need. Alternatively, we could use the equivalent

KeRF> flatten ["AAA", "BB", "AAAAAAA"]
"AAABBAAAAAAA"

KeRF> join fold ["AAA", "BB", "AAAAAAA"]
"AAABBAAAAAAA"

156

Putting everything together, we could write a definition for rle_decode in several ways:

def rle_decode(x) {return flatten take fold mapdown x}

rle_decode: {[x] flatten take fold mapdown x}

rle_decode: flatten take fold mapdown

This last approach is called a tacit definition- it doesn’t require naming any variables or arguments. The
combinators glue together functions to produce a function that is simply waiting for a right argument.
Composing together functions won’t always work out this nicely, but when a tacit definition is possible the
results can be very aesthetically pleasing, as if there were hardly any syntax to the language at all:

KeRF> rle_decode: flatten take fold mapdown
flatten take fold mapdown

KeRF> rle_decode [[3, “Al,[2, “Bl,[7, “A]]
"AAABBAAAAAAA"

KeRF> flatten take fold mapdown [[3, “Al],[2, “B],[7, “Al]
"AAABBAAAAAAA"

Now that we’re a bit more comfortable with using combinators, let’s tackle the compressor- given a list, we
want to break it into runs. For each run, we need to determine the first element (or any element, really) and
the length of the run.

To find the start of each run, we can compare each element of the list with the item which came before it. If
they’re different, we are beginning a new run. Otherwise, we're continuing an existing run. The combinator
applies a function to each element of a list and its predecessor, which is just what we’re looking for:

KeRF> != mapback "AAABBAAAAAAA"
[~"A", 0, 0,1,0,1,0,0,0,0,0, 0]

Well, nearly what we're looking for. What’s that character doing at the beginning of our result?
doesn’t have anything to pair the first element of a list up with, so by default it leaves that item alone. If
we supply a value on the left, will use that to pair with the first element of the list on the right.
Supplying a null will ensure that the first list element is considered “not equal to” this default value:

KeRF> “A != mapback "AAABBAAAAAAA"
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]

KeRF> B != mapback "AAABBAAAAAAA"
(1, 0, 0,1,0,1,0, 0,0, 0,0, 0]

KeRF> "B != mapback "BAABBAAAAAAA"
0, 1, 0, 1, 0,1, 0, 0, 0, 0, 0, 0]

KeRF> null != mapback "AAABBAAAAAAA"
(1, 0,0,1,0,1,0, 0,0, 0,0, 0]

157

The function given a boolean list, produces a list of the indices of the 1s. If we index into the original
list, we can retrieve a list of the items which begin each run, in order:

KeRF> s: "AAABBAAAAAAA™

"AAABBAAAAAAA"
KeRF> null != mapback s

(t, 0, 0, 1, 0, 1, 0, 0, 0, O, 0, O]
KeRF> which null != mapback s

[0, 3, 5]
KeRF> s[which null != mapback s]
||ABA|I

Now we just need to find the lengths of each run. Let’s consider that vector we already created which

identifies run heads. If we take a running sum of that list, we can uniquely label all the members of
each run:

KeRF> h: null != mapback s

(t, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, O]
KeRF> rsum h

1, 1,1, 2, 2, 3, 3, 3, 3, 3, 3, 3]

Partitioning these labels will conveniently group them together, and we can count each of the resulting
groups:

KeRF> part rsum h

1:00, 1, 21, 2:[3, 4], 3:[5, 6, 7, 8, 9, 10, 11]
KeRF> count mapdown part rsum h

(3, 2, 7]

An alternative to would be to use

KeRF> split(which h, s)
["AAA", "BB", "AAAAAAA"]

KeRF> count mapdown split(which h, s)
(3, 2, 7]

With the list of counts and the list of values, we can join each to produce the tuples we want. By giving the
combinator a left argument and a binary function, we can neatly “zip” together our lists:

KeRF> 1 2 3 join mapdown "ABC"

[[1, ~ ”A"] ,
[2’ ~ "B"] s
[3, ""c"1]

158

Bringing everything together,

def rle_encode(s) {
heads: null != mapback s
vals: s[which heads]
counts: count mapdown part rsum heads
return counts join mapdown vals

For the sake of comparison, here’s an imperative solution:
%) %

def rle_encode_2(s) {
r: []
c: 1
for(i: 0; i < len(s); 1i: i+1) {
if (s[i] '= s[i+1]) {
r: join(r, enlist [c, s[ill)
c: 1
} else {
c: ct+l
}
}

return r

Which of these is easier to understand and reason about? The imperative program is familiar, but involves
a number of variables which continuously change throughout execution. Did we make any off-by-one errors?
The functional solution replaces loops and conditionals with built-in functions and combinators, and never
changes the contents of a variable once it is assigned.

“Readability” is inherently subjective, so let’s compare performance:

KeRF> data: 100007"ABCD";

KeRF> timing 1;

KeRF> rle encode data ;
21 ms

KeRF> rle encode_ 2 data ;
781 ms

Kerf executes the functional solution substantially faster. Combinators and built-in functions which operate
on entire lists at once are highly optimized and have very little interpreter overhead, so an individual
operation can approach native execution speeds. Explicit loops and conditionals force the interpreter to do
most of the heavy lifting, which is less efficient.

159

12.3 Base64 Conversion

Base64 is an encoding scheme which permits storing arbitrary binary data- often ASCII text- using a re-
stricted set of 64 symbols. Base64 encoded data avoids invisible control characters and common delimiters,
making it easy to embed inside other document formats or copy and paste between applications without
getting scrambled or truncated along the way. In this section we will develop a Base64 encoder and decoder
in Kerf, and along the way learn how to dramatically improve the performance of parallel operations by

using the combinator.

First, let’s review numeric base conversion in general. The numbers we see everywhere on a daily basis use
what’s called a positional number system. In this system, the value of each digit is determined by its position
in the overall number. Digits further to the left are “worth more” than digits on the right:

3 hundreds (3 * 100)

5 tens (5 * 10)
hj 7 ones (7 * 1)

357 (3 * 100) + (5 x 10) + (7 * 1)

With 10 distinct digits (0-9), each successive place to the left is worth 10 times as much as the previous. We
call a number system which has 10 distinct digits base-10 or decimal. A number system which only has two
distinct digits could be called base-2 or binary.

Representing a number in different bases can be useful for a variety of applications. Let’s begin by developing
a routine which can decompose a Kerf integer into its digits:

KeRF> number_digits(357)
[3, 5, 7]

The most obvious approach is to reach for string manipulation. If we cast a number to a string with
the digits will be successive characters:

KeRF> rep 357
" 357 "

To obtain the ordinal value of digits, we could convert them to ASCII character codes and subtract the
ASCII value of “0” (which happens to be 48) or we could simply each character:

KeRF> (int "357")-48

[3, 5, 7]
KeRF> eval enlist mapdown "357"
[3, 5, 7]

This works fine for base-10, since that is the base Kerf naturally uses for displaying numbers. A string-
oriented approach won’t help us if we want to support an arbitrary base. A more general solution considers
the value of each digit’s place, as depicted above.

Let’s try to calculate the value of each place in a 4-digit base-10 number. There are a number of reasonable
approaches- can you think of any aside from those shown here?

KeRF> v: reverse floor 10 pow range 4
(1000, 100, 10, 1]

KeRF> v: reverse (4-1) {[x] 10*x} unfold 1
(1000, 100, 10, 1]

160

If we have each place value in v, dividing the original number by v and then taking the result modulo the
base will determine the digit in each place:

KeRF> floor 357 / v
[0, 3, 35, 357]

KeRF> (floor 357 / v) % 10
[0, 3, 5, 7]

Generalizing,

def unpack_digits(base, places, n) {
v: reverse floor base pow range places
return (floor n / v) % base

KeRF> unpack_digits(10, 3, 357)
(3, 5, 7]

KeRF> unpack_digits(2, 8, 61)
[0, 0, 1, 1, 1, 1, 0, 1]

As written, this routine needs to be given the length of the number in digits ahead of time. The with
respect to the base (rounding up) can determine how many digits we need to represent the input number in
that base:

def digits(base, n) {
v: reverse floor base pow range ceil log(base, n)
return (floor n / v) % base

KeRF> digits(10, 65539)
[6, 5, 5, 3, 9]

KeRF> digits(10, 15)
(1, 5]

KeRF> digits(16, 255)
[15, 15]

If we have digits and a base, getting back to a number is extremely easy- multiply the digits by their place
value and take the sum of the results:

KeRF> 3 5 7 * 100 10 1

[300, 50, 7]
KeRF> sum 3 5 7 % 100 10 1
357

Using a similar pattern as before, we’ll create a generalized routine for doing this in any base:

def pack_digits(base, n) {
v: reverse floor base pow range count n
return sum n * v

161

Base64 encodes 3 bytes of 8-bit ASCII into 4 6-bit characters like so:

ASCII char (D E

ASCII value 40 68 69

Binary 0\0\1\0\1\0 0\0 0\1]0\0 0\1\0\0 0\1 0\0\0\1\0]1
Index 10 4 17 5

Base64 K E R F

The characters used to represent the 64 distinct values of each 6-bit chunk vary from implementation to
implementation, but a common scheme uses the uppercase alphabet followed by the lowercase alphabet, the
digits 0 through 9 and finally the characters + and /:

KeRF> int "AZaz09+/"

[65, 90, 97, 122, 48, 57, 43, 47]
KeRF> b64: char range(65, 91)#range (97, 123)#range (48, 58)#43#47

" ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvuxyz0123456789+\ /"
KeRF> count b64

64

Using the definitions we’ve written so far, it is straightforward to do a conversion from ASCII into Base64
following the steps shown in the figure above. Convert characters to indices with break those indices
into binary digits, the list of bits and re-slice it into 6-bit fields with convert back to decimal
and then index through the lookup table we just built. Step by step,

KeRF> int "(DE"
[40, 68, 69]

KeRF> {[x] unpack_digits(2, 8, x)} mapdown int "(DE"
to, o, 1, o, 1, 0, 0, 0],
(o, 1, 0, 0, 0, 1, 0, 07,
(0, 1, 0, 0, 0, 1, 0, 11]

KeRF> b: flatten {[x] unpack_digits(2, 8, x)} mapdown int "(DE"
o, o, t0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 0,1, 0, 1]
KeRF> 6 ngram b

(o, o, 1, o, 1, ol,
[0, 0, 0, 1, 0, 0,
(0, 1, 0, 0, 0, 11,
[0, 0, 0, 1, 0, 111

KeRF> {[x] pack_digits(2, x)} mapdown 6 ngram b
(10, 4, 17, 5]

KeRF> b64[{[x] pack_digits(2, x)} mapdown 6 ngram b]
"KERF"

Generalizing,

def to_base64_simple(s) {
b: flatten {[x] unpack_digits(2, 8, x)} mapdown int s
return b64[{[x] pack_digits(2, x)} mapdown 6 ngram b]

162

One important detail we haven’t handled yet is what happens when we have an input string which is not
divisible by 3 bytes. Base64 pads such data with zeroes out to a full 6-bit character boundary:

KeRF> (6 - count 1 0) % 6

4

KeRF> (6 — count 1 0 1 1) % 6
2

KeRF> (6 — count 1 0 1 1 0 1) % 6
0

If we had to add 2 bits, we’ll add = to the end of the output string. If we had to add 4 bits, we’ll add == to
the end of the output string.

def to_baseb4(s) {
bin: flatten {[x] unpack_digits(2, 8, x)} mapdown int s
pad: (6 - count bin) % 6
bip: bin join take(pad, 0)
enc: b64[{[x] pack_digits(2, x)} mapdown 6 ngram bip]

return enc join take(pad / 2, ~"=")

¥
KeRF> to_base64 "A stri'

"QSBzdHJp"
KeRF> to _base64 "A strin"

"QSBzdHJpbg=="
KeRF> to_base64 "A string"

"QSBzdHJpbmc="
KeRF> to_base64 "A string."

"QSBzdHJpbmcu"

163

If Base64 encoding is a performance-critical component of your application, you might want to consider
calling out to an existing C library to do the conversion. We’ll discuss Kerf’s FFI and how to do this kind of
enhancement in a later section. In the shorter term, though, there are some clear opportunities for speeding
up our current solution. The following complete implementation specializes and inlines the logic we created
in unpack_digits and pack-digits so that we aren’t constantly reconstructing digit place tables:

b64: char range(65, 91)#range (97, 123)#range (48, 58)#43#47
bits_8: reverse floor 2 pow range 8
bits_6: 2 drop bits_8

def to_base64_fast(s) {
bin: flatten {[x] (floor x / bits_8) % 2} mapdown int s
pad: (6 - count bin) % 6
bip: bin join take(pad, 0)
enc: b64[{[x] sum x * bits_6} mapdown 6 ngram bip]
return enc join take(pad / 2, ~"=")

}

How much more efficient is this approach?

KeRF> data: 50000 7 "ABCDE";
KeRF> timing 1;
KeRF> to base64 data;
3.2 s
KeRF> to_base64 fast data;
2.5 s
KeRF> 1 - 2.5/3.2
0.21875

Just over 20% faster! Remember- the best way to make code fast is to make it do less. If you can cache
something (as we are with bits_8 and bits_6), you can avoid recomputing it frequently.

Another option would be to observe that both instances of are performing large, entirely paral-
lel operations. Kerf has an extremely handy facility for improving performance in these situations called
This combinator will automatically distribute work across multiple CPU cores and then gather
the results. All we have to do is replace [napdown| with [mapcores}

def to_base64_cores(s) {
bin: flatten {[x] (floor x / bits_8) % 2} mapcores int s
pad: (6 - count bin) % 6
bip: bin join take(pad, 0)
enc: b64[{[x] sum x * bits_6} mapcores 6 ngram bip]
return enc join take(pad / 2, ~"=")

}

On a humble 2 core laptop, this tweak allows our program to run in five percent the original runtime! Your
mileage in other applications may vary. has some overhead, so if you're working with very small
datasets it could slow down execution.

KeRF> to_base64 cores data;
188 ms

KeRF> to_base64_cores "ABCDABCDABCD";
3 ms

KeRF> to_base64_fast "ABCDABCDABCD";
2 ms

164

For the sake of completeness, let’s briefly discuss transforming base64 encoded data back into its original
form. If we ignore padding, we can use a very similar approach to our encoder. Before we could simply
obtain the ASCII values of characters by using but this time around we need to use to look up
each character in the b64 table. The rest is familiar: convert to binary, and re-slice with
convert back to ASCII indices.

def from_base64_simple(s) {
ind: s search mapleft b64
bin: flatten {[x] (floor x / bits_6) % 2} mapcores i
enc: {[x] sum x * bits_8} mapcores 8 ngram b
return char enc

If the input string contains the padding character =, will return NAN:

KeRF> "Foo=" search mapleft b64
(5, 40, 40, NAN]

We can count how many padding characters (if any) were found with Then we can convert the
NANS to 0 for the rest of processing by cleverly employing

KeRF> count null [5, 40, 40, NAN]
1

KeRF> 1 msum [3, 7, NAN, 15, NAN]
[3, 7, 0, 15, 0]

When we’re done handling padding and performing the normal conversion process, all that remains is to
the padding characters from the end of the result:

def from_base64(s) {
ind: s search mapleft b64
pad: count_null ind
inp: floor 1 msum ind
bin: flatten {[x] (floor x / bits_6) % 2} mapcores inp
enc: {[x] sum x * bits_8} mapcores 8 ngram bin
return drop(-pad, char enc)

}

KeRF> from_base64 ("QSBzdHJpbg==")
"A strin"

KeRF> from_base64 ("QSBzdHJpbmc=")
"A string"

KeRF> from_base64 ("QSBzdHJpbmcu")
"A string.

We've written a program which performs a reasonably complex format conversion without any explicit loops
or conditionals. The logic is uniform, easy to follow and easy to test. Kerf’s provided us with a
painless drop-in replacement for which takes advantage of the inherent parallelism in our code.

165

12.4 HTTP Fetching

KeRF is designed for processing and analyzing data. Many websites exist today which expose access to
interesting datasets via an HTTP (HyperText Transfer Protocol) interface. Let’s look at HTTP and the
performance implications of different styles of data import. We will also take this as an opportunity to
explore calling out to C functions using Kerf’s Foreign Function Interface.

We will use https://www.quandl.com for our examples. Quandl provides a wide variety of financial and
economic datasets, many of which are available free of charge. Creating an account with Quandl and using
credentials with API requests increases the number of queries you are allowed to perform daily, but the
system is usable without any form of registration.

In an HTTP transaction, a client makes a request for a resource, and the server provides a response. Requests
have an associated wverb, which indicates what the client wishes the server to do. The most basic type of
request verb is GET- a request for the retrieval of a named resource, indicated by a URL. The response will
contain a response code indicating success or a class of failure which occurred, and sometimes a payload.
HTTP is stateless: each request-response pair is an independent transaction, and requests must include all
context necessary for processing.

The simplest way to perform an HTTP request is via the Unix curl utility. By using the function,
we can invoke curl from Kerf. In this example, using the .json suffix on the URL instructs Quandl to
produce a response in the JSON format, which we can easily parse. breaks input on newlines, so it is
necessary to join these back together via The -s option prevents curl from printing information
about its download progress, which is not relevant for us.

KeRF> url: "https://www.quandl.com/api/v3/datasets/WIKI/AAPL/data.json?rows=10";
KeRF> d: kerf_from_json implode("\n", shell "curl -s "#url#" -X GET");

It may also be a good idea to use the -o flag option with curl, which makes it write the response to a
temporary file for later retrieval:

>curl -s -o tempfile.dat https://url.com/path -X GET

The response contains a great deal of potentially useful metadata. We can obtain column names:

KeRF> d["dataset_data"] ["column names"]
["Date", "Open", "High", "Low", "Close", "Volume", "Ex-Dividend", "Split Ratio", "Adj. Open",
"Adj. High", "Adj. Low", "Adj. Close", "Adj. Volume"]

The data itself is represented in a row-oriented fashion:

KeRF> 2 first d["dataset data"]["data"]
[["2015-12-08", 117.52, 118.6, 116.86, 118.23, 34086875.0, 0.0, 1.0, 117.52, 118.6, 116.86,
118.23, 34086875.0],
["2015-12-07", 118.98, 119.86, 117.81, 118.28, 31801965.0, 0.0, 1.0, 118.98, 119.86, 117.81,
118.28, 31801965.01]

166

https://www.quandl.com

To build a table, we can combine the column headings with the of the row data and use the
[tablel function:

KeRF> d_data: d["dataset _data"]["data"];

KeRF> d_cols: d["dataset_data"] ["column names"];
KeRF> t: table(d_cols, transpose d_data);

KeRF> SELECT Date, Open, High, Low FROM t

Date Open |High |Low

2015-12-08|117.52| 118.6|116.86
2015-12-07(118.98(119.86|117.81
2015-12-04(115.29(119.25|115.11
2015-12-03|116.55(116.79|114.22
2015-12-02(117.05(118.11|116.08
2015-12-01(118.75(118.81|116.86
2015-11-30(117.99(119.41|117.75
2015-11-27(118.29(118.41| 117.6

An alternative to using would be the slightly more verbose INSERT INTO:

t: INSERT INTO {{}} VALUES map(d_cols, transpose d_data)

Bringing everything together, we can write a simple helper function for fetching Quandl datasets and loading
them into a table, permitting any kind of further querying we like:

def quandl_table(query) {
url: "https://www.quandl.com/api/v3/"#query
resp: kerf_from_json implode(""\n", shell "curl -s "#url#" -X GET")
cols: resp["dataset_data"] ["column_names"]
data: resp["dataset_data"]["data"]
return table(cols, transpose data)

KeRF> SELECT Date, Volume FROM quandl_table "datasets/WIKI/AAPL/data.json?rows=10"

Date Volume

2015-12-08|34086875.
2015-12-07|31801965.
2015-12-04|56351301.
2015-12-03|40935107 .
2015-12-02|32793916.
2015-12-01|34501246.
2015-11-30|37074611.
2015-11-27|13038955.

O O O O O o oo

167

If we load the entire dataset instead of limiting the result to the first 10 rows, we get 8824 rows and the
payload is roughly 1.2mb. Our quandl_table routine takes somewhere around 3 seconds to run on an average
laptop. Let’s dig in and try to identify any performance bottlenecks by using Kerf’s nanosecond-accuracy
timer:

def itemize(f) {
start: now()
ticks: £({})
timespans: map(xkeys ticks, start stamp_diff mapback ticks)
display timespans
display sum xvals timespans
display timespans / (sum xvals timespans)

}

def benchmark_json(ticks) {
d: shell "curl -s https://www.quandl.com/api/v3/datasets/WIKI/AAPL/data.json -X GET"
ticks["curl"]: now()

j: kerf_from_json implode(""\n", d)
ticks["parse"]: now()

cols: jl["dataset_data"]["column_names"]
data: j["dataset_data"]["data"]

t: table(cols, transpose data);
ticks["build"]: now()

return ticks

KeRF> itemize(benchmark_json)

curl:5463299000, parse:3175040000, build:6035000
8644374000

curl:0.632006, parse:0.367296, build:0.000698142

As you can see, the time spent in and curl is dominant, and represents room for improvement. Parsing
the JSON also takes a significant amount of time, and INSERT INTO is nearly instantaneous. Quandl can
also emit data in a CSV format. How does this compare?

def benchmark_csv(ticks) {
shell "curl -s -o t.csv https://www.quandl.com/api/v3/datasets/WIKI/AAPL/data.csv -X GET"
ticks["curl"]: now()

t: read_table from_csv("t.csv", "SFFFFFFFFFFFF", 1)
ticks["build"]: now()

return ticks

KeRF> itemize(benchmark csv)
curl:7386948000, build:73101000
7460049000

curl:0.990201, build:0.009799

In this run, we’re about 15 percent faster overall, with nearly all our time spent in and curl. This isn’t
surprising, as CSV is a much simpler file format with less structure than JSON. Clearly, if you’re working
with large amounts of tabular data, CSV files are more efficient.

168

Is there another approach? Let’s try writing a dynamic library in C which extends Kerf with the IO
capabilities we want. By leveraging 1ibcurl, we should be able to write a simple routine which performs an
HTTP GET for a specified resource and parses the result in JSON. By removing the overhead of interacting
with stdio or the filesystem it may be possible to improve performance over using the curl command-line
utility. For general information about dynamic libraries in Kerf, see [FFI]

For this project we will need to work with Kerf strings. A KERF structure represents strings with a type of
KERF_CHARVEC, and stores an unterminated string in the “g” field. Here’s a C function which takes a Kerf
string and prints out some information about it:

KERF string_info(KERF str) {
printf("type was %d\n", str->t);
printf ("length was %d\n", (int)str->n);
printf("first char was %c\n", str->g[0]);
printf ("string was ’%.*s’\n", (int)query->n, query->g);
return O;

}

For the sake of brevity, examples here will contain a minimum of error checking. They are intended to convey
concepts rather than to be ideal production code. In practice when you write C functions to use with Kerf
you will want to add code to verify the types of arguments you accept and print meaningful error messages
if the function is invoked incorrectly.

We can produce our own strings by using [kerf_api_new_charvec| but this copies a complete C string into
a KERF structure. For more control, you can instead use [kerf_api_new _kerf|to allocate an appropriately
typed and sized buffer and write into it at your convenience.

On the following page is a complete C program which can be called from Kerf to perform an HTTP GET of
an arbitrary URL. For the sake of simplicity, it assumes that responses will be less than 2mb and preallocates
space in a KERF structure for this response text.

Ensure that the kerf_api.h header file, which should be included along with the Kerf binary, is accessible,
and install libcurl if necessary. Compile the example as follows:

>cc -m64 -flat_namespace -undefined suppress -dynamiclib curly.c -lcurl -o curly.dylib

The -m64 option requests code be generated for a 64-bit architecture. The -flat_namespace and —undefined
suppress flags are present for accessing Kerf’s dylib API, as the Kerf binary itself supplies those symbols.
The -1curl flag instructs the linker to reference 1ibcurl.

169

#include <stdlib.h>
#include <string.h>
#include <curl/curl.h>
#include "kerf_api.h"

#define MAX_PAYLOAD 2097152

static size_t write_data(void *data, size_t size, size_t nmemb, void *destination) {
KERF payload = (KERF)destination;
size_t towrite = size*nmemb;

if ((payload->n) + towrite >= MAX_PAYLOAD) { return O; }
memcpy ((payload->g) + (payload->n), data, towrite);
payload->n += towrite;

return towrite;

}

KERF http_get (KERF url) {

char* url_terminated = malloc((url->n)+1);
strncpy(url_terminated, url->g, url->n);
url_terminated[url->n] = ’\0’;

KERF payload = kerf_api_new_kerf (KERF_CHARVEC, MAX_PAYLOAD);
payload->n = 0;

CURL *curl handle;

curl_global_init(CURL_GLOBAL_ALL);

curl_handle = curl_easy_init();

curl_easy_setopt(curl_handle, CURLOPT_URL, url_terminated);
curl_easy_setopt(curl_handle, CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl_handle, CURLOPT_WRITEFUNCTION, write_data);
curl_easy_setopt(curl_handle, CURLOPT_WRITEDATA, payload);
curl_easy_perform(curl_handle);

curl_easy_cleanup(curl_handle);

return payload;

170

After all that work, let’s see how our results compare with the previous approaches:

http_get: dlload("curly.dylib", "http_get", 1)

def benchmark_raw(ticks) {
d: http_get("https://www.quandl.com/api/v3/datasets/WIKI/AAPL/data.json")
ticks["curl"]: now()

j: kerf_from_json d
ticks["parse"]: now()

cols: j["dataset_data"]["column_names"]
data: j["dataset_data"]["data"]

t: table(cols, transpose data);
ticks["build"]: now()

return ticks

KeRF> itemize(benchmark raw)

curl:6428259000, parse:3004744000, build:5596000
9438599000

curl:0.681061, parse:0.318346, build:0.000592885

It’s actually slower! Fetching data over a network will vary wildly in performance, and there simply isn’t
much we can control here. There’s a valuable lesson here, though- by profiling before trying alternatives, we
maintain a clear view of what our “optimizations” are getting us. In this case, it seems that dropping into
C doesn’t pay off, but now we better understand how to do it when necessary. The only way to know for
sure whether this approach is appropriate for your application is to try it and take measurements.

171

12.5 Kerf IPC with Python

Kerf has a built-in Inter-Process Communication (IPC) protocol which is described in [Network I/0| In
this section we will look at the internal structure of this protocol as described in e Ker rotoco
and how to interface with it using the Python programming language. Python is chosen for its general
popularity, but this information will be general enough that you can apply it to any other language of your
preference. Using the IPC interface we will proceed to build a simple application which uses Kerf as an
in-memory database.

TCP, the Transmission Control Protocol, is the basis of most internet communication. It provides a bi-
directional, fault-tolerant byte stream between a client and server. A TCP server listens for client connections
on a specific port, which often identifies the intended purpose of a particular TCP connection. For example,
HTTP traffic is generally served on port 80. Many simultaneous connections may be active on any particular
port.

In the following discussion, we will build some Python functions for communicating via KIP. Explanations
will use Python 3.5, the stable release version of the language at the time of writing. For information about
version differences, consult http://www.python.orgl

To open a TCP channel with a remote server, we can use the socket module from the standard library.
Creating a connection handle with socket.AF_INET and socket.SOCK_STREAM indicates that we want an
IPV4 TCP client channel. (Intuitive, no?) For easy testing purposes we will connect to localhost, the IP
loopback device, looking for a locally-running Kerf instance which was set up to listen as a server on port
10101:

handle = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
handle.connect(("localhost", 10101))

handle.close()

When reading data from the connection handle, recv will return however many bytes happened to be
transmitted in the last TCP packet, which may or may not be the number of bytes we’d like to read. The
simple solution to this clumsiness is to write a helper routine which will continue blocking and reading until
we have accumulated a desired number of bytes:

def recv_n(handle, wanted):
data = b""
while(len(data) < wanted):
data += handle.recv(wanted - len(data))
return data

Now we’re ready to write the meat of our program. In general, we want to JSON encode some data, build a
KIP header based on this payload, transmit both, wait to read a response header, and then finally use that
information to read the response payload and unpack it from JSON. From the Python standard library we’ll
need the json module for JSON encoding and decoding, the struct module for packing and unpacking the
KIP header structure, and the math module for doing some of the header size calculations.

172

http://www.python.org

The json.dumps method encodes an input string as JSON. To get a byte buffer, Python 3 requires us to
explicitly encode the resulting JSON string. UTF-8 is an appropriate encoding. Constructing the header
requires us to calculate a shard size, which is based on the logs of the payload size. The socket.htonl
method is used to convert the wire size into network byte order (big-endian) rather than the default (on an
x86 machine, little-endian).

code = json.dumps([string, args]).encode("UTF-8")
shard_size = int(math.ceil(math.log(len(code)+16, 2)))
wire size = int(2**shard size)

wire_net = socket.htonl (wire_size)

padding = wire_size - (len(code)+16)

The struct.pack method provides a convenient way to assemble all our various-sized fields together into a
byte buffer. The format string provided uses x to indicate padding bytes, b to indicate a signed byte and I
to indicate an unsigned 32-bit integer. Hardcoding execution, response and display types, we can arrive at
something like the following to send the header, payload and padding:

packing = "xxxxbbbxxxxxIbxxbIIxxxx"

packed = struct.pack(packing, 4, 1, O, wire_net, shard_size, -1, 1, len(code))
handle.send(packed)

handle.send(code)

handle.send(bytes(padding * [0]))

Now we wait for a response and unpack the result header. A KIP header is precisely 32 bytes, so we perform
a blocking read using our recv_n helper method. struct.unpack is an inversion of struct.pack, and can
share the same format string. The only data we actually need from the header is the payload size and the
wire size, which allow us to calculate how many padding bytes should be discarded. socket.ntohl reverses
socket.htonl, converting network byte order into a usable native byte order.

data = recv_n(handle, 32)

header = struct.unpack(packing, data)
totality = 16 + socket.ntohl(header[3])
size = header [7]

payload = recv_n(handle, size)
recv_n(handle, totality - (size + 32))

All that remains is to decode our payload bytes as UTF-8 and decode the JSON into a useful result:

json.loads(payload.decode ("UTF-8"))

173

All together now, kerf_ipc.py:

import socket, json, struct, math
def recv_n(handle, wanted):
data = b""
while(len(data) < wanted):
data += handle.recv(wanted - len(data))

return data

def sync_send(handle, string, *args):

code = json.dumps([string, args]).encode("UTF-8")
shard_size = int(math.ceil(math.log(len(code)+16, 2)))
wire_size = int(2%xshard_size)

wire net = socket.htonl(wire_size)

padding = wire_size - (len(code)+16)

packing = " bbb TbxxbII "

packed = struct.pack(packing, 4, 1, O, wire_net, shard_size, -1, 1, len(code))
handle.send(packed)

handle.send(code)

handle.send(bytes(padding * [0]))

data = recv_n(handle, 32)

header = struct.unpack(packing, data)
totality = 16 + socket.ntohl(header[3])
size = header (7]

payload = recv_n(handle, size)

recv_n(handle, totality - (size + 32))

return json.loads(payload.decode("UTF-8"))

Let’s see a simple example of these routines in action. First, start up a Kerf instance waiting for IPC traffic:

> ./kerf -q -p 10101
KeRF>

Then run a little Python script:

import socket, kerf_ipc

handle = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
handle.connect (("localhost", 10101))

print (kerf_ipc.sync_send(handle, "range 2+3"))
handle.close()

> python3.5 demo.py
0, 1, 2, 3, 4]
>

Two entirely different languages cooperating hand in hand- beautiful!

174

12.5.1 HudsucKerf By Proxy

With these new abilities in hand, one nifty thing we can do is use Python to construct user interfaces
for Kerf applications. Imagine describing a simple product and inventory tracking system in Kerf (call it
hudsuc.kerf):

widgets: {{id, name, price, weight}}
orders: {{id, widget_id, quantity, time}}

def new_widget(name, price, weight) {

INSERT INTO widgets VALUES (count(widgets), name, price, weight);
}

def get_widgets() {
return SELECT * FROM widgets;
¥

We can interact with this database directly via the Kerf REPL, but perhaps we want fancier custom displays
and menus. It’s possible to do this directly with Kerf and dynamic libraries, as we described in some earlier
examples. Alternatively, maybe using Python is easier for your application:

import socket, kerf_ipc
db = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
db.connect (("localhost", 10101))

def c_quit():
db.close()
exit (0)

def c_idea():

name = input("product name: ")
price = input("price: ")
weight = input("weight: ")

kerf_ipc.sync_send(db, "new_widget($1l, $2, $3)", name, price, weight)
print("great idea, boss!")

def c_widgets():
w = kerf_ipc.sync_send(db, '"get_widgets()")
print ("price\tname")
print("----- \t——==——- ")
for row in range(len(w["name"])):
print (w["price"] [row] + "\t"+w["name"] [row])

commands = {"quit": c_quit, "widgets": c_widgets, "idea": c_idea}

print("Idea Management Gizmo vO.1")
print("(c) 1959 HudsucKerf Industries")
while True:

commands [input ("> ")1 ()

Notice how easily we can call Kerf procedures from Python (and how much more pleasant they are to write
than SQL stored procedures!), separating database storage and reporting logic from the frontend application.
If your program needs persistent storage, it would be a simple matter to make Kerf use memory-mapped 10
to automatically serialize tables to disk.

175

Let’s see a quick command-line session:

> kerf -q -p 10101 hudsuc.kerf
KeRF> widgets

id|name|price|weight

KeRF>
server: new connection from ::ffff:127.0.0.1 on socket 6

> python3.5 hudsuc.py
Inventory Management Gizmo vO.1
(c) 1959 HudsucKerf Industries

> idea

product name: extruded plastic dingus
price: 1.79

weight: 2.5

great idea, boss!

> idea

product name: bendy straw

price: 0.05

weight: 0.01

great idea, boss!

> widgets

price name

1.79 extruded plastic dingus
0.05 bendy straw

> quit

Obviously, this is just scratching the surface of what becomes possible. You could build graphical Uls, service
many concurrent users, interface with or expose web APIs, and much more.

176

	Introduction
	Background
	Conventions
	Using the REPL
	Command-Line Arguments and Scripting
	The REPL

	Examples

	Installation
	Installing (Binary)
	Installing (License Files)
	Installing (Building from Source)
	Adding Kerf to your Path
	Startup Scripts

	Terminology
	Atomicity
	Combinators
	Matrix
	Truthy
	Valence
	Vector

	Datatypes
	Numbers
	Lists and Vectors
	Strings and Characters
	Timestamps
	Maps, Tables and Atlases
	Special Identifiers
	Index, Enum and Zip
	Type Coercion

	Syntax
	Expressions
	Indexing
	Assignment
	Control Structures
	Conditionals
	Loops
	Function Declarations

	SQL
	Scoping
	INSERT
	DELETE
	SELECT
	WHERE
	GROUP BY

	UPDATE
	WHERE
	GROUP BY

	Joins
	Left Join
	Asof Join

	Limiting
	Ordering
	Performance

	Input/Output
	General I/O
	File I/O
	Striped Files
	Parceled tables
	Network I/O (IPC)
	Starting an HTTP Server
	Backgrounding a Kerf Server

	Foreign Function Interface
	C from Kerf
	Kerf from C
	Kerf .a archive and .o object files

	Reference Counting
	Releasing
	Retaining

	Internal Representations
	Integers
	Floats
	Characters
	Stamps
	Vectors

	Attribute Flags
	Native API
	kerf_api_append - Append to List
	kerf_api_call_dyad - Call Dyad
	kerf_api_call_monad - Call Monad
	kerf_api_call_nilad - Call Nilad
	kerf_api_copy_on_write - Copy On Write
	kerf_api_get - Kerf Get
	kerf_api_init - Initialize the Kerf Process
	kerf_api_interpret - Interpret String
	kerf_api_len - Kerf Length
	kerf_api_new_charvec - New Kerf String
	kerf_api_new_float - New Kerf Float
	kerf_api_new_int - New Kerf Integer
	kerf_api_new_kerf - New Kerf Object
	kerf_api_new_list - New Kerf List
	kerf_api_new_map - New Kerf Map
	kerf_api_new_stamp - New Kerf Timestamp
	kerf_api_nil - Kerf Nil
	kerf_api_release - Release Kerf Reference
	kerf_api_retain - Retain Kerf Reference
	kerf_api_set - Kerf Set
	kerf_api_show - Show Kerf Object

	The Kerf IPC Protocol (KIP)
	Execution Type
	Response Type
	Display Type
	Wire Size
	Shard Size
	Payload Size

	Built-In Function Reference
	abs - Absolute Value
	acos - Arc Cosine
	add - Add
	and - Logical AND
	append_table_from_csv - Append Table From CSV File
	append_table_from_fixed_file - Append Table From Fixed-Width File
	append_table_from_psv - Append Table From PSV File
	append_table_from_tsv - Append Table From TSV File
	ascend - Ascending Indices
	asin - Arc Sine
	asof_join - Asof Join
	atan - Arc Tangent
	atlas - Atlas Of
	atom - Is Atom?
	avg - Average
	bars - Time Bars, Sample Buckets, etc.
	between - Between?
	btree - BTree
	bucketed - Bucket Values
	car - Contents of Address Register
	cdr - Contents of Decrement Register
	ceil - Ceiling
	char - Cast to Char
	checksum - Object Hashcode
	close_socket - Close Socket
	combinations - Combinations
	compressed - Compressed Vector Of
	cos - Cosine
	cosh - Hyperbolic Cosine
	count - Count
	count_nonnull - Count Non-Nulls
	count_null - Count Nulls
	create_table_from_csv - Create Table From CSV File
	create_table_from_fixed_file - Create Table From Fixed-Width File
	create_table_from_psv - Create Table From PSV File
	create_table_from_tsv - Create Table From TSV File
	cross - Cartesian Product
	deal - Deal
	delete_keys - Delete Keys
	descend - Descending Indices
	dir_ls - Directory Listing
	display - Display
	distinct - Distinct Values
	divide - Divide
	dlload - Dynamic Library Load
	dotp - Dot Product
	drop - Drop Elements
	emu_debug_mode - Toggle Bytecode Debugger
	enlist - Enlist Element
	enum - Enumeration
	enumerate - Enumerate Items
	equal - Equal?
	equals - Equals?
	erf - Error Function
	erfc - Complementary Error Function
	eval - Evaluate
	except - Except
	exit - Exit
	exp - Natural Exponential Function
	explode - Explode
	extract - Extract From Table
	filter - Filter
	first - First
	flatten - Flatten
	float - Cast to Float
	floor - Floor
	format - Format String
	format_stamp - Format Timestamp
	greater - Greater Than?
	greatereq - Greater or Equal?
	has_column - Table Has Column?
	has_key - Has Key?
	hash - Hash
	hashed - Hashed
	help - Help Tool
	ident - Identity
	ifnull - If Null?
	implode - Implode
	in - In?
	index - Index
	indexed - Indexed
	int - Cast to Int
	intersect - Set Intersection
	isnull - Is Null?
	join - Join
	json_from_kerf - Convert Kerf to JSON
	kerf_from_json - Convert JSON to Kerf
	kerf_type - Type Code
	kerf_type_name - Type Name
	last - Last
	left_join - Left Join
	len - Length
	less - Less Than?
	lesseq - Less or Equal?
	lg - Base 2 Logarithm
	lines - Lines From File
	ln - Natural Logarithm
	load - Load Source
	log - Logarithm
	lsq - Least Squares Solution
	map - Make Map
	match - Match?
	mavg - Moving Average
	max - Maximum
	maxes - Maximums
	mcount - Moving Count
	median - Median
	meta_table - Meta Table
	min - Minimum
	mins - Minimums
	minus - Minus
	minv - Matrix Inverse
	mkdir - Create directory
	mmax - Moving Maximum
	mmin - Moving Minimum
	mmul - Matrix Multiply
	mod - Modulus
	msum - Moving Sum
	negate - Negate
	negative - Negative
	ngram - N-Gram
	not - Logical Not
	noteq - Not Equal?
	now - Current DateTime
	now_date - Current Date
	now_time - Current Time
	open_socket - Open Socket
	open_table - Open Table
	or - Logical OR
	order - Order
	out - Output
	parse_float - Parse Float From String
	parse_int - Parse Integer From String
	parse_stamp - Parse Timestamp From String
	part - Partition
	permutations - Permutations
	plus - Plus
	pow - Exponentiation
	powerset - Power Set
	rand - Random Numbers
	range - Range
	read_from_path - Read From Path
	read_parceled_from_path - Read Parceled Table From Path
	read_striped_from_path - Read Striped File From Path
	read_table_from_csv - Read Table From CSV File
	read_table_from_delimited_file - Read Table From Delimited File
	read_table_from_fixed_file - Read Table From Fixed-Width File
	read_table_from_tsv - Read Table From TSV File
	rep - Output Representation
	repeat - Repeat
	reserved - Reserved Names
	reset - Reset
	reverse - Reverse
	rsum - Running Sum
	run - Run
	search - Search
	seed_prng - Set random seed
	send_async - Send Asynchronous
	send_sync - Send Synchronous
	setminus - Set Disjunction
	shell - Shell Command
	shift - Shift
	shuffle - Shuffle
	sin - Sine
	sinh - Hyperbolic Sine
	sleep - Sleep
	sort - Sort
	sort_debug - Sort Debug
	split - Split List
	sqrt - Square Root
	stamp - Cast to Stamp
	stamp_diff - Timestamp Difference
	std - Standard Deviation
	string - Cast to String
	subtract - Subtract
	sum - Sum
	table - Make Table
	tables - Tables
	take - Take
	tan - Tangent
	tanh - Hyperbolic Tangent
	times - Multiplication
	timing - Timing
	tolower - To Lowercase
	toupper - To Uppercase
	transpose - Transpose
	trim - Trim
	type_null - Type Null
	uneval - Uneval
	union - Set Union
	unique - Unique Elements
	unzip - Decompress Object
	var - Variance
	which - Which
	write_csv_from_table - Write CSV From Table
	write_delimited_file_from_table - Write Delimited File From Table
	write_striped_to_path - Write Striped File To Path
	write_text - Write Text
	write_to_path - Write to Path
	xkeys - Object Keys
	xvals - Object Values
	zip - Compress Object

	Combinator Reference
	converge - Converge
	deconverge - Deconverge
	fold - Fold
	mapback - Map Back
	mapcores - Map to Cores
	mapdown - Map Down
	mapleft - Map Left
	mapright - Map Right
	reconverge - Reconverge
	reduce - Reduce
	refold - Refold
	rereduce - Re-Reduce
	unfold - Unfold

	Global Reference
	Environment
	.Argv - Arguments
	.Help - Function Reference

	Math
	.Math.BILLION - Billion
	.Math.E - E
	.Math.TAU - Tau

	Net
	.Net.client - Client
	.Net.on_close - On Close
	.Net.parse_request - Parse Request

	Parse
	.Parse.strptime_format - Time Stamp Format
	.Parse.strptime_format2 - Time Format

	Print
	.Print.stamp_format - Print Stamp Format

	Programming Techniques
	Reversing a Map
	Run-Length Encoding
	Base64 Conversion
	HTTP Fetching
	Kerf IPC with Python
	HudsucKerf By Proxy

