8000 I can't verify the result · Issue #20 · iMoonLab/yolov13 · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
I can't verify the result #20
Open
@ZHIBINJIAN

Description

@ZHIBINJIAN

I followed the official tutorial. 1. Train coco128. I started training map=0 from 0. 2. If I load the pre-trained weights of yolov13, the map would be 0.7, but I don't know if the network is trained. 3. Then I used my own dataset to load the yolov13 pre-trained weights, with a map of 0.000 or so, but it couldn't be improved. Why is this?

PS C:\Users\29363\Desktop\yolov13-main> & C:/Users/29363/AppData/Local/conda/conda/envs/yolov13/python.exe c:/Users/29363/Desktop/yolov13-main/train.py
New https://pypi.org/project/ultralytics/8.3.159 available 😃 Update with 'pip install -U ultralytics'
Ultralytics 8.3.63 🚀 Python-3.11.13 torch-2.7.1+cu128 CUDA:0 (NVIDIA GeForce RTX 5070 Laptop GPU, 8151MiB)
engine\trainer: task=detect, mode=train, model=yolov13s.yaml, data=coco128.yaml, epochs=20, time=None, patience=100, batch=8, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=4, project=None, name=train16, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.0, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.1, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train16

               from  n    params  module                                       arguments

0 -1 1 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2]
1 -1 1 9344 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2, 1, 2]
2 -1 1 20800 ultralytics.nn.modules.block.DSC3k2 [64, 128, 1, False, 0.25]
3 -1 1 37120 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2, 1, 4]
4 -1 1 78464 ultralytics.nn.modules.block.DSC3k2 [128, 256, 1, False, 0.25]
5 -1 1 68352 ultralytics.nn.modules.conv.DSConv [256, 256, 3, 2]
6 -1 2 677120 ultralytics.nn.modules.block.A2C2f [256, 256, 2, True, 4]
7 -1 1 134400 ultralytics.nn.modules.conv.DSConv [256, 512, 3, 2]
8 -1 2 2664960 ultralytics.nn.modules.block.A2C2f [512, 512, 2, True, 1]
9 [4, 6, 8] 1 1343744 ultralytics.nn.modules.block.HyperACE [256, 256, 1, 8, True, True, 0.5, 1, 'both']
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 9 1 132096 ultralytics.nn.modules.block.DownsampleConv [256]
12 [6, 9] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
13 [4, 10] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
14 [8, 11] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 1 443648 ultralytics.nn.modules.block.DSC3k2 [768, 256, 1, True]
18 [-1, 9] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
19 17 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
20 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 131712 ultralytics.nn.modules.block.DSC3k2 [512, 128, 1, True]
22 10 1 33024 ultralytics.nn.modules.conv.Conv [256, 128, 1, 1]
23 [21, 22] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
24 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
25 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
26 -1 1 345344 ultralytics.nn.modules.block.DSC3k2 [384, 256, 1, True]
27 [-1, 9] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
28 26 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
29 [-1, 14] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 1346048 ultralytics.nn.modules.block.DSC3k2 [768, 512, 1, True]
31 [-1, 11] 1 1 ultralytics.nn.modules.block.FullPAD_Tunnel []
32 [23, 27, 31] 1 850368 ultralytics.nn.modules.head.Detect [80, [128, 256, 512]]
YOLOv13s summary: 648 layers, 9,055,527 parameters, 9,055,511 gradients, 21.2 GFLOPs

Freezing layer 'model.32.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed ✅
train: Scanning C:\Users\29363\Desktop\yolov13-main\datasets\coco128\labels\train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method='weighted_average', num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8)), ImageCompression(p=0.5, compression_type='jpeg', quality_range=(75, 100))
val: Scanning C:\Users\29363\Desktop\yolov13-main\datasets\coco128\labels\train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
C:\Users\29363\AppData\Local\conda\conda\envs\yolov13\Lib\site-packages\albumentations\check_version.py:147: UserWarning: Error fetching version info The read operation timed out
data = fetch_version_info()
Plotting labels to runs\detect\train16\labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 139 weight(decay=0.0), 189 weight(decay=0.0005), 153 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to runs\detect\train16
Starting training for 20 epochs...

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   1/20      3.34G      3.513      5.717      4.266         93        640: 100%|██████████| 16/16 [00:20<00:00,  1.29s/it]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:03<00:00,  2.11it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   2/20      3.48G      3.617       5.71      4.264        132        640: 100%|██████████| 16/16 [00:07<00:00,  2.26it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  2.99it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   3/20      3.39G      3.505      5.699       4.24        157        640: 100%|██████████| 16/16 [00:07<00:00,  2.01it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  2.97it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   4/20      3.39G      3.539      5.725      4.275        114        640: 100%|██████████| 16/16 [00:07<00:00,  2.27it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.09it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   5/20      3.47G      3.603      5.681      4.273        145        640: 100%|██████████| 16/16 [00:11<00:00,  1.42it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.16it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   6/20      3.41G      3.672      5.732      4.253        104        640: 100%|██████████| 16/16 [00:11<00:00,  1.41it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.02it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   7/20      3.39G      3.619      5.692      4.263        173        640: 100%|██████████| 16/16 [00:07<00:00,  2.27it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.62it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   8/20      3.39G      3.697      5.732      4.238         69        640: 100%|██████████| 16/16 [00:06<00:00,  2.47it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.45it/s]
               all        128        929          0          0          0          0          0

  Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
   9/20      3.39G      3.472      5.697      4.254         71        640: 100%|██████████| 16/16 [00:10<00:00,  1.59it/s]
             Class     Images  Instances      Box(P          R      mAP50      mAP75  mAP50-95): 100%|██████████| 8/8 [00:02<00:00,  3.48it/s]
               all        128        929          0          0          0          0          0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0