THE KERF DATABASE AND ADMINISTRATION

Kerf can be viewed as a programming language that features convenient database-like syntax and function-
ality, or it can be viewed as a powerful column-oriented database which happens to include a general purpose
scripting language for writing more complex queries and applications. In either case, Kerf’s functionality
overlaps with SQL, but there are many important differences between Kerf and, say, MySQL.

This guide is intended to provide a quick introduction to Kerf for users who have some familiarity with
conventional SQL-based relational databases and who wish to use Kerf in a similar context. For more
detailed explanations of Kerf features and syntax, refer to The Kerf Programming Language.

1 Launching Kerf

To start Kerf, open a terminal and type kerf -q. This will drop you into the Kerf Read-Evaluate-Print
Loop (REPL). The REPL allows you to type expressions interactively with immediate results. This is the
preferred means of interacting with Kerf. In all the following examples, blue text indicates something typed
by a user at the Kerf REPL, and text occasionally indicates a comment- no need to type those.
Everything else is a result printed by Kerf itself:

> ./kerf -q
KeRF> 2 + 3
5

KeRF> range 10
0, 1, 2, 3, 4,5, 6, 7,8, 9]
KeRF>

If you’re having trouble launching Kerf, refer to the installation guide in The Kerf Programming Language.

2 Loading Data

The first step in designing any SQL database is the creation of a schema which describes the structure,
names, datatypes and constraints of one or more tables. For example, we might declare a table which stores
customer information like so:

CREATE TABLE Customers (

account_number integer PRIMARY KEY,
name text NOT NULL,
ticker_code varchar(5) NOT NULL,
created_on date NOT NULL

);

Kerf table columns can store elements of any datatype, and tables can be easily created, serialized or
destroyed on the fly. This is particularly helpful when using Kerf to pull together potentially messy data
from a variety of sources. If a column consists entirely of a uniform simple datatype, Kerf will automatically
vectorize the column, allowing it to be stored compactly and manipulated efficiently. It is only necessary to
explicitly specify column datatypes when importing data from text-based serialization formats, as we will
see shortly.

Defining an empty table in Kerf to represent similar information to the above requires no more than stating
the names of columns. Keep in mind that unlike SQL, Kerf tables are first-class values. Kerf tables need
not be global and they can be passed to and returned from functions just like numbers, lists or dictionaries.

KeRF> Customers: {{account_number, name, ticker_code, created_on}}

account_number |name |ticker_code|created_on

In SQL, we add data to a table by using the INSERT statement:

INSERT INTO Customers VALUES (1, ’Hudsucker Industries’, ’HUD’, NOW(Q));

Kerf accepts very similar syntax:

KeRF> INSERT INTO Customers VALUES [1, ’Hudsucker Industries’, ’HUD’, now()]
"Customers"

KeRF> Customers

account_number [name ticker_code|created_on

—

Hudsucker Industries HUD|[2016.05.24T21:38:28.448

Kerf also has a variety of helpful built-in functions for data import and export. For example, we can easily
populate a table from a CSV file customers.csv:

account_number,name,ticker_code,created_on
1,Hudsucker Industries,HUD,24-May-16 21:38:28
2,Kerf Inc.,KERF,24-May-16 21:39:03
3,Weyland-Yutani Corp.,WAYU,24-May-16 21:39:36
4,0mni Consumer Products,0CP,24-May-16 21:53:40

KeRF>

KeRF> Customers: read_table_from_csv('"customers.csv", "ISSZ", 1)

account_number |name ticker_code|created_on
1 Hudsucker Industries HUD|2016.05.24T21:38:28.000
2 Kerf Inc. KERF [2016.05.24T21:39:03.000
3| Weyland-Yutani Corp. WAYU|2016.05.24T21:39:36.000
4|0mni Consumer Products 0CP|2016.05.24T21:53:40.000

With a bit of data loaded, we can explore it interactively from the REPL. Observe how we can conveniently
access columns or rows from a table and that Kerf has correctly vectorized its columns:

KeRF> Customers[1]

account_number |name ticker_code|created_on

N

Kerf Inc. KERF|2016.05.24T21:39:03.000

KeRF> Customers[’ticker code’]
I:”HUDH ||KERF|I IIWAYUH IIOCPH]

KeRF> Customers[’created _on’] [’minute’]
[38, 39, 39, 53]

KeRF> count Customers
4

KeRF> kerf_type_name Customers[’created_on’]
"stamp vector"

KeRF> kerf_ type_name mapdown Customers
["integer vector", "list", "list", "stamp vector"]

KeRF> xkeys Customers
["account number", "name", "ticker code", '"created on"]

3 Searching and Sorting

Kerf provides equivalents to a number of SQL’s basic statements for extracting data:

KeRF> People: read_from_path("people.bin")

name age|gender | job
Hamilton Butters| 37 M Janitor
Emma Peel| 29 F Secret Agent
Jacques Maloney| 48 M|Private Investigator
Renee Smithee| 31 F Programmer
Karen Milgram| 16 F Student
Chuck Manwich| 29 M Janitor
Steak Manhattan| 18 M Secret Agent
Tricia McMillen| 29 F Mathematician

KeRF> SELECT name, job AS occupation FROM People WHERE age > 30

name occupation

Hamilton Butters Janitor
Jacques Maloney|Private Investigator
Renee Smithee Programmer

KeRF> SELECT name FROM People GROUP BY gender

gender |name

=

[Hamilton Butters, Jacques Maloney, Chuck Manwich, Steak Manhattan]
F [Emma Peel, Renee Smithee, Karen Milgram, Tricia McMillen]

Basic collective operations such as sum and count can be used in familiar SQL syntax, but they are also
general-purpose built-in functions. There are usually several approaches for solving a given problem in Kerf:

KeRF> SELECT count(job) AS employed FROM People GROUP BY job

job employed

Janitor

Secret Agent

Private Investigator
Programmer

Student
Mathematician

e NDN

KeRF> count mapdown part People["job"]
(2, 2,1, 1, 1, 1]

Subqueries can be arbitrarily nested and there’s no requirement to give them names:

KeRF> SELECT job FROM (SELECT count(job) AS n FROM People GROUP BY job) WHERE n = 1

job

Private Investigator
Programmer

Student
Mathematician

Kerf has its own approach for equivalents to SQL ORDER BY and LIMIT clauses. The ascend function produces
a permutation vector which can be used to reorder a list or table into ascending value. For descending order,
use descend:

KeRF> ascend SELECT age FROM People
(4, 6,1, 5,7, 3,0, 2]

KeRF> // equivalent to "SELECT * FROM People ORDER BY age ASC"
KeRF> People[ascend SELECT age FROM People]

name age|gender|job

Student
Secret Agent
Secret Agent

Karen Milgram| 16 F
Steak Manhattan| 18 M
Emma Peel| 29 F
Chuck Manwich| 29 M Janitor
Tricia McMillen| 29 F Mathematician
Renee Smithee| 31 F Programmer
Hamilton Butters| 37 M Janitor
M

Jacques Maloney| 48 Private Investigator

As for LIMIT, we can define a custom function:

KeRF> limit_rows: {[n, t] first(min(count t, n), t)};

KeRF> // equivalent to "SELECT name, age FROM People LIMIT 3"
KeRF> limit_rows(3, SELECT name, age FROM People)

name age

Hamilton Butters| 37
Emma Peel| 29
Jacques Maloney| 48

4 Joins

In Kerf, joins are provided by built-in functions. left_join is similar to the familiar SQL LEFT JOIN
construct. It combines every row of the left table with the rows of the right table that match on a particular
column, substituting appropriate null values where there is no corresponding row in the right table.

KeRF> a: {{name: ["Bob Johnson", "Kurt Hardfist", "Beef Manly"], age: 31 28 47}}

name age

Bob Johnson| 31
Kurt Hardfist| 28
Beef Manly| 47

KeRF> b: {{name: ["Kurt Hardfist", "Madeline Potter", "Bob Johnson"],
> net_worth: 43052.10 98100.5 12.75}}
name net_worth

Kurt Hardfist 43052.1
Madeline Potter 98100.5
Bob Johnson 12.75

KeRF> left_join(a, b, "name")

name age|net_worth
Bob Johnson| 31 12.75
Kurt Hardfist| 28| 43052.1
Beef Manly| 47 nan

It is also possible to require matches on several columns or to specify that differently-named columns across
two tables should be compared for equality.

A less familiar type of join is asof_join, which can be used to perform “fuzzy joins”. The first three
arguments behave identically to left_join. The fourth argument specifies a column or columns which will
match if the values in the right table are less than or equal to the values they’re compared with in the left
table. asof_join is particularly useful in time-series database queries, as it allows you to easily normalize
data. For example, associating timestamped transactions with the the closest preceding event.

5 The External World

We’ve already seen how Kerf can import data from files on disk. Kerf provides helper functions for handling
a wide variety of common data interchange formats, including fixed-column formats, delimited formats like
CSV, and JSON. It is also equipped with a custom high-performance disk serialization format. If a table
is disk-backed, it will automatically be serialized and persisted across sessions as it is changed. Kerf will
efficiently page portions of disk-backed tables in and out of working memory, allowing you to work with very
large datasets:

KeRF> c: create table from csv("Customers.bin", "Customers.csv", "ISSZ", 1)

account_number [name ticker code|created_on
1 Hudsucker Industries HUD|2016.05.24T21:38:28.000
2 Kerf Inc. KERF [2016.05.24T21:39:03.000
3| Weyland-Yutani Corp. WAYU|2016.05.24T21:39:36.000
4 |0mni Consumer Products 0CP|2016.05.24T21:53:40.000

KeRF> INSERT INTO c¢ VALUES [5, "Water and Power", "TANKG", now()]

||CI|

KeRF> \\

> ./kerf —q

KeRF> Customers: open_table("Customers.bin")

account_number |name ticker_code|created_on
1 Hudsucker Industries HUD|2016.05.24T21:38:28.000
2 Kerf Inc. KERF [2016.05.24T21:39:03.000
3| Weyland-Yutani Corp. WAYU|2016.05.24T21:39:36.000
4|0mni Consumer Products 0CP|2016.05.24T21:53:40.000
5 Water and Power TANKG|2016.05.24T21:57:32.385

Kerf features a simple Inter-Process Communication (IPC) mechanism, allowing you to network remote
instances of the interpreter. Supposing we had a second Kerf process on localhost listening on port 1234,

4

1

KeRF> send_sync(c,"2 * data")
(o, 2, 4, 6, 8, 10, 12, 14, 16, 18]

KeRF> c: open_socket("localhost", "1234")

KeRF> send_async(c, "data: $1", [range 10])

Kerf’s documentation demonstrates how the same system can be used to easily interoperate between Kerf

and other popular languages such as Java or Python.

If there’s special functionality you need which isn’t built into Kerf already, you can use Kerf’s Foreign
Function Interface (FFI) to produce wrappers for any existing C codebase:

#include <stdio.h>
#include "kerf_api.h"

KERF foreign_function_example(KERF argument) {
int64_t value = argument->i;
printf("Hello from C! You gave me a %d.\n", (int)value);
return O;

KeRF> f: dlload("example.dylib", "foreign_ function_example", 1)
{OBJECT:foreign_function_example}

KeRF> f(42)

Hello from C! You gave me a 42.

Refer to The Kerf Programming Language for several practical examples of using the FFI, including an
extended discussion of the creation of a custom wrapper for libcurl and using it to perform HTTP requests
against pre-existing web APIs.

	Launching Kerf
	Loading Data
	Searching and Sorting
	Joins
	The External World

