Real Estate Data Interchange Standard:

Real Estate Transaction Specification
Version 1.7.2

August 29, 2008

Table of Contents

1. Introduction 1-1
Purpose it i e 1-1
1T el o o 1-1
Requirements o0 1-1
Required Features 1-1
Compatibility with Prior Versions. 1-2
Terminology 1-2
2. Notational Conventions 2-1
AugmentedBNF. 2-1
Typographic Conventions 2-1
Rules........ 2-2
Atoms and Primitive Entities. 2-2
3. Message Format 3-1
General MessageFormat 3-1
RETS HTTP/1.1 Encapsulation 3-1
RequestArguments 3-1
ResponseBodies 3-2
RequestFormat. 3-2
Required Client Request Header Fields 3-2
Optional Client Request Header Fields 3-3
ResponseFormat..................... 3-4
Required Server Response Header Fields. 3-5
Optional Server Response Header Fields 3-6
Data Compression in RETS Transactions 3-7
GeneralStatusCodes 3-8

Computing the RETS-UA-Authorization Value. . . 3-9

4, Login Transaction 4-1
Securityo i e e e 4-1
User Authentication 4-1
Client Authentication 4-1
DataSecurity. 4-1
AuthorizationExample 4-2
Required Request Arguments 4-2
Optional Request Arguments 4-2
BrokerCode Argument. 4-2
SavedMetadataTimestamp Argument. 4-2
Optional Response Header Fields. 4-3
Login ResponseBody Format 4-3
Required Response Arguments 4-3
Broker i, 4-3
MemberName. 4-4
Metadata Version Information 4-4
Userinformation 4-4
Capability URLList 4-5
Optional Response Arguments 4-5
Accounting Information. 4-5
Access Control Information. 4-5
Office List Information. 4-6
Well-KnownNames. 4-6
Capability URLList 4-6
ReplyCodes, 4-8
Version 1.7.2

5. GetObject Transaction 5-1
Required Client Request Header Fields 5-1
Optional Client Request Header Fields. 5-2
Required Request Arguments 5-2
Optional Request Arguments 5-3
Location............. 5-3
Required Server Response Header Fields 5-3
Optional Server Response Header Fields 5-4
location.............. ... 5-4
Descriptiono .. 5-4
Required Response Arguments 5-4
Optional Response Arguments. 5-5
Metadata 0., 5-5
Resources 5-5
MultipartResponses 5-5
General Construction. 5-5
ErrorHandling 5-6
ReplyCodes. 5-7
6. Logout Transaction 6-1
Required Request Arguments 6-1
Optional Request Arguments 6-1
Required Response Arguments 6-1
Optional Response Arguments. 6-1
Logout Response Body Format 6-2
ReplyCodes. 6-2
7. Search Transaction 7-1
SearchTypes 7-1
Search Terminology. 7-2
Field Delimiter 7-2
FieldName 7-2
RecordCount. 7-2
Otherterms. 7-2
Required Request Arguments 7-2
SearchTypeandClass 7-2
Query Specification. 7-3
Optional Request Arguments 7-3
Count.cv ittt ittt ittt 7-3
Format................ 7-3
Limit i, 7-4
Offset.o v ittt i i e 7-4
Select.o i i e 7-5
Restricted Indicator. 7-5
StandardNames 7-6
Required Response Arguments 7-6
Search Response Body Format. 7-6
Querylanguage 7-8
QuerylanguageBNF 7-8
Query parameter interpretation. 7-9
Sub-queries. i i i e 7-10
ReplyCodes. 7-11
8. Get Transaction 8-1
Required Request Arguments 8-1
Optional Request Arguments 8-1

Real Estate Transaction Specification i

Required Response Arguments
Optional Response Arguments
Status Conditions

9. Change Password Transaction

Required Request Arguments

Optional Request Arguments
Required Response Arguments
Optional Response Arguments
ReplyCodes
Encryption Key Construction

ECB Padding

Effectofchange.

10. Update Transaction

Required Request Arguments
Optional Request Arguments
Required Response Arguments
Optional Response Arguments
Update Response Body Format

Errorblock
Warningblock.

Validation.

Lookup i,
MultiSelect Lookup.
Range i
TestExpressionc00..
External

ReplyCodes

11. Metadata Format

Organization and Retrieval.

Metadata Organization
General Rules for Interpretation
Metadata Retrieval Hierarchy
MetadataFormat.

ForeignKeys....................
ForeignKeys Metadata Content.

Metadata Format for Class Elements.

UpdateTypeo i i

Metadata Format for Shared Elements

LookupType..........
SearchHelp.
EditMask

RETS Regular Expression Specification .
UpdateHelp
ValidationLookup
Validation Lookup Type.

Real Estate Transaction Specification

Validation Expression. 11-25
ValidationExternal 11-27
Validation External Type. 11-28

12. GetMetadata Transaction 12-1

Required Client Request Header Fields. 12-1
Required Request Arguments 12-1
Optional Request Arguments. 12-1
Required Server Response Header Fields 12-2
Required Response Arguments 12-2
Optional Response Arguments. 12-2
Metadata Response BodyFormat 12-2
ReplyCodes. 12-3
13. Compact Data Format 13-1

Overallformat 13-1
DecodedFormat. 13-1
Multivalued Fields. 13-2
Transmissionstandards 13-2
14, Session Protocol 14-1

Connection Establishment 14-1
Authorization. 14-1
SESSION . v v v ittt 14-2
Termination. 14-2

15. [deprecated] Serverinformation

Transaction 15-1
Required Request Arguments 15-1
Optional Request Arguments. 15-1
ResponseFormat 15-1
Well-knownnames 15-2
ReplyCodes. 15-3
16. Acknowledgments 16-1
17. Authors 17-1
18. References 18-1
DTD References A-1
Sample COMPACT Metadata ResponsesB-1
System i e e B-1
Resource........... B-1
ForeignKeys B-2
Class. . . oo ittt e e B-2
Table i B-3
Update. i, B-3
UpdateType B-3
Object i, B-4
Lookup.ii i B-4
LookupType B-4

Version 1.7.2

SearchHelp. B-5

EditMask B-5
UpdateHelp i B-5
ValidationLookup B-6
Validation LookupType. B-6
Validation Expression B-6
ValidationExternal B-7
Validation External Type B-7
Version 1.7.2

Summary of RETS Reply Codes C-1

Maximum Field Length and Display

Information D-1
DatatypeBoolean. D-1
DatatypeCharacter. D-2
DatatypeDecimal D-2
Document Revision History E-1

Index of Compliance Items 1-1

Index Index-1

Real Estate Transaction Specification iii

iv Real Estate Transaction Specification Version 1.7.2

List of Figures

11.1 MetadataStructure. 11-2

Version 1.7.2 Real Estate Transaction Specification v

vi Real Estate Transaction Specification Version 1.7.2

List of Tables

3-1 General StatusCodes. 3-8
4-1 Well-Known Names for Input Fields 4-6
4-2 Capability URL Descriptions 4-7
4-3 Valid Reply Codes for Login Transaction . . . 4-8
5-1 GetObjectReplyCodes 5-7
6-1 LogoutReplyCodes 6-2
7-1 Search Transaction Reply Codes. 7-11
9-1 Change Password ReplyCodes 9-2
10-1 Update Transaction Reply Codes 10-5

11-1 MetadataSystem Compact Header Attributes11-5

11-2 System Compact Header Attributes 11-5
11-3 Metadata: SystemField 11-5
11-4 Well-Known Resource Names 11-5

11-5 Resource Metadata Compact Header Attributes11-6
11-6 Metadata: Resource Description Fields . . 11-6
11-7 ForeignKeys Metadata Compact Header Attributes
11-9
11-8 Metadata Content: Foreign Keys. 11-9
11-9 Class Metadata Compact Header Attributes11-10
11-10 Metadata Content: Resource Class . .. 11-11
11-11 Table Metadata Compact Header Attributes11-12

11-12 Metadata Content-Tables. 11-12

11-13 Update Metadata Compact Header Attributes11-16

11-14 Metadata Content-Update. 11-16

11-15 UpdateType Metadata Compact Header Attributes
11-17

11-16 Metadata Content - Update Type 11-17

11-17 Well-known ObjectTypes 11-18

11-18 Object Metadata Compact Header Attributes11-18
11-19 Metadata Content: Resource Object . . 11-18
11-20 Lookup Metadata Compact Header Attributes11-19

11-21 Metadata Content: Lookup 11-19

11-22 Lookup Type Metadata Compact Header Attributes
11-20

11-23 Metadata Content: Lookup Type. 11-20

Version 1.7.2

11-24 Search Help Metadata Compact Header Attributes

11-21
11-25 Metadata Content: Search Help. 11-21
11-26 EditMask Metadata Compact Header Attributes
11-21
11-27 Metadata Content: Edit Mask 11-21

11-28 RETS Regular Expression Metacharacters11-22
11-29 Update Help Metadata Compact Header Attributes

11-23
11-30 Metadata Content: UpdateHelp 11-23
11-31 ValidationLookup Metadata Compact Header
Attributes. Lo oL, 11-23

11-32 Metadata Content: Validation Lookup . 11-23
11-33 Validation Lookup Type Metadata Compact Header

Attributes. oL 11-24
11-34 Metadata Content: Validation Lookup Type11-24
11-35 Validation Expression Types. 11-25
11-36 Validation Expression Operators 11-26
11-37 Validation Expression Special Operand Tokens

11-26
11-38 Validation Expression Metadata Compact Header

Attributes. oL 11-27

11-39 Metadata Content: Validation Expression11-27
11-40 Validation External Metadata Compact Header
Attributes. Lo oL, 11-28
11-41 Metadata Content: Validation External . 11-28
11-42 Validation External Type Metadata Compact

Header Attributes 11-29
11-43 Metadata Content: Validation External Type11-29
12-1 GetMetadataReplyCodes. 12-3
13-1 Compact Data Field Format Representation13-2
15-1 Well-Known Parameter Names 15-2
15-2 Serverinformation Reply Codes 15-3
A-1 DTDReferences A-1
C-1 Consolidated list of RETS reply codes. C-1

Real Estate Transaction Specification vii

viii Real Estate Transaction Specification Version 1.7.2

1.1 Purpose

INTRODUCTION

1.2 Scope

The Real Estate Transaction Standard (RETS) is a specification for a standard |
communication method between computer systems exchanging real estate information. It
defines a standard interface for use by applications such as agent desktop software, IDX
(Internet Data Exchange) systems, data aggregation systems, and many other systems that
store, display or operate on real estate listing, sales and other data.

This specification describes the Real Estate Transaction Standard communication
protocol. Together with the companion XML DTDs (Document Type Definitions) listed
in Appendix A, it constitutes the specification for the standard.

This specification is intended to define only the minimum a product or service must do in
order to be considered “compliant”. This specification is extensible and nothing in the
specification precludes a vendor from adding data or functionality over and above that
detailed here. However, when a function is provided or a data element is stored by a
compliant system, it must offer access to the function or mechanism in a way that
complies with the specification in order to be considered compliant.

1.3 Requirements

1.3.1 Required Features

| Version 1.7.2

This specification uses the same words as RFC 1123 [1] for defining the significance of
each particular requirement. These words are:

MUST This word or the adjective "required” means that the item is an
absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an
implementation in order to be considered compliant.

1-1

SHOULD This word or the adjective “recommended” means that there may
exist valid reasons in particular circumstances to ignore this item,
but the full implications should be understood and the case
carefully weighed before choosing a different course. A feature
that the specification states SHOULD be implemented is treated
for compliance purposes as a feature that may be implemented.

MAY This word or the adjective “optional” means that this item is truly
optional. A feature that the specification states MAY be
implemented need not be implemented in order to be considered
compliant. However, if it is implemented, the feature MUST be
implemented in accordance with the specification.

An implementation is not compliant if it fails to satisfy one or more of the MUST
requirements for the protocols it implements. An implementation that satisfies all the
MUST and all the SHOULD requirements for its protocols is said to be “unconditionally
compliant”; one that satisfies all the MUST requirements but not all the SHOULD
requirements for its protocols is said to be “conditionally compliant.”

Client and server implementations should generally follow the Internet protocol
convention of being strict in what they generate, but tolerant in what they accept.
However, in cases where tolerance of deviations from the specification could result in an

| incorrect interpretation of user data or intentions, implementers are urged to reject
transactions rather than supplying possibly-incorrect defaults.

1.3.2 Compatibility with Prior Versions

| The RETS 1.7.2 specification supersedes previous versions of the RETS specification.
There is no requirement for a client or server that advertises itself as “compliant with RETS
1.7.2” to interoperate with earlier versions. However, client and server implementers are
urged to support the prior versions, RETS 1.7 and RETS 1.5, in order to insure a smooth

transition.
1.4 Terminology

Arguments Tag/value pairs passed to a transaction as part of the Argument-
List.

Class A subset of data elements within a Resource that share common
metadata elements.

Client The system requesting data. This may well be a server seeking to
update itself from another server. The specification does not
assume any particular kind of client.

Endpoint Either a server or client.

Metadata The set of data that describes data fields in detail.

Metadata Dictionary ~ The set of data that describes the available metadata. It is used to
determine the different classes of accessible data on the server and
does not describe the fields within the those classes. It also defines

| 1-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

Object

Optional

Required

Resource

Resource Element

Resource Key
Server

Request ID

StandardName

SystemName

what different types of searches are available (tax, open house,
etc.).

For purposes of RETS and its GetObject transaction, a collection
of octets treated as a unit and associated with a unique resource
element.

A field or feature described by this specification but not required
for an endpoint to be considered compliant. The specification
states the action to be taken by a compliant system in the absence
of an optional field. The fact that the specification designates a
field as optional does not mean that the recipient of a transaction
that is missing optional fields is required to provide all services
that could be required if the field were present.

A compliant server or client MUST include any field designated
as required. A transaction that does not include every required
field MUST be rejected by the recipient.

A collection of data having the external appearance of belonging
to a single database and being accessible for search or update via
RETS transactions.

An individual record from a resource identified by a Resource
Key.

The unique key that identifies a resource element.
The system providing data (also referred to as the “host”).

A client-provided character string of up to 64 printable characters
which uniquely identifies a request to a client. The contents are
implementation-defined. Defined in Section 3.4, “Optional Client
Request Header Fields”.

The name of a data field as it is known in the Real Estate
Transaction Standard Data Dictionary.

The name of a data field as it is known in the metadata.

1-3

| 1-4 Real Estate Transaction Specification Version 1.7.2

NOTATIONAL CONVENTIONS

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented
Backus-Naur Form (BNF) similar to that used by RFC 2822 [4] and defined in RFC 2234
[22].

2.2 Typographic Conventions

| Version 1.7.2

Parsing constructs and examples are set in a nonospaced font:
Server: Mcrosoft-11S/4.0

In parsing constructs, textual elements that are required exactly as shown are indicated by
bol df ace type., while textual elements that represent placeholders for actual data are
indicated by a s/ ant ed font:

Server: server identifier

Entities designated by a textual definition contain that definition enclosed in angle
brackets:

<any 8-bit sequence of data>
Atoms and primitive entities are indicated by / TAL/ C CAPS
1*64AL PHANUM

Two nonprinting characters also have significance in some RETS constructs. These may be
represented by special printing graphics:

- Tab character, ASCII HT, an octet with a value of 09

Space character, ASCII SP, an octet with a value of 32. The symbol is used
where needed for clarity.

Certain features of the standard may be superseded as the standard develops. These
features should be avoided and are indicated by the text [deprecated] which will follow the
first use of the feature terminology. Future releases of the standard may remove
deprecated features.

2-1

2.3 Rules

The following rules are used throughout this specification to describe basic parsing
constructs. The US-ASCII coded character set is defined by ANSI X3.4-1986 [5].

Parsed entities are constructed combinations of atoms or other entities as defined below.
Atoms may be combined and repeated to form longer constructs. When there are
constraints on the repetition of atoms, the constraints are expressed by a notation of the
form:

m*n

where both m and n are integers. m represents the minimum allowed number of
repetitions, and n represents the maximum. If m is omitted, it is presumed to be zero; if n
is omitted, it is presumed to be infinite. For example, the syntactic construct

1*64AL PHANUM
means a string of ALPHANUM containing at least 1 and at most 64.

When a parsing construct is represented by a string of entities, some of which are optional,
the optional entities are enclosed in square brackets. For example, in the string

error-nunber [error-code]
the error - numper entity is required, while the error - code entity is optional.
| Elements separated by the vertical bar are alternatives. The entity description
ALPHA| DIGT
means “either an ALPHAora DIG' T".

|2.4 Atoms and Primitive Entities

Note The definitions for ALPHA, CHAR CTL, DI G T, HEXDI G and CCTET are derived from RFC
2234,
ALPHA n=9%41-5A | %61-7A
sA-Z|a-z
CHAR w= %01-7F
; ANY 7-BIT US-ASCII CHARACTER,
; EXCLUDING NUL
CTL 1= %00-1F | %7F
; controls
DGarT n= 9%30-39
; 0-9
HEXDI G =DOGT|"A"|"B"|"C"|"D"|"E"|"F"
OCTET = 9%00-FF
; any 8-bit sequence of data

[2-2 Real Estate Transaction Specification Version 1.7.2

B EAN = TRUE | FALSE
TRUE n= 17
FALSE =40
RETSI D = 1*32AL PHANUM
RETSMANE = 1*64/ DAL PHANUM
1 DAL PHANUM n= ALPHANUM |« _”
AL PHANUM u= ALPHAl oarT
SQLFI ELDNAVE u= ALPHA *31ALPHANUM<except ANSI SQL 92 reserved words>
CR ::= <US-ASCII CR, carriage return (13)>
LF := <US-ASCII LF, linefeed (10)>
SP ::= <US-ASCII SP, space (32)>
HT ::= <US-ASCII HT, horizontal-tab (9)>
<">or" ::= <US-ASCII double-quote mark (34)>
ML ::= <no character>
CALFor u=CRLF
LS = [CRLA 17(SP1 HT)
| HEX s="ATL VB "C LD EN LU tat | b | e
| "d" 1 te" | "f' I DGT
LHEX w="a" | "b" | "c¢" | "d" | "e" | "f" | OGT

OPTNONNEGAT!T VENUM - ::= NULL | NONNEGAT! VENUM

;nullor >=0

QPTPCS! TI VENUM a= MILL | PQSI Tl VENUM
;nullor >=1

NONEGATT VENUM u= 10 | PQOS! TI VENUM

; also known as cardinal numbers or counting numbers

; consisting of integers greater than 0

NONZERCDI G' T = %%31-39
;1-9
PLAI NTEXT = <any QCTET except CTLs>
PGS! TI VENUM = MONZERDIG T "DIGT
;>0
SERI AL n=r-1" | NONNEGAT! VENUM

>

| Version 1.7.2 2-3

| TEXT ::= <any QCTET except CTLs, but including £ n&>

Note Implementers are cautioned that the definition of the TEXT atom may conflict with
certain outputs, in particular a collision between the delimiter octet of Section 7.2.1 and
the output information when using the formats COMPACT or COMPACT-DECODED.
Further, the definition may conflict with escaping rules for well-formed XML responses.
The responsibility for resolving these conflicts lies with the transmitting party. In
particular, the responses to Search, Update and GetMetadata may have this conflict.

TCKENCHAR = <any GHARexcept C7Ls or TSPECI ALS>

TCKEN n= 1* TOKENCHAR

TSPECI ALS sE(UL) LT LS @ Lt Y
P I I EO I RS S B B S B U -
| HT

QUOTED- STRI NG u= (<">*(QOTEXT) <">)

QOTEXT = <any TEXT except <">>

RETSDATETI ME u=date-time|partial-date-time

RETSTI ME n=full-time|partial-time

DATE ::= Date using the format defined in RFC 2616 as r f ¢ 7123- dat e.

Note The definitions for the date and time are derived from RFC 3339.

date-full year =40 GT

dat e- nont h w=20GT;01-12

dat e- miay =20 G T ;01 -28,01-29,01-30, 01-31, based on month/year

time- hour w=20GT;00-23

time-m nute s=20G T ;00-59

time- second =20 G T ;00-58,00 - 59,00 - 60 based on leap second rules

time-secfrac =“VIDGT

time- nunof f set s=(“+"1"-") time-hour “:7 time-mnute

time-of fset n=%2" | ti me- nunof f set

partial-tinme u=tinme-hour “:” time-mnute ”:” tine-second [tine-
secfrac)

full-date = date-fullyear “-" date-nonth “-" date-nday

full-tine =partial-tinmetine-offset

date-tine u=full-date “T" full-time

partial-date-time = full-date “T partial-tine

Note ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats.
Based on common usage patterns, this standard applies the following additional
constraints to improve interoperability and compatibility. The representation of the time
offset UTC character “Z’ and the date-time separator character “T” MUST be upper case.

| 2-4 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

The time-secfrac is limited to one digit only. The date and time representations are

intended for machine processing, therefore, no whitespace is expected in any of the atoms.
Examples of the format are similar to that of the W3C note, for example, 1997-07-
16T19:20:30.4+01:00 or 1997-07-16T18:20:30.4Z. Servers and Clients MUST treat the
time-offset °Z” and “+00:00” as identical times. Servers and Clients MAY use the
interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-
offset “-00:00” is semantically different from “+00:00” and represents a known UTC time

but unknown local time.

LA

hier-part

scheme
authority
userinfo
host

port
IP-literal
IPvFuture

IPv6address

hi6
1s32
IPv4address

dec-octet

== scheme “.” hier-part [“?” query] [“#” fragment]
::="//" authority path-abempty

| path-absolute

| path-rootless

|path-empty

n= ALPHA*(ALPFA|DL G T|"+" |"-" |"")

::= [userinfo "@"] host [":" port]

::=*(unreserved |pct-encoded |sub-delims |":")

::= [P-literal |IPv4address |reg-name

*DG'T

"[" (IPv6address |IPvFuture) "]"

u="V" I*HEXDI G"." 1*(unreserved |sub-delims |":")
z=6(h16"") 1s32

":"5(h16"") 1s32

[h16]":"4(h16"")1s32
[*1(h16"")h16]":"3(h16 ™") 1s32
[*2(h16"")h16]":" 2(h16 ":") Is32
[*3(h16"")hl6] ":" hl6"" 1s32
[*4(h16™") hl6] ":" 1s32
[1"
[1"

*5(h16 ") h16] ":" hl6
*6(h16 ") h1l6] ":"
u=1*4HEXDI G

:=(h16 ":"h16) / IPv4address

"n "o "nn

::= dec-octet "." dec-octet "." dec-octet "." dec-octet
=0Dd4arT ; 0-9

|%x31-39 G T ;10-99

|'t"" 200G T ; 100-199

|'2" %x30-34 ' G T ;200-249

2-5

Note

reg-name

path

path-abempty
path-absolute
path-noscheme
path-rootless
path-empty
segment
segment-nz

segment-nz-nc

pchar

query
fragment
pct-encoded
unreserved
reserved
gen-delims

sub-delims

["25" %x30-35 ; 250-255

= *(unreserved / pct-encoded / sub-delims)

::= path-abempty ; begins with "/" or is empty

| path-absolute ; begins with "/" but not "//"
|path-noscheme ; begins with a non-colon segment
|path-rootless ; begins with a segment

|path-empty ; zero characters

==*("/" segment)

:="/"[segment-nz *("/" segment)]

= segment-nz-nc *("/" segment)

= segment-nz *("/" segment)

= 0<pchar>

= *pchar

= 1*pchar

= 1*(unreserved |pct-encoded |sub-delims |'@")
; non-zero-length segment without any colon ":"
::= unreserved |pct-encoded |sub-delims |":" |'@"
== *(pchar |"/"|"?")

= *(pchar |"/"|"?")

== "%" HEXDI GHEXDI G

c= ALPHA|DIG T|"-" | | |"~"

::= gen-delims |sub-delims

= PP T T e

= S PR

The definition for URI is derived from RFC 3986.

| 2-6 Real Estate Transaction Specification

Version 1.7.2

MESSAGE FORMAT

RETS uses HTTP version 1.1 [2] for sending messages between clients and servers. It
defines three additional HTTP headers, and some RETS transactions constrain the values
of certain headers defined by HTTP 1.1 and/or make certain headers designated as
optional in HTTP 1.1 mandatory when used for RETS. In addition, RETS requests use
HTML 4.01 [16] form encoding to encapsulate request parameters. In addition, a
compliant RETS client MUST implement cookie handling as specified in RFC 2109 [15].

The information below summarizes some of the requirements of HTTP 1.1 and
HTML 4.01 for ease of reference. However, in all cases, the underlying standards are the
normative references for message formats.

3.1 General Message Format

3.1.1 RETS HTTP/1.1 Encapsulation

RETS messages are encapsulated as the bodies of HTTP/1.1 requests and responses. The
request body may be null, depending on the request. The response body is never null

Note that, per RFC 2822, keywords in header key-value pairs are not case-sensitive. The
values, however, may be case-sensitive depending on context.

3.1.2 Request Arguments

| Version 1.7.2

RETS requests are HTML 4.01-compliant form submissions, following all of the
specifications in the HTML 4.01 recommendation. Note that the HTML 4.01 specification
provides that:

Key names in key/value pairs are not case-sensitive.

Both key names and key values MUST be encoded as specified in HTML 4.01 section
17.13.4, with + characters replacing spaces, and then reserved characters being
escaped per RFC 2396 [13], unless the client uses a content-type of multipart/form-
data.

3-1

3.1.3 Response Bodies

The body of a response to most RETS requests is a well-formed XML document; the
exceptions are the Get transaction (section 8) and the GetObject transaction (section 5).
This means that servers must construct the body in accordance with the XML specification
[17], and that clients must parse the body in accordance with that specification.

3.2 Request Format

A RETS request is either an HTTP GET request or an HTTP POST request. In the case of
the GET-request the Argument-List is appended to the Request-URI after a delimiting
question mark (“?”). For the post-request the Argument-List is sent as the first entity body

for the POST method.
get - request ==CET-Request - URI [? Argument - Li st -HITP- Versi on CALF
*message- header
CALF
post - request ==POST-Request - URI - HTTP- Versi onCALF
*nmessage- header
CALF

[Argument - Li st

The Request - URI, HTTP- Ver si on and message- header are defined in RFC 2616. The
detailed construction of the Argurment - Li st is defined in HTML 4.01.

3.3 Required Client Request Header Fields

The HTTP header of any messages sent from the client MUST contain the following

header fields:

User - Agent This header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing
of protocol violations, and automated recognition of user agents
for the sake of tailoring responses to avoid particular user agent
limitations, as well as providing enhanced capabilities to some
user-agents. All client requests MUST include this field. This is a
standard HTTP header field as defined in RFC 2616.

User - Agent = User-Agent: 1* product
product = TOKEN|! product-version]
product -version:= TCKEN

Example: User-Agent: CMAZi || a/4.00

Product tokens should be short and to the point: use of them for advertising or other non-
essential information is explicitly forbidden. Although any token character may appear in
a product-version, this token SHOULD only be used for a version identifier (i.e.,
successive versions of the same product SHOULD only differ in the product-version
portion of the product value). For more information about User-Agent see RFC 2616.

[3-2 Real Estate Transaction Specification Version 1.7.2

A server MAY advertise additional capabilities based on the client application User-Agent,
and MAY refuse to proceed with the authorization if an acceptable User-Agent has not
been supplied. A server MAY also choose to authenticate the client application identity
cryptographically using the RETS- UA- Aut hor i zat i on header; see section 3.4 for
additional information.

RETS- Ver si on The client MUST send the RETS-Version. The convention used is
a “<major>.<minor>.<release>” numbering scheme similar to the
HTTP Version in Section 3.1 of RFC 2616. The version of a RETS
message is indicated by a RETS- Ver si on field in the header of the
message.

Cooki e The client MUST implement cookie handling as specified in
RFC 2109. If any server response has included a valid Set - Cooki e
header, and the cookie in that header has not expired, the client
MUST return the corresponding Cooki e header. See RFC 2109
for the full specification.

3.4 Optional Client Request Header Fields

| Version 1.7.2

Aut hor i zat i on Authorization header field as defined in RFC 2617. See 4.1,
“Security”, as well as RFC 2617, for additional information.

RETS- Request - | D A character string of printable characters which the client can use
to identify this request. The contents are implementation-
defined. If this field is included in a request from the client then
the server MUST return it in the response.

RETS- Request -/ D= 1*64AL PHANUM

Accept - Encodi ng A comma-separated list of MIME types indicating the content
encoding schemes that the client is willing to accept. This is
intended to support the use of compression in data returns; see
section 3.8 for additional information.

Accept - Encodi ng ::= 1*64ALPHANUM 17 64ALPHANUM ~[, 1*64ALPHANUM
1*64AL PHANUM]

RETS- UA- Aut hor i zation A client MAY support authentication of its User-Agent value
by including the RETS-UA-Authorization header. Servers MAY
require this header with a valid value before providing services.

RETS- UA- Aut hori zat i on::= ua- net hod ua-di gest -response
ua- et hod::= Di gest
ua- di gest -response:=" *LHEX"

See section 3.10 for the method of computing the ua- di gest -
r esponse value.

The client MAY send this header under any circumstances. It
need not send this header if the server has not indicated that it

3-3

requires user-agent authentication by responding to a transaction
with a RETS error code of 20037.

In addition to the header fields listed here, the client may send any header compliant with
HTTP 1.1.

3.5 Response Format

The general server response to a request is either a well-formed XML document returning
RETS-encapsulated data or error information, or, for the Get transaction and for
successful Get Obj ect transactions, the content of the requested object in the format given
in the response’s HTTP Content-Type header. Note that this is an ordinary HTTP
response per RFC 2616.

The more common HTTP St at us- Codes are provided in Section 3.9, though any status
code defined in RFC 2616 is permissible. Servers MUST use appropriate predefined status
codes when communicating with the client.

The St at us- Code is intended to provide HTTP level errors to the client (Authorization,
URI, etc.). Software level errors (search queries, invalid argument values, etc.) should be
returned in the reply-code. If the server is unable to determine that a particular request is
in fact a RETS request, it MUST return an HTTP status code indicating the type of error.

Except in those transactions specifically stating otherwise, a RETS response body is a well-
formed XML document with the following general form:

response-body 1= RETS-response
RETS-response :=body-start-/ine
response

[rets-status]
body-end-1ine]
body-start-/ine:= <RETS 71*SPRepl yCode= quot ed-repl y-code 1*SP
Repl yText = quot ed- st ri ng *SP>

response == {key- val ue- body | dat a}

key-val ue- body ::=<RETS- RESPONSE>CALF
*(key = value CALF)
</ RETS- RESPONSE>

rets-status = <RETS- STATUS [7 *SPRepl yCode=quot ed- end- r ep! y- code
7*SPRepl yText =quot ed- st ri ng *SA/I >

The ret s- st at us MAY be included in the response if the Repl yCode or Repl yText given
in the body- st art - 1 i nebecomes invalid during the creation of the response. If the server
includes a ret s- st at us in its reply, the client MUST use the ReplyCode and ReplyText
from the rets-status rather than from the body-start-line.

body-end-/ine :=</RETS>

If a body- start-1ineisreturned in the response then the body- end- /i ne MUST also be
returned.

| 3-4 Real Estate Transaction Specification Version 1.7.2

| quot ed- repl y- code::=<">1*50/ G T<" >

The reply-code is included to provide a mechanism to pass additional information to the
client in the event that the request is processed OK (Status-Code = 200) but some
condition still exist that may require an action by the client. A value of '0' indicates success.
Applicable reply-codes can be found under specific transactions.

| quot ed- end-repl y- code::=<">1*50/ G T<" >

The ena- repl y- code is included to provide a mechanism to pass additional information
to the client in the event that the request being processed by the server errors before the
request has been completed. This allows the server to start streaming out data before it has
completed processing the request. A value of 0 indicates success, however the server
SHOULD only send an end- r ep/ y- code if there is an error.

The valid <key>, <val ue> and <dat a> elements are defined in the Response Arguments
section for each transaction.

NOTE

RETS 1.7.2 requires all server responses to be well-formed XML, In addition, this specification requires that
clients parse RETS responses as XML, not as simple text streams. The response formats shown here are
normative with respect to content, but not normative with respect to form. That is, servers are free to produce
response XML in any format that complies with the W3C XML 1.0 recommendation. XML escaping of
content is implied, as is XML processing of line endings and whitespace. See the W3C XML Recommendation
1.0, Third Edition, for full information on XML.

An example server-reply where the reply body consists of key-value pairs:

HITP/ 1.1 200 K
Server: Mcrosoft-115/4.0
Date: Sun, 20 Mar 2005 12:03:38 GMI
Cont ent - Type: text/xm
Cache-Control : private

| RETS- Version: RETS/1.7.2

<RETS Repl yCode="0" Repl yText =" SUCCESS" >
<RETS- RESPONSE>

Key1=Val ue1

Key2=Val ue2

</ RETS- RESPONSE>

</ RETS>

3.6 Required Server Response Header Fields

The HTTP header of any messages sent from the server MUST contain the following
header fields:

Dat e The server MUST send the date using the format defined in RFC
| 2616 using format r fc7123- dat e.

Example: Date: Sun, 20 Mar 2005 12:03:38 GMI

| As defined by rfc1123- dat e, the Date MUST be represented in
Greenwich Mean Time (GMT), without exception.

Cache- Cont rol The RFC 2616 standard general-header field is used to specify
directives that MUST be obeyed by all caching mechanisms along

| Version 1.7.2 3-5

the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the
request or response. This field SHOULD be set to "private" for all
transaction in this specification.

Example: ~ Cache-Control : private

Cont ent - Type This is a standard HTTP header field as defined in RFC 2616. It
specifies the media type of the underlying data. The server MUST
return this field in all replies. For most replies this will be set to
"text/xm ". See Section 5.5 in the GetObject Transaction for
exceptions and more information on this field.

Example: Content-Type: text/xn

RETS- Ver si on The server MUST send the RETS-Version. The convention used
| is a “<major>.<minor>.<revision>” numbering scheme similar to
the HTTP Version in Section 3.1 of RFC 2616. The version of a
RETS message is indicated by a RETS- Ver si on field in header of
the message.

RETS- Ver si on u= "RETS Version:" version-info
versi on-info = "RETS/" I*DIGT"." *DGT"." *DGT
Example: RETS- Version: RETS/1.7.2

Applications sending request or response messages, as defined by this specification,
| MUST include a RETS- Ver si on of "RETS/ 1. 7. 2". Use of this version number indicates
that the sending application is compliant with this specification.

3.7 Optional Server Response Header Fields

Content - Lengt h The Content-Length entity-header field indicates the size of the
message-body, in decimal number of octets. This is a standard
header field defined in RFC 2616 and is required for all requests
containing a message-body not using Chunked transfer encoding.

Transfer-Encoding The Transfer-Encoding entity-header field when set to the
Chunked value, indicates the size of the message-body is in the
chunk stream. This is a standard header field defined in RFC 2616
and is required for all responses with a body not using Cont ent -
Length or a Content - Type: Ml tipart response.

Cont ent - Encodi ng The Content Encoding entity-header field MAY be returned by
the server if the client has included an AcceptEncoding header in
its request () indicating that it can accept one or more
compression types supported by the server. It is recommended
that servers accept at least appl i cat i on/ gzi p (see 3.8, “Data
Compression in RETS Transactions”).

Cont ent - Encodi ng::= 1*64ALPHRANUM | 1~ 64AL PHANUM

| 3-6 Real Estate Transaction Specification Version 1.7.2

RETS- Request -1 D

| RETS- Request - | D::=

Server

Example:

RETS- Ser ver

Example:
Set - Cooki e

The contents of the RETS- Request - | Dheader, if any, sent by the
client in the request. If a RETS- Request - | Dis included in a
request from the client then the server MUST return it in the
response.

1*64AL PHANUM

The server standard response-header field contains information
about the software used to handle the request. The format of this
field specified in RFC 2616 Section 3.8.

Server: Mcrosoft-11S/4.0

The RETS server vendor and server-controlled version number.
This is not necessarily the same as the Server response-header
field; it will be different if the HTTP server is separate from the
RETS server. The format of this field is specified in RFC 2616
Section 3.8.

RETS- Server: AcnmeRETS/ 1.0

The server MAY use HTTP cookies to maintain state
information. See RFC 2109 for the format of the Set - Cooki e
header.

A cookie having a name of RETS- Sessi on- | Ddefines the RETS
session ID, which is used in calculating the RETS User-Agent
Authentication (section 3.10). Cookies with other names have no
special meaning in RETS but MAY be used when necessary.

In addition to the header fields listed here, the server may send any header compliant with

HTTP 1.1.

3.8 Data Compression in RETS

Transactions

Clients and servers may choose to support data compression in data returned from the
server. To indicate its willingness to accept compressed data, a client includes an

Accept - Encodi ng header in its request. If the server supports one of the compression
methods accepted by the client, it can include a Cont ent - Encodi ng header in its response
indicating the compression method it has chose.

Clients and servers choo

sing to implement compression SHOULD at least support GZip

compression. This method is implemented by freely-available source code in a number of
languages, as well as in several proprietary software development environments. A second
freely-available alternative is BZIP. Clients and servers are free to choose other encoding

methods as well.

| Version 1.7.2

3-7

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in RFC 2616) may be
returned by a server in response to any request:

Table 3-1 General Status Codes

Status Meaning
200 Operation successful.
400 Bad Request
The request could not be understood by the server due to malformed syntax.
401 Not Authorized

Either the header did not contain an acceptable Authorization or the username/
password was invalid. The server response MUST include a WWW-
Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be authorized.
403 Forbidden
The server understood the request, but is refusing to fulfill it.
404 Not Found
The server has not found anything matching the Request-URL
405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource
identified by the Request-URI.

406 Not Acceptable

The resource identified by the request is only capable of generating response
entities which have content characteristics not acceptable according to the accept
headers sent in the request.

408 Request Timeout
The client did not produce a request within the time that the server was prepared
to wait.

411 Length Required
The server refuses to accept the request without a defined Content-Length.

412 Precondition Failed

Transaction not permitted at this point in the session

413 Request Entity Too Large
The server is refusing to process a request because the request entity is larger than
the server is willing or able to process.

414 Request-URI Too Long
The server is refusing to service the request because the Request-URI is longer
than the server is willing to interpret. This error usually only occurs for a GET

method.

500 Internal server error.
The server encountered an unexpected condition which prevented it from
fulfilling the request.

501 Not Implemented

The server does not support the functionality required to fulfill the request.

503 Service Unavailable
The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol version
that was used in the request message.

| 3-8 Real Estate Transaction Specification Version 1.7.2

HTTP error status returns are only to be used for system level, transport syntax, and
invalid transaction errors. RETS error status codes are used to indicate errors in the
request arguments or the transaction processing.

| 3.10 Computing the RETS-UA-Authorization Value

The RETS User Agent Authorization digest response value is used in the RETS- UA-
Aut hor i zat i on header specified in section 3.4. It is computed as follows:

at x= ND5(product : User Agent - Passwor d')

ua- di gest - response::= HEX(MD5(HEX(al1) : RETS- Request -/ D: session-id:
versi on-i nf o))

where:

product The first product value taken from the User-Agent header
(section 3.3). Note that the product value consists of both the
product token and version.

User Agent - Passwor d::= TCKEN
This value is a secret shared between the client and server.
RETS- Request -1 D= RETS- Request- /D

This value MUST be the same as that sent with the RETS-
Request - | Dheader. If the client does not use the RETS-
Request - | Dheader, this token is empty in the calculation.

session-id = If the server has sent a Set - Cooki e header with a cookie name
of RETS- Sessi on- | D, sessi on-i d is the value of that cookie. If
the server has not sent a cookie with that name, or if the cookie
by that name has expired, this token is empty in the
calculation.

version-info u= The value of the RETS- Ver si on header sent by the client with
this transaction.

Each individual value in the concatenated string is included with whitespace removed
from the beginning and end of that element, that is, there is no whitespace on either side of
the delimiting colon characters.

The method of performing the MD5 calculation is given in RFC 1321.

| Version 1.7.2 3-9

| 3-10 Real Estate Transaction Specification Version 1.7.2

LOGIN TRANSACTION

A client MUST issue a login request prior to proceeding with any other request. The Login
transaction verifies all login information provided by the user and begins a RETS session.
Subsequent session control may be mediated by HT'TP cookies or any other method,
though clients are required to support at least session control via HTTP cookies. Section
14 describes the session protocol in detail.

The server’s response to the Login transaction contains the information necessary for a
client to issue other requests. It includes URLSs that may be used for other RETS requests,
and may also contain identity and parameter information if required by the functions
supported by the server.

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it is permissible, for
example, to operate a publicly-accessible RETS server — most operators of RETS servers
will wish to authenticate users. A server that requires that users be authenticated MAY
implement RFC 2617, HTTP Authentication. The use of at least digest authentication is
strongly recommended.

4.1.2 Client Authentication

Client authentication may be performed through the use of the optional RETS-UA-
Authorization header (section 3.4). Prior versions of this specification used a specially-
calculated cnonce value in the Authorization header to implement this function. A server
implementing this version of the RETS specification MUST accept the RETS-UA-
Authorization header for client authentication. It MAY accept RFC 2617-style
authentication as in prior versions of the RETS specification.

4.1.3 Data Security

Needs for secure HTTP transactions cannot be met by authentication schemes. For those
needs, HTTP-over-TLS (commonly known as HTTPS) is a more appropriate protocol. A

| Version 1.7.2 4-1

compliant server MAY support only HTTP-over-SSL. In this case, the server SHOULD
listen on port 12109 rather than the standard RETS port, 6103.

4.2 Authorization Example

The following example assumes that a client application is trying to access the Login URI
on the server using the POST method, and without using client authentication. The URI is
“htt p: // www. exanpl e. cont | ogi n”. Both client and server know that the username is
“joesmith”, and the password is “SuperAgent”. The example also assumes the use of
authentication using RFC 2617.

The first time the client requests the document, no Authorization header is sent, so the
server responds with:

HTTP/ 1.1 401 Unaut hori zed

WAV Aut henti cate: Digest real m="Users@sxanpl e. conf,
nonce="dcd98b7102dd2f 0e8b11d0f 600bf b0OcO"
opaque=">5ccdef 346870ab04ddf e0412367f ccha"

The client may prompt the user for the username and password, after which it will
respond with a new request, including the following Authorization header:

Aut hori zation: Digest username="joesnith”,
real m=“ User s@xanpl e. conf,
nonce="dcd98b7102dd2f 0e8b11d0f 600bf b0c0”,
opaque="5ccdef 346870ab04ddf e0412367f ccha”,
uri=*/1ogin",
response="13258d9b0bc217¢9502b47e32df f 8ee9”

4.3 Required Request Arguments

There are no required request arguments.

4.4 Optional Request Arguments

4.4.1 BrokerCode Argument

broker oaeArgurrent : - = Broker Code = broker-code [, broker-branch]

Some servers may support the scenario where a user belongs to multiple brokerages. If this
is the case then the broker information (broker-code and broker-branch) must be input
during login. If they are not included then the list of broker codes/branches is passed back
to the client application through the response along with a “20012 Broker Code Required”
reply-code.

broker - code L= 17 24AL PHANUM

broker - branch 17*24AL PHANUM

4.4.2 SavedMetadataTimestamp Argument

savedMt adat aTi nest anp. . =SavedMet adat aTi mest anp = saved-t/ nest anp

| 4-2 Real Estate Transaction Specification Version 1.7.2

The client MAY inform the server of the timestamp associated with the version of
metadata that it has currently saved. The server MAY use this to adapt to an earlier version
of metadata than it chooses to advertise, or simply log the value to note out-of-date client
metadata, or ignore the value entirely. In particular, the server is not required to alter its
behavior in any way based on the value of this argument.

| saved-tinestanp .= RETSDATETI VE

4.5 Optional Response Header Fields

There are no additional optional response header fields.

4.6 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The
simplest form is when there is an error:

<RETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quoted-string *SP [>

The second case is where the user belongs to more than one broker and they have not

provided broker information as part of the login. The reply contains a list of all brokerages
the user belongs to.

<RETS Repl yCode = “20012” 7*SP Repl yText = quoted-string *SP >
<RETS- RESPONSE>CRLF

2*(Broker = broker-code | , broker-branch] CALF)

</ RETS- RESPONSE>

</ RETS>

The third case is the normal “OK” response. In this case several arguments are passed back
to the client in the response.

<RETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quoted-string *SP >

<RETS- RESPONSE>

menber - nane- key

user-i nfo-key

broker - key

net adat a- ver - key

met acat a- t i nest anp- key

mi n- net adat a- t i nest anp- key

[office-1ist-key]

[bal ance-key]

[timeout-key]

[pvd-expire-key |

capability-url-1ist

</ RETS- RESPONSE>

[<RETS- STATUS [7*SP Repl yCode= quot ed-end-repl y-code 1*SP Repl yText =

quoted-string *SA >

</ RETS> CALF

4.7 Required Response Arguments

4.7.1 Broker

broker - key .= Broker = broker-code [, broker-branchl CALF

Broker information for the logged in user is returned to the client.

| Version 1.7.2 4-3

broker - code 1% 24AL PHANUM

broker - branch L= 17 24AL PHANUM

These parameters are used in the validation routines of the Update transaction (see
Section 10 for more information).

4.7.2 Member Name

menber-name-key .. = MenberName = rnenber-name CALF

The member's full name (display name) as it is to appear on any printed output, for
example “Jane T. Row’.

nenber - nane Ti= 1748TEXT
4.7.3 Metadata Version Information
The metadata version and timestamp keys indicate the current and minimum-acceptable
versions of metadata.
metadat a-ver-key .. = Met adat aVersion = netadata-version CALF
This is the most current version of the metadata that is available on the server.
net adat a- versi on 1 =12D0G@TS . 1 2D0GTS[. 1*50G TS

It uses a “<major>.<minor>.<release>” numbering scheme. The version is advisory and is
not used by the metadata currency scheme.

| net adat a- t i nest anp- key. . = Met adat aTi mest anp = RETSDATETI ME CALF
This is the timestamp associated with the current version of metadata on the host. If the

client has cached an earlier version of metadata, it SHOULD take whatever action is
necessary to load the current version of metadata.

| min-net adat a- t i nest anp- key. : = M nMet adat aTi mest anp = RETSDATETI ME CARLF

This is the earliest version of the metadata that the host will support. If the version of the
metadata being used by the client has a timestamp earlier than this time the client
SHOULD retrieve the newer metadata from the host. In any case, the client MUST NOT
send transactions using metadata older than M nMet adat aTi mest anp.

The definition of the minimum version of the metadata is to permit clients to ignore non-

essential changes to components such as help text and user-readable descriptions.

4.7.4 User information

user -1 nf o- key .= User = user-id , user-level , user-class ,
agent -code CALF

This key contains basic information about the user that is stored on the server. If a server
does not support one of these fields then it MUST set the returned value to empty (a zero-

length string).
user-id = 1*30ALPHANUM
user-cl ass = 1*830ALPHANUM

| 4-4 Real Estate Transaction Specification Version 1.7.2

user-/ evel 17*5D00G'T

agent - code 1*30AL PHANUM

The agent-code is the code that is stored in the property records for the listing agent,
selling agent, etc. In some implementations this may be the same as the user-id. The fields
user-class and user-level are implementation dependent and may not exist on some
systems, in which case, an empty string should be returned. These parameters are used in
the validation routines of the Update transaction (see Section 10 for more information).

4.7.5 Capability URL List

capability-url-1ist: : = see Section 4.10 for format information

The server MUST return a capability list that includes at least Search, Login and
GetMetadata. The server MAY in addition return any of the other types in Section 4.10. If
the server supports any of the additional functions (and the client is entitled to access the
function by virtue of the supplied login information), it MUST provide URLs for those
functions. The server MAY supply URLs in addition to those in Section 4.10 based on the
user-agent. If it does, it MUST follow the format specified in Section 4.10.

4.8 Optional Response Arguments

4.8.1 Accounting Information

bal ance- key .= Balance = balance CALF

If the server supports an active billing account then this value SHOULD represent a user-
readable indication of the money balance in the account.

bal ance 1*32AL PHANUM

4.8.2 Access Control Information

| Version 1.7.2

ti neout - key ::= Timeout Seconds = 7*50/G T CALF

The number of seconds after a transaction that a session will remain alive, after which the
server will terminate the session automatically (e.g. invalidate the session-id). This is
commonly referred to as the inactivity timeout. A server need not provide this capability;
however, if it does use session timeouts in order to prevent monopolization of resources, it
MUST inform the client of the timeout interval by returning this response field.

pva-expi re- key ti= Expr = pud-expire-date , pwad-expire-varn CRLF
pvd-expi re-dat e = RETSDATETI VE
pwa-expire-varn . i= [“-7]1*3DIGT

The pwd-expire-key indicates when a user password will expire. The pwd-expire-date is
the date that the current user password becomes invalid. The pwd-expire-warn is the
number of days before the expiration date that the user should be warned of the upcoming

4-5

password expiration. A pwd-expire-warn value of “-1” indicates that the password
expiration is disabled.

4.8.3 Office List Information

::= OficeList broker-code | ;
*(, broker-code [; broker-branch])

If the logged in user is a company owner or manager they may have rights to login to
multiple offices. The of i ce-1i st - key is an enumeration of the offices to which the server

broker-branch |
CHLF

office-1ist-key

will permit login.

broker - code 1724 AL PHANUM

broker - branch 1% 24AL PHANUM

4.9 Well-Known Names

Some fields returned from the login are considered “Well-Known” and are used in the
validation routines of the Update transaction. Those fields are as follows:

Table 4-1 Well-Known Names for Input Fields
Well-Known name Input Return Field
. USERI D. user-id
. USERCLASS. user-class
. USERLEVEL. user-level
. AGENTCODE. agent-code
. BROKERCODE. broker-code
. BROKERBRANCH. broker-branch

The client MUST assume a blank value for any well-known name for which the server
does not supply an input field.

These values are used in Table 11-37, “Validation Expression Special Operand Tokens”.

4,10 Capability URL List

The capability-url-list is the set of functions or URLs to which the login grants access. A
capability consists of a key and a URL. The list returned from the server in the login reply
has the following format:

[Action = action-LA CALA

[ChangePassword change- passvord- UL CRLF]
[Get (vj ect = get-ofyect-LtH CHA

Login = /ogin-UH CALF

[Logi nConpl et e /ogi n-conpl ete- UA. CALA

[Logout = /ogout-UA CAHLF

Search = search-UH CALF

CGet Met adata = getf-metadata-LH CARLF

| 4-6 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

[ServerInformation = server-infornation-UA CRLA
[Update = uypdate- LA CALA

Table 4-2 Capability URL Descriptions

Parameter Purpose

action- UAL A URL on which the client MUST perform a GET immediately after
login. This might include a bulletin or the notification of email. The
client application SHOULD provide a means for the user to view
the retrieved document. A server is not required to supply an

Action URL.
change- passwor d- UAL A URL for the ChangePassword transaction.
get - net adat a- UAL A URL for the Get Metadata transaction.
get -obj ect - UAL A URL for the Get Object transaction.
/ogi n- UAL A URL for the Login Transaction. The client software should use

this URL the next time it performs a Login. If this URL is different

from the one currently stored by the client the client, MUST update
the stored one to the new one. This provides a mechanism to move
the Login server.

/ ogi n- conpl et e- UAL RESERVED

/ ogout - UAL A URL for the Logout transaction.

search- UAL A URL for the Search transaction.

updat e- UAL A URL for the Update transaction.
server-information-UAL A URL for the System Information transaction

The URLs in the capability-url-list may be specified in any order. Since the list is returned
in the body, servers MAY include whitespace between the parameter, equals sign and URL.
Clients SHOULD be prepared to receive the capability-url-list either with or without
whitespace in the response. The format of each URL follows the pattern defined in the UR
atom. In addition, the table is extensible; servers may define additional transactions for
clients to access. If a transaction is offered only to particular user agents, the keys for those
additional transactions MUST begin with the user-agent token, followed by a dash “-7,
followed by an implementation-defined function name. Note that this definition does not
permit spaces in the additional-transaction definition per the ABNF rules.

addi tional -transaction ::=(“X"| user-agent-token) “-” function-name GLF
user - agent - t oken . ;= <token portion of the tser - Agent (Section 3.3)>
functi on- nane sr= 17ALPHA

Example: M.SW ndows- speci al = /special _function

Example: X-Del ete = http://ww. exanpl e. com 6103/ del et enyrecord

A compliant client need not recognize any transaction that is not included in this
specification. If some extended transactions are offered to any user-agent, the keys for
those transactions MUST begin with an “X” followed by a dash, followed by an
implementation-defined function name. Server implementers who implement potentially-
unrestricted extension transactions are urged to register their keys and service descriptions
on the RETS web site to encourage wider adoption.

URLs other than the Login URL may be relative URLs. The Login URL MUST be an
absolute URL. If a URL is not absolute, the client application should canonicalize it
according to the rules in RFC 2396, section 5. The “base URL” (as defined in RFC 2396,

4-7

section 5.1.1) for this operation is the URL used for the current login transaction, not the
new Login URL.

URLs MUST be URL-encoded per REC 2396.

4.11 Reply Codes

Table 4-3 Valid Reply Codes for Login Transaction

Note: RETS does
not require that
aserver
maintain user
accounts.

| 4-8 Real Estate Transaction Specification

Reply Code

Meaning

0

Operation successful

20003

Zero Balance

The user has zero balance left in their account.

20004 thru 20011

RESERVED

20012

Broker Code Required

The user belongs to multiple broker codes and one must be supplied as part of
the login. The broker list is sent back to the client as part of the login response
(see section 4.6).

20013

Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019

RESERVED

20022

Additional login not permitted
There is already a user logged in with this user name, and this server does not
permit multiple logins.

20036

Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037

User-agent authentication failed.

The server requires the use of user-agent authentication (section 4.1.2), and
the client either did not supply the correct user-agent password or did not
properly compute its challenge response value.

20041

User-agent authentication required.
The server requires the use of user-agent authentication (section 4.1.2), and
the client did not supply the user-agent header values.

20050

Server Temporarily Disabled
The server is temporarily offline. The user should try again later

Version 1.7.2

GETOBJECT TRANSACTION

The GetObject transaction is used to retrieve structured information related to known
system entities. It can be used to retrieve multimedia files and other key-related
information. Objects requested and returned from this transaction are requested and
returned as MIME media types. The message body for successful retrievals contains only
the objects in the specified MIME media type. Error responses follow the normal response
format (section 3.9).

5.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in Section 3.3, the
header of any messages sent from the client MUST contain the following header fields:

Accept The client MUST request a media type using the standard HTTP
Accept header field. Media-type formats (subtypes) are registered
with the Internet Assigned Number Authority (IANA) and use a
format outlined in RFC 2045 [8]. When submitting a request the
client MUST specify the desired type and format. If the server is
unable to provide the desired format it SHOULD return a “406
Not Acceptable” status. However, if there are no objects of any
subtype available for the requested object the server SHOULD
return “404 Not Found.” The format of the Accept field is as

follows:
Accept x= Accept: typel subtype|; paraneter |
“(, SPtype | subtype| ; paraneter])
type z= * | <a publicly-defined type>
subt ype ::=* 1 <A publicly-defined extension token that

has been registered with | ANA>

par aret er u= q =<qvaluescalefrom0to1>
A complete list of media types and subtypes is available at:

http://ww. i ana. or g/ assi gnment s/ nedi a-t ypes/

Version 1.7.2 5-1
|

The qvalue is used to specify the desirability of a given media type/subtype, with “1” being
the most desirable, “0” being the least desirable, and a range in between. The default qvalue
is “17.

Example: Accept : image/jpeg, image/tiff;q=0.5,

i mage/ gi f; g=0. 1

Verbally, this would be interpreted as “image/jpeg is the preferred media type, but if that
does not exist, then send the image/tift entity, and if that does not exist, send the image/gif
entity.”
The types supported by the server are defined in the Metadata Dictionary as defined in
section 11.4.1.

5.2 Optional Client Request Header Fields

The GetObject transaction has no optional request header fields.

5.3 Required Request Arguments

Resour ce A resource defined in the metadata dictionary (see Section 11.2.2)

The resource from which the object should be retrieved is specified by this entry. For more
information see 5.9. The resource MUST be a resource defined in the metadata (section
11.4.1).

Type The object type as defined in the metadata (see Section 11.4.1)

The grouping category to which the object belongs. Type MUST be an Obj ect Type
defined in the Object metadata for this Resource. For more information see section 11.4.1.

I D A string identifying the object or objects being requested:
/D = resource-set *(, resource-set)
resource-set = resource-entity| : object-id-/ist]
resource-entity .= 1*ALPHANUM
object-id-1ist == *|object-id*(: object-id)
| object-id = 1*50/G'T

For objects, the resour ce- ent i t y is a value (e.g., MLS number, AgentID) from the
KeyFi el d of the Resource for which the object is to be retrieved.

The obj ect - i d is the particular object to be retrieved. Objects are assumed to be stored
sequentially on the host beginning with an obj ect - i d of “1”. If the object-id is 0 (zero or
not provided), the designated preferred object of the given type is returned. If the object-id
is set to “*” then all objects corresponding to the r esour ce- enti ty are returned. This
parameter can be used to specify the photo number, e.g. a value of “3” would indicate
photo number 3.

€y 2

If multiple r esour ce- ent ity or obj ect - i d values are sent, or if any object-id-list is “*”,
then the host MUST respond with a multipart MIME [8] response. See 5.11, “Multipart
Responses”, for more detail.

[5-2 Real Estate Transaction Specification Version 1.7.2

5.4 Optional Request Arguments

5.4.1 Location

Locati on 0|1

This parameter indicates whether the object or a URL to the object should be returned.
This is used to provide access to the semi-permanent storage location of information for
access outside of the transaction (e.g. for use in email to a customer). The lifetime of this
semi-permanent storage is not defined by this specification.

If Locat i on is set to “1” the server MAY return a URL to the given object. The default is
“0”. The server MAY support this functionality (Locat i on=1) but MUST support

Locat i on=0. In other words, some servers may store the objects in a database or generate
them dynamically. Therefore, it may not be possible for those servers to return a URL to
the requested object. In these cases the server MAY choose not to support Locat i on=1.
However, all servers MUST support a method to get the object and therefore, MUST
support the case where Locat i on=0.

When the Location=1, the message body SHOULD contain a RETS response as described
in Section 3.5.

5.5 Required Server Response Header Fields

| Version 1.7.2

In addition to the other Required Server Header Fields specified in Section 3.6 the
following response header fields are required.

Cont ent - Type The media type of the underlying data. The server MUST return
this field in all replies. Additionally, this field MUST be returned
as part of the header for each body part. This field MUST be set to
the type of media returned. See Section 5.1 for more information
on <t ype> and <subt ype>.

Cont ent - Type x= Content-Type: typel subtype
Example: Cont ent - Type: i nmage/| peg
If the client has requested multiple IDs, the server MUST return a multipart message. If it
does, it MUST return a Content-Type of “multipart/paralle]” along with a boundary

delimiter in the response header. See Section 5.11 for more information on multipart
responses.

Example: Content-Type: nultipart/parallel; boundary=AAABBBCCC

Content-ID An ID for the object. This field MUST be returned as part of the
header for each body part in a multipart response. A value for this
tield MUST be returned for each body part. This value is the
resource-entity from the GetObject request and MUST match the
corresponding Resource KeyField value.

Content-1D u= Content-I1D: 7*728PLAl NTEXT

Example: ~ Content-1D: 123456

5-3

Object-ID The object number being returned. This field MUST be returned
as part of the header for each body part in a multipart response.
yject-1D:=vject-1D: 1°50GT1“*”

Example: Qbject-1D: 2

Note: The Object-ID may only have the value of “*” in the response when there is an error

in the response and the request was for all objects using the wildcard request of “*”.

MIME-Version All responses MUST include a MIME-Version of “1.0” in the
response header.

Example: M ME-Version: 1.0

5.6 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.7 the
following response header fields are also optional.

5.6.1 Location

Location If the client has submitted a request with “Locat i on=1" the
header of the response MUST contain the Location header field.
If the server does not support this functionality for a specific
object, then “Locat i on: ” without a U7 MUST be returned. If the
server does not support this functionality for any object, the
server should return an error type of 20414.

Location x= Location: UA/
Example: Location: http://ww. exanpl e. conl pi ¢/ 123456. j pg

If the server is returning a multipart response, then this header MUST be included in the
MIME part headers for each object successfully requested.

5.6.2 Description

Description A text description of the object.

| Description u= Content-Description: *7024<PLAI NTEXT, EXCLUDI NG CR/
LF>

Example: Cont ent - Description: Front View

If the object does not have a description or if the server does not support this feature, the
header MAY not be returned. If the object has a description and the server is returning a
multipart response, then this header MUST be included in the MIME part headers for the
object.

5.7 Required Response Arguments

There are no required response arguments.

| 5-4 Real Estate Transaction Specification Version 1.7.2

5.8 Optional Response Arguments

There are no optional response arguments.

5.9 Metadata

To retrieve objects the client MAY first retrieve the metadata that describes the Resources
and Objects that are available with the GetMetadata transaction described in section 12. A
full description of the Metadata Dictionary is provided in Section 11.

5.10 Resources

RETS does not require that any particular type of object be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard.

5.11 Multipart Responses

As described in Section 5.3, in the case where the client has requested multiple r esour ce-
entity orobj ect-id values or if any object-id-list is “*”, the server MUST return a
multipart response. In the case of multipart responses, in which one or more different sets
of data are combined in a single body, a “multipart” media type field must appear in the
entity's header.

5.11.1 General Construction

| Version 1.7.2

RFC 2045 describes the format of an Internet message body containing a MIME message.
The body contains one or more body parts, each preceded by a boundary delimiter line,
and the last one followed by a closing boundary delimiter line. After its boundary delimiter
line, each body part then consists of a header area, a blank line, and a body area.

Example:

HTTP/ 1.1 200 K

Server: Apache/2.0.13

Date: Fri, 22 OCT 2004 12:03:38 GMI

Cache-Control : private

RETS- Version: RETS/1.0

M ME- Version: 1.0

Content-type: multipart/parallel; boundary="sinple boundary"

--sinple boundary

Cont ent - Type: imge/j peg
Content-1D: 123456
oject-1D: 1

<bi nary data>

--sinple boundary

Cont ent - Type: imge/j peg
Content-1D: 123457
oject-1D: 1

<bi nary data>

5-5

--sinpl e boundary--

5.11.2 Error Handling

When a client requests multiple objects in a single transaction, one or more of those
objects may be unavailable. In this case, the server communicates the failure by including a
RETS return message in place of the unavailable object. In this case, the Content-Type will
be t ext / xm , and the content will be a RETS response:

Example:

HTTP/ 1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 22 OCT 2004 12:03:38 GMI
Cache-Control: private
| RETS- Version: RETS/1.7.2
M ME- Version: 1.0
Content-type: multipart/parallel; boundary="sinple boundary"

--sinple boundary

Cont ent - Type: i mage/jpeg
Content-1D: 123456
oject-1D: 1

<bi nary data>

--sinple boundary

Cont ent - Type: text/xni

Content-1D: 123457

oject-1D: 1

<RETS Repl yCode="20403" Repl yText="There is no listing with that ListinglD'/>
--sinple boundary- -

| If the server is supplying an error message for a wild-card object request (Ooj ect - 1 Dof *),
the Qbj ect - | Dfor the error part SHOULD be * as well.

| 5-6 Real Estate Transaction Specification Version 1.7.2

5.12 Reply Codes

Table 5-1

| Version 1.7.2

GetObject Reply Codes

Reply Code Meaning
20400 Invalid Resource
The request could not be understood due to an unknown resource.
20401 Invalid Type
The request could not be understood due to an unknown object type for the
resource.
20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.
20403 No Object Found
No matching object was found to satisfy the request.
20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.
20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the
supplied login does not grant access.
20408 Resource Unavailable
The requested resource is currently unavailable.
20409 Object Unavailable
The requested object is currently unavailable.
20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.
20411 Timeout
The request timed out while executing
20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.
20413 Miscellaneous error
The server encountered an internal error.
20414 URL Location Not Supported
The server does not support retrieving Objects by URL.

5-7

| 5-8 Real Estate Transaction Specification Version 1.7.2

LOGOUT TRANSACTION

The Logout transaction terminates a session. Except in cases where connection failure
prevents it or the user has requested an immediate shutdown of the client, the client
SHOULD send the Logout transaction. If the client sends a Logout transaction, the server
MUST attempt to send a response before terminating the session.

The server MAY send accounting information back to the client in the response to this
transaction. The client is not required to display or otherwise process the accounting
information.

6.1 Required Request Arguments

There are no required request arguments.

6.2 Optional Request Arguments

There are no optional request arguments.

6.3 Required Response Arguments

There are no required response arguments.

6.4 Optional Response Arguments

ConnectTime The amount of time that the client spent connected to the server,
specified in seconds.

connect-tine w= ConnectTime=7*90/ G TS CALF

Billing If the server supports an active billing account, this is total
amount billed for this session, specified as TEXT which is
implementation-defined

billing w= Billing="<TEXT, EXCLUDING CR/LF> CALF

Si gnCf f Message Any text. The client MAY display this message, if the server
includes it in the response. Servers should not expect, however,

| Version 1.7.2 6-1

that users would read or see the message, since communication
failure may make it impossible for the client to receive the Logoff
response.

sign-of f-message:= Si gnOf f Message="<TEXT, EXCLUDING CR/LF> CALF

6.5 Logout Response Body Format

The Logout response body is a key/value response (see section 3.5, “Response Format”).

<BRETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quoted-string *SP >
[<RETS- RESPONSE>
[connect - ti ne]
[billing]
[si gn-of f- nessage]
</ RETS- BESPONSE>/
[<RETS- STATUS [7*SP Repl yCode= quot ed- end-repl y-code 1*SP Repl yText =
quoted-string *SA/I>]

</ RETS>
6.6 Reply Codes
Table 6-1Logout Reply Codes
Reply Code Meaning
0 Operation successful
20701 Not logged in

The server did not detect an active login for the session in which the Logout
transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional
information.

| 6-2 Real Estate Transaction Specification Version 1.7.2

SEARCH TRANSACTION

The Search transaction requests that the server search one or more searchable databases
and return the list of qualifying records. The body of the response contains the records
matching the query, presented in the requested format. The data can be returned in one of
three formats: COMPACT, COMPACT-DECODED or STANDARD-XML.

7.1 Search Types

| Version 1.7.2

Note

Searches are performed on logical groupings of records called Resources. The definition of
the grouping of records for a specific resource is determined by the server implementation.
Different server implementations may have different available resources, depending on
local rules, practises or conditions. Servers may further group the records by Class.
Different users or different client applications may be provided with different sets of
Resources and different sets of Classes. A specific value for Resource or Class is referred to
in this document as a type. For example, a type of Resource is Property using the Standard
Names definition. Another example may be a type of Resource called Appraisers, being a
collection of locally licensed real estate property value appraisers. As defined below, a
server only searches on a single Resource per request. A server MAY provide more than
one type of Resource in the metadata. The server MUST support searching at least one
type of resource. The types of resources supported by the server MUST be specified in the
metadata. Each of the resource searches may by conducted against different databases or
tables depending on the server implementation.

Some resources are specified by well-known names. If a server implementation supports
searches of any of these resources, it MUST use the well-known resource name to identify
that resource. The list of well-known resource names is provided in Table 11-4, “Well-
Known Resource Names” on page 11-5;s well-known classes for those resources are given
in Table 11-10, “Metadata Content: Resource Class”.

StandardNames for classes are given in Table 11-10, “Metadata Content: Resource Class”.

RETS does not require that a server support any specific resource type or class. The user or
maintainer of a server is responsible for deciding which resources should be made
searchable.

7-1

7.2 Search Terminology

7.2.1 Field Delimiter

A server may designate a particular OCTET to be used as a delimiter for separating entries
in both the COLUMNS list and the DATA returned using the COMPACT and
COMPACT-DECODED formats. The octet should be chosen to avoid the need to escape
data within a record

field-delimter := HEXHEX
7.2.2 Field Name

A field is the keyword or code that the server uses to identify a particular column in the
database table. Each field may be either a System-Name, as defined in the metadata, or a
Standard-Name, as defined in the Real Estate Transaction XML DTD. The server MUST
accept either set of names interchangeably.

7.2.3 Record Count

This value indicates the number of records on the server matching the search criteria sent
in the search query.

record- count = 1*9D/G TS

Note that this value may be greater than the number of records returned, if the server has
limited the size of the return for any reason.

7.2.4 Other terms

XM.- dat a-record = <A data record as defined by the RETS Data XML DTD>.

7.3 Required Request Arguments

7.3.1 Search Type and Class

The SearchType and Class arguments specify the data that the server is to search.
Sear chType w= Resourcel D

The type of search to perform as discussed in Section 7.1 and defined in the Metadata (see
section 11.2.2).

d ass = 1 32AL PHANUM

This parameter is set to a value that represents the class of data within the SearchType,
taken from the Class metadata (section 11.3.1). If the resource represented by the

Sear chType has no classes, the G ass parameter will be ignored by the server and MAY be
omitted by the client. If the client does include the O ass parameter for a classless search,
the value SHOULD be the same as the Resour ce/ Din order to insure forward
compatibility.

[7-2 Real Estate Transaction Specification Version 1.7.2

Note that if St andar dNanes (Section 7.4.7) is set to 1, then both the SearchType and Class
are specified using StandardNames.

7.3.2 Query Specification

The specification consists of the query itself together with a designation of the query
language.

Query n= <The query to be executed by the server>
The query is specified in the language described in Section 7.7.
QueryType @= DMOL2

An enumeration giving the language in which the query is presented. The only valid value
for RETS 1.7.2 is “DMQL2” which indicates the query language described in Section 7.7

7.4 Optional Request Arguments

7.4.1 Count

7.4.2 Format

| Version 1.7.2

The Count argument controls whether the server’s response includes a count.
Count n= 0]1]2

If this argument is set to one (“1”), then a record-count is returned in the response in
addition to the data. Note that on some servers this will cause the search to take longer
since the count must be returned before any records are received. If this entry is set to two
(“2”) then only a record-count is returned; no data is returned, but all matches are counted
regardless of any Of f set or Li ni t parameter. If the Count argument is not present or set
to zero (“0”) there is no record count returned.

Example: ~ Count =2

Instructs the server to return only a count of the records matching the query.

The Format argument selects one of the three supported data return formats for the query
response.

For mat u= COWPACT | COMPACT- DEC(IED| STANDARD- XML |
STANDARD- XM.: dt d- ver si on

“COMPACT” means a field list <COLUMNS> followed by a delimited set of the data
fields <DATA>. “COMPACT-DECODED” is the same as COMPACT except the data for
any field with an interpretation of Lookup, LookupMulti, LookupBitString or
LookupBitMask, is returned in a fully-decoded format using the LongValue. See Section
13 for more information on the COMPACT formats and section 11.4.3 for more
information on the Lookup types. “STANDARD-XML” means an XML presentation of
the data in the format defined by the RETS Data XML DTD. Servers MUST support all
formats. If the format is not specified, the server MUST return STANDARD-XML.

Example: For mat =COMPACT- DECODED

7-3

If the client requests STANDARD-XML, it MAY also append a preferred DTD version.
The server MUST support the current version and SHOULD additionally support at least
the prior version.

Example: For mat =STANDARD- XM_: 1. 0
7.4.3 Limit

The Limit argument requests the server to apply or suspend a limit on the number of
records returned in the search.

Limt n= “NONE | 7°9D/G' T

In general, the Li ni t argument operates without consideration of other factors like the
settings in the system metadata or the fields selected in the Select argument. A special case
when the Limit="NONE” is described below.

If this entry is set to a number greater than zero, the server MUST not return more than
the specified number of records. If the request results in more matches than the server
returns, the <MAXROWS> tag MUST be sent at the end of the data stream, regardless of
any Li m t parameter specified in the client request.

In general, if this entry is set to (“NONE”) or is not present, the server SHOULD treat this
as a request to suspend enforcement of any internal download limit. Servers that permit
the suspension of the limit MUST disable both the <MAXROWS> tag and the return code
20208, Maximum Records Exceeded when responding to a Li mi t ="NONE” request.
Servers that do not permit the suspension of the limit MUST apply the <MAXROWS> and
return code 20208 in the cases where the query results in more rows than permitted. Client
implementers should be aware that some server implementations might not honor the
request to disable the limit or may restrict the request to the selection of certain fields as
described below; the server operator’s business rules take precedence over the request to
waive the system download limit.

A server may only support the suspension of the limit for a certain scenario of requests.
When a server has Classes with a HasKeyIndex value of TRUE in the Class Metadata the
server MUST suspend enforcement of the download limit for such a Class when the

Li mi t ="NONE” and the Select argument contains only field names that have the
InKeyIndex value of TRUE in the Table Metadata. A server SHOULD support
HasKeyIndex for each Class and MUST have the InKeyField value of TRUE for at least the
KeyField of the Class when the HasKeyIndex is TRUE for that Class. A server MAY have
more than one field with the InKeyField value of TRUE for any Class.

Any request that sets a numeric Limit disables support for unlimited key index results as
described in section 7.4.5 Select.

7.4.4 Offset

The client may specify that a retrieval start at other than the first record in the set of
| records matching the query by specifying the Offset argument.

Ofset = 190G T

| 7-4 Real Estate Transaction Specification Version 1.7.2

7.4.5 Select

This argument indicates to the server that it SHOULD start sending the data to the client
beginning with the record number indicated, with a value of “1” indicating to start with
the first record. This can be useful when requesting records in batches, however, client
implementers should be aware that data on the server MAY change as they iterate through
the batches and it is possible that some records may be missed or added. In other words,
the server is not required to maintain a cursor to the data.

Any time an Offset argument is supplied, the resulting data SHOULD be returned in a
consistent order based on an ordering of the KeyField of the Resource. This ordering
should be applied to the entire data set and not just the returned data which may be less
that the total number of records matching the criteria. It is a recommended practice that
an ascending order be used as the ordering scheme when the KeyField value is a
sequentially increasing unique identifier, however, servers MAY choose to implement
some other ordering scheme. This practice will help to ensure subsequent requests will not
contain duplicate records. Ascending order of the KeyField in this case will also provide
assurance that newly added records will be more reliably contained in the final Offset
record set.

Clients iterating over the entire record set on systems that implement this practices MUST
provide Offset=1 in the first request to assist the server to order the results.

The offset value of ‘0’ is not defined in this standard.

By default, the server MUST return all fields accessible to the client. The client may select a
subset of those fields by specifying the Select argument.

Sel ect x= field*(, field)

This parameter is used to set the fields that are returned by the query. If this entry is not
present then all allowable fields for the search/class are returned. The server MAY return
an error when there are unknown fields in the select list. The server MUST NOT return
more fields than are specified in the Select argument when the client requests COMPACT
or COMPACT-DECODED data. It MAY return fewer if some of the field names are
invalid or if a requested field is unavailable to the user based on security or other
restrictions.

|7.4.6 Restricted Indicator

| Version 1.7.2

In some instances, the server may withhold the values of selected fields on selected records.
When business rules withhold the value but the field is returned as part of a response, a
Restrictedl ndi cat or MUST be used in place of the value.

Restrictedl ndicator :=1*9TCKENCHAR

This entry indicates to the server that it MUST set the restriction indicator to the value
specified by this tag. The default restricted indicator isa MALL value.

Example: Restrictedlndicator = ####

7-5

This would mean that all fields that the user is not allowed to see within a record (e.g.
ExpirationDate) are returned with a value of ####.

Note that if the client requests fields that the server would withhold for every record, the
server MAY choose to omit the field from the list returned rather than use the
RestrictedIndicator for every record.

7.4.7 StandardNames

Queries may use either standard names or system names in the query (Section 7.7). If the
client chooses to use standard names, it MUST indicate this using the StandardNames
argument.

Standar dNames == 0|1
If this entry is set to (“0”) or is not present the field names passed in the search are the
Syst emNanes, as defined in the metadata. If this entry is set to (“1”) then the

StandardNames are used for the field names passed in the search. The StandardName
designation applies to all names used in the query: Sear chType, C ass, Query and Sel ect .

7.5 Required Response Arguments

There are no required response arguments.

7.6 Search Response Body Format

NOTE

| RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires search transaction
responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that
complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
So, for example, when the response format below calls out an empty XML tag, either the abbreviated tag
format (<MAXROWS/ >) or the full format (<MAXRONE></ MAXROWE>) may be sent by the server and
should be interpreted appropriately by the client. In addition, XML escaping of content is implied. See the
W3C XML Recommendation 1.0, Third Edition, for full information on XML.

The body of the search response has the following format when replying to a request with
the format set to "COMPACT" or "COMPACT-DECODED":

<BRETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quot ed-string *SP >

[count-tag]

[delimter-tag]

[colum-tag]

*(conpact-data)

max-rowtag |

[<RETS- STATUS [7*SP Repl yCode= quot ed- end-repl y-code 1*SP
Repl yText = quoted-string *SAI>]

</ RETS> CALF

The body of the search response has the following format when replying to a format
request of “STANDARD-XML” data:

| 7-6 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

<?xm version="1.0" ?>

[doct ypel

<RETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quot ed-string *SP >

[count-tag]

*(XM.-data-record)

[max-rowtag]

[<RETS- STATUS [7*SP Repl yCode= quot ed- end-repl y-code 1*SP
Repl yText = quot ed-string *SA/>]

</ RETS> CHLF
doct ype = <! DOCTYPE RETS PUBLI C "-//RETS// DTD RETS XM. Search
Response 1.7.2//EN>" "http://ww. rets. org/dtd/ 2008/
08/ RETS-20080829. dt d" >
at d- versi on n= <Name of the RETS DTD used to produce this document>

When the client requests the STANDARD-XML representation, it may also specify a DTD
version. The server MUST support the current version and SHOULD support the previous
version. Data DTD versions are of the form

RETS- yyyynmdd. dt d
where yyyynmdd is the release date of the DTD.

conpact - dat a x= <DATA>f/ield-delimiter*(field-data field-delimter
) </ DATA>

If a “COMPACT” or “COMPACT-DECODED” format is specified in the request then a
“<DATA>” tag, a delimited list of field-data and a “</DATA>” end tag are returned to the
client for each record returned. The field-delimiter is determined by the delimiter-tag.

count -tag m= <OOUNT 7*SPRecords="record-count" 1*SP/>

When the client application specifies that a count should be returned (count-type = "1" |
"2") a count-tag MUST be sent by the server in the response. The “<COUNT>” tag MUST
be on the first line following the reply-code line. The record-count value indicates the
number of records on the server matching the search criteria sent in the search query.

col umm-t ag w= <OOLUWMNS> field-delimter 1*(field field-delimter)
</ COLUWNS>
If a"COMPACT" or “COMPACT-DECODED?” format is specified in the request then a
“<COLUMNS>" tag, including a delimited list of the names of all the fields of data being

returned, is sent back in the response. These names are the system-names unless standard-
names were used in the query.

The field-delimiter is determined by the delimiter-tag.
delimter-tag = <DELIMTER value =" f/ie/d-de/imter"l>

This parameter tells the client which character (OCTET) is used as a delimiter for both the
COLUMNS list and the DATA returned. The server MUST send this parameter for
“COMPACT” or “COMPACT-DECODED?” formats. The “<DELIMITER>” tag MUST
precede column-tag.

max-rowtag w= <MAXRONS/ > CALF |
<MAXROWS></ MAXROVS>

7-7

A tag that indicates the maximum number of records allowed to be returned by the server
has been exceeded, or alternatively, the Limit number passed by the client in the request
has been exceeded.

7.7 Query language

The query takes the form indicated below. This is the actual search criteria passed to the
server. The server parses this query and generates a server-compatible query based on the
parameters passed in the query-list.

7.7.1 Query language BNF

search-condi tion:= query-cl ause | (search-condi tionor query-cl ause)

query-cl ause = bool ean- el ement | (query- ¢l ause and bool ean- el ement)

bool ean- el enent :: = [not] query- el ement

query-el ement u=field-criterial((search-condition))

or H=“OR | 417

and s=“AND | “,”

not z=“NOT” | “~"

field-criteria ==“(“ field“=“field-value")*”

fiel d-val ue n=/o00kup-1ist | string-1ist|range-/ist|period|numper |
string-literal | “.EMPTY.”

/ ookup-1i st =/ ookup- or | | ookup-not | I ookup- and |“. ANY.”

/ ookup- or x=“1“ Jookup *(, ! ookup)

/ ookup- not n=“~" [ookup*(, / ookup)

! ookup- and n=“4* [ookup*(, /ookup)

/ ookup n= 1*128ALPHANUM | string-1iteral

string-1ist u=string*(, string)

string n=string-eq| string-start |string-contains|string-char

string-eq = 1*ALPHANUM

string-start = 1*ALPHANUMK

string-contains::=* 1*ALPHANUM®

* AL PHANUM™ (? * AL PHANUY)

string-char

string-literal " (PLAI NTEXT except") *(2" *(PLAI NTEXT except"))"

range-1ist == range*(, range)

range bet ween | greater | | ess

| bet ween == (period| numer) (period| numper)

| 7-8 Real Estate Transaction Specification Version 1.7.2

greater == (period| number | string-eq)*“+"

/ ess == (period| number | string-eq)*“-"

peri od = (dmgl dat e | dmyl dat etime | partial -tine)
number == [-]1*DIGIT ["." *DIGIT]

dmyl dat e == ful | - dat e | “ TODAY”

dmyl datetime := RETSDATETI VE | “NOW

amgl tine w=partial-tine

| 7.7.2 Query parameter interpretation

| Version 1.7.2

Query literal values are interpreted in the value space of the searched field. That is, the data
type of the searched field determines the interpretation of the search literal values, which
MUST be valid in that value space.

Dates and times submitted in a query MAY utilize time offsets relative to UTC using the
dmy/ dat et i me If a dmg/ dat et i me is submitted with time offset information, the server
system MUST interpret the request using the time offset information. If the time offset is
not declared in the query, the server system MUST interpret the request using the default
System time zone offset. This default must match the advertised time zone offset of the
SYSTEM-METADATA. If no time zone offset is advertised for the server system system,
the default time zone offset MUST be UTC. The server system MUST interpret the TODAY
token as the current date and time of the server system. For backward compatibility, the
server system MUST treat clients with version less than 1.7.2 as submitting dates and times
using a time zone offset of UTC/GMT. In this case, the advertised time zone offset is
ignored since the client is not expected to be aware of the time zone offset. The server
system MUST interpret the token NOWas the current date and time of the server system.

In processing a literal string, a server MAY substitute a st r/ ng- char expression (?s) for
the range of characters that contain any non-ALPHANUM not supported by that server.

In processing decimal numbers, where rounding is necessary, a server SHOULD round
down for the bottom of ranges or values less than 0.5 and round up for the tops of ranges
or values 0.5 or greater.

There are four types of field values that can be passed in the query string. They are a

/ ookup-1ist,arange,a string and the special token . EMPTY. . A / ookup- /i st is a field
that may only contain predefined values, or the special token . ANY. , indicating that any
value is acceptable. “Status” and “Type” are typical examples of fields with a limited range
of predefined values.

The . ANY. token, if used, is to be interpreted exactly as if it contained all possible values for
the given field. In particular, the use of . ANY. does not alter any limitation on the number
of lookup values allowed for the field. It is merely a shorthand method of specifying all
possible lookup values.

range fields can be searched based on a range of values. “ListPrice” and “ListDate” fall
into this category. All values specified in a range are to be treated as inclusive (e.g. 2+ is
the same as 2 or greater, inclusive of 2; 2-3 is the same as 2 to 3, inclusive of 2 and 3; 2- is

7-9

the same as 2 or less, inclusive of 2). The types of the range endpoints MUST match the
data type of the field being searched. In addition, the range- st art value MUST be less
than the r ange- end value in the value space defined by the searched field, or the result is
undefined.

A string field is any other character field not falling into the other two categories. These
are usually freeform text fields. An example of this kind of field is “OwnerName”.

The special value . EMPTY. is to be interpreted as whatever the value of the field would be if
no value had been entered. Note that this is implementation-defined: it may be the same as
a search for a null value, or it may be blank or zero. A client should not expect to be able to
distinguish unentered values from any other values using this search token.

Each 7/ e/ d MUST be a SystemName, as defined in the metadata, unless the

| StandardName argument is set to “1”, in which case the 7/ e/ MUST be a StandardName.
All values submitted for lookup-lists must be the Value in compact format, as defined in
Section 13.

The data types for field values may be determined by examining the metadata for the
searched field. In a query using StandardNames, the RETS Data Dictionary gives the
acceptable data type for search values.

Within range criteria, the datatype of the start and end range values MUST be identical.
That is, no mixing of datatypes within a specific range is permitted.

If a client submits a/ ookup value containing non-alphanumeric characters, the client
MUST use the string-/iteral representation of the Lookup value.

7.7.3 Sub-queries

This query language provides for a nesting of sub-queries. For example:
Quer y=((AREA=I 1, 2) | (CI TY=ACTON)) , (LP=200000+)

Example: Quer y=(ST=I ACT, SOLD),
(LP=200000- 350000),
(STR=RI VER*) ,
(STYLE=RANCH)
(EXT=+WIRFRNT, DOCK) ,
(LDATE=2000- 03-01+),
(REM=* FORECLOSE*)
(TYPE=~CONDO, TWNHVE) ,
(OANER=P?LE)

Verbally, this would be interpreted as “return properties with (ST equal ACT or SOLD) and
(LP between 200000 and 350000, inclusive) and (STRbeginning with Rl VER) and (STYLE
equal RANCH) and (EXT equal WTFRFRNT and DOCK) and (LDATE greater than or equal to 2000-
03-01) and (REMcontaining FORECLOSE) and (TYPE not equal to CONDOand not equal to
TWNHVE) and (OANER starting with P and having LE in the 3rd and 4th characters).”

| 7-10 Real Estate Transaction Specification Version 1.7.2

7.8 Reply Codes

Table 7-1

| Version 1.7.2

Search Transaction Reply Codes

Reply Code Meaning

0 Operation successful.

20200 Unknown Query Field
The query could not be understood due to an unknown field name.

20201 No Records Found
No matching records were found.

20202 Invalid Select
The Select statement contains field names that are not recognized by the server.

20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed to
the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the supplied
login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This reply
code indicates that the maximum records allowed to be returned by the server
have been exceeded. Note: reaching/exceeding the "Limit" value in the client
request is not a cause for the server to generate this error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be accepted
at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains too
many nesting levels or too many values for a lookup field.

20212 [deprecated] Invalid key request [deprecated]
The transaction does not meet the server’s requirements for the use of the Key
option.

20213[deprecated] Invalid Key[deprecated]
The transaction uses a key that is incorrect or is no longer valid. Servers are not
required to detect all possible invalid key values.

20514 Requested DTD version unavailable.
The client has requested the data in STANDARD-XML format using a DTD
version that the server cannot provide.

[7-12 Real Estate Transaction Specification Version 1.7.2

GET TRANSACTION

Gets an arbitrary file from the server or performs an arbitrary action, specified by URI.
This is a standard HTTP GET, per RFC 2616. The file to get is passed as part of the
Request-URI.

RETS servers need not support the GET transaction to any greater extent than is necessary
to implement the functionality of the Action URL (see 4.10, “Capability URL List”). If a
RETS server does not intend to include an Action URL in its login responses, it need not
support the GET transaction.

8.1 Required Request Arguments

There are no required request arguments.

8.2 Optional Request Arguments

There are no optional request arguments.

8.3 Required Response Arguments

There are no required response arguments.

8.4 Optional Response Arguments

There are no optional response arguments.

8.5 Status Conditions

See the General Status Codes in Section 3.9 for typical Status-Codes.

| Version 1.7.2 8-1

| 8-2 Real Estate Transaction Specification Version 1.7.2

CHANGE PASSWORD TRANSACTION

The Change Password transaction provides a means for the user to change their password.
The new password is appended to the username and encrypted using the Data Encryption
Standard (DES), ANSI X3.92, using a hash of the old password as the key.

9.1 Required Request Arguments

PUD u= PWD= <BASF64(<DES(Password : User Name)>)

This is the Base64 representation of the DES-encrypted UserName and Password. The
new Password and the UserName are appended together with a colon (“:”) between and
the resulting string is encrypted using DES in Electronic Code Book (ECB) mode. The
DES key is constructed using the procedure in Section 9.6. Base64 encoding is defined in

RFC 2045 section 6.8.

9.2 Optional Request Arguments

There are no optional request arguments.

9.3 Required Response Arguments

There are no required response arguments.

9.4 Optional Response Arguments

There are no optional response arguments.

| Version 1.7.2 9-1

9.5 Reply Codes

Table 9-1Change Password Reply Codes

Reply Code Meaning
0 Operation successful.
20140 Insecure password.

The password does not meet the site’s rules for password security.

20141 Same as Previous Password.
The new password is the same as the old one.

20142 The encrypted user name was invalid.

9.6 Encryption Key Construction

The new password is communicated to the host as a string encrypted with the Data
Encryption Standard, ANSI X3.92. DES requires a 64-bit key, which is constructed as
follows:

1 The old password and username are converted to uppercase and concatenated together.
2 The resulting string is hashed using MD5.

3 The key is taken as the first 64 bits of the resulting hash value. Parity bits must be
corrected for encoders that check parity.

9.7 ECB Padding

The input to the DES ECB encryption process shall be padded to a multiple of 8 octets in
the following manner:

Let n be the length in octets of the input. Pad the input by appending 8 - (n mod 8) octets
to the end of the input, each having the value 8 - (n mod 8), the number of octets being
added. In hexadecimal, the possible paddings are 0x01, 0x0202, 0x030303, 0x04040404,
0x0505050505, 0x060606060606 and 0x07070707070707 and 0x0808080808080808. All
input is padded with 1 to 8 octets to produce an input string that is a multiple of 8 octets in
length. The padding can be unambiguously removed after decryption.

This padding method is compatible with RFC 2315 section 10.3, note 2.

9.8 Effect of change

Servers that return a success status MUST accept the new password and reject the old
password for all subsequent Login transactions and sessions. Servers that return a success
status MAY require the use of the new password for all subsequent transactions in the
current session by issuing a WWW-Authenticate challenge for transactions that do not
contain the correct credentials.

If a client fails to receive a response to this transaction, it SHOULD retain both the old and
new passwords until the effect of the Change Password transaction can be ascertained via a
successful login.

[9-2 Real Estate Transaction Specification Version 1.7.2

UPDATE TRANSACTION

The update transaction is used to modify data on the server. The client transmits
information describing the update to perform. The information is then validated by the
server. If there are errors in the data, the server returns an error reply. If there are no
errors, the record as it was inserted/updated on the server will be returned. The record is
returned in the same manner as a record is returned from a search.

Update requests MUST use the POST method (rather than the GET method). This allows
the client to transmit characters beyond the HTTP length limit for the GET method. The

request MUST use a content-type appropriate to the encoding of the request, per [16]. A

content-type of t ext / ww- ur | - f or mencoded is recommended, but any other method of

encoding HTML form parameters may be used.

10.1 Required Request Arguments

| Version 1.7.2

The request has the following format:

Resour ce= resource- nane

&Cl assName= c/ ass- nane

&Val i dat e= val/idate-f/ag

&Type= updat e-type

&Delinmiter= field-delimter

&Record= f/ield-name = field-value *(field-delimter field-nanme =
field-val ue)

[&War ni ngResponse= warni ng-response *(fi el d-delinmter warning-
response) |

resource- name .= 1*32AL PHANUM

The name of the resource to be updated, as specified in the metadata. This is the
Syst emNane as defined in Section 11.2.2.

cl ass- nane w= 1*24ALPHANUM

The name of the class to be updated, as defined in the metadata. This is the O assNane as
defined in section 11.3.1.

validate-flag == 0|1 |2

If this parameter is set to one (“17), then the record is validated by the host. Any fields with
metadata field “Attributes” set to “Autopop” in the metadata (see Section 11.3.4) will have
their field values filled in by the server and returned to the client. The record in the server

10-1

database is not updated. If this entry is set to zero (“0”) and there are no errors in the
record the record is updated on the server. If this entry is set to two (“2”), the server
validates all fields and returns any errors found, but does not store the record.

updat e- t ype u= 1*24 ALPHANUM

The type of update to perform, as specified by the metadata. This is the UpdateType as
defined in Section 11.3.4.

fiel d-name u= 1*32ALPHANUM

The name of the field to be updated, as specified in the metadata. This is the SystemName
as defined in Section 11.3.2.

field-delimter := COCTET

The octet which will separate fields in the record. If this is not specified, an ASCII HT
character is assumed.

fiel d-val ue n= <varies depending on the field>

The text representation of the field value as defined by the metadata in Section 11.3.2
subject to the business rules. The value MUST be submitted as if in COMPACT format.

warni ng- response:= warni ng- nUMmM= User-r esponse
war ni ng- num = 1*50GT
user-response = *256TEXT exc/udingdelimter

The war ni ng- numvalue is the host warning number that was returned in the prior Update
Response body. The user - r esponse value is the text of the warning response in response
to the specified warning. If a war ni ng- numsent in the prior UpdateResponse body had a

| response-requi r edvalue of 2, then the user - response value MUST NOT be MLL.

10.2 Optional Request Arguments

There are no optional request arguments.

10.3 Required Response Arguments

There are no required response arguments.

10.4 Optional Response Arguments

There are no optional response arguments.

10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:

<BRETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quoted-string *SP> CALF

transaction-id-tag

[delinmter-tag]

colum-tag

] 10-2 Real Estate Transaction Specification Version 1.7.2

compact -data

[<RETS- STATUS 7*SP Repl yCode= quot ed- end- repl y-code 1*SP
Repl yText = quot ed-string *SA >]

</ RETS> CALF

The body of the update response has the following format when there are errors or
warnings:

<BRETS 7*SP Repl yCode= quot ed-repl y-code 1*SP
Repl yText = quoted-string *SP > CALF

transaction-id-tag

[delimter-tag]

col um-tag

conpact -dat a

[error-block]

[war ni ng- bl ock]

</ RETS> CALF

error-bl ock = <ERRORBLOCK> CALF
1*(<ERRORDATA>— 7/ el d—error-numserror-
of fset—error-text—
</ ERRORDATA>)
</ ERRORBLOCK>

warni ng- bl ock = <WARNI NGBLOCK>
1*(<WARNI NGDATA>—f / e/ d—war ni ng- num-swar ni ng-
of f set>warni ng-t ext—>response-requi r ed—
</ WARNI NGDATA>)
</ WARNI NGBLOCK>

The format of the <ERRORDATA> and <WARNI NGDATA> tag content is identical to
COMPACT format.

10.5.1 Error block

| Version 1.7.2

An Error Block is returned when there is a problem with one or more of the fields. The
error block contains information about the fields that have errors. It contains the field
name, an error number, some additional text about the error (error-text), and where in the
field data the error occurred (error-offset).

error-num = 1*5D/GT

This is the host error number. This number along with the error-text MAY be displayed to
the user when looking at the corresponding field in the client application.

error-offset = 1*5D/GT

This is the offset into the field data that was sent by the client application to the server. It
indicates at what character in the field data the problem was encountered. This number is
set to zero (“0”) if the offset of the error is unknown.

error-text w= *64ALPHANUM

This is the error text generated by the host to assist the user in determining the problem
with the field data. This text is associated with the error-num.

The error return format follows the COVPACT data format in all particulars. This affects
primarily the quoting of special characters and the selection of the delimiter that separates

10-3

the field values. In effect, the error return is a COVPACT data block without the usual
COLUMWNS element.

10.5.2 Warning block

A Warning Block is returned when there is a problem with one or more of the fields that
would not prevent the record from being saved in the database. It contains a field name, a
warning number, some additional text about the warning (uar ni ng- t ext), where in the
field data the warning occurred (uar ni ng- of f set) and an indicator whether an end-user
response to this warning is requested or required. The delimiter is the same as the one
defined for the error- b/ ock.

field u= 1*32ALPHANUM
The SystemName of the field to which the warning applies.
warni ng- num = 1*50GT

The host warning number. This number, along with the uarni ng- t ext, MAY be
displayed to an end-user in association with the corresponding field in the client

application.
warni ng- t ext = TEXT
warni ng-of fset == 1*500GT

The offset into the field data that was sent by the client application to the server. It
indicates at what character in the field data the problem was encountered. This number is
set to zero if the offset of the error is unknown or if an offset is inapplicable.

response-required:=01 11 2

The response- r equi r edvalue indicates whether an end-user response is requested or
required:

0 No response is permitted.

1 A response is requested.

2 A response is mandatory.

If the response- requi r edfield indicates that a response is mandatory, the client MUST
send the end-user response for the specific warning-num in the WarningResponse request
argument in order for this record to be saved to the database.

10.6 Validation

Validation routines are indications of the checks the host system will perform against a
field value before it is accepted for storage on the host. Some of these routines require data
available only on the host system. However, others are relatively simple and could be

| performed by any RETS client to prevent invalid field values from being submitted. There
are several different types of validation to be performed by the client.

A compliant client is not required to enforce the local validations provided in this section.
However, if a client does not enforce the validations then the likelihood of the server
rejecting the record is greatly increased.

] 10-4 Real Estate Transaction Specification Version 1.7.2

10.6.1 Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as Lookup the only acceptable values for the field
are defined in the METADATA- LOOKUP referenced by LookupNane. Alternatively, if the
metadata specifies a Val i dat i onLookup the only acceptable values for the field are defined
in the METADATA- VALI DATI ON_LOOKUP referenced by the ValidationLookup field.

10.6.2 MultiSelect Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as LookupMul t i , LookupBi t st ri ng or
LookupBi t mask the only acceptable values for the field are defined in the METADATA-
LOOKUP referenced by LookupName. The maximum number of values that can be selected is
defined by MaxUpdat e.

10.6.3 Range

The entry must be between the M ni rumand Maxi numvalues specified in the metadata (see
Section 11.3.2).

10.6.4 Test Expression

The parameter list contains an expression evaluated by the routine. If the expression is
true, the value of the field is acceptable. If the expression is false, the value is rejected. See
Section 11.4.9 for more information on Test Expressions. Test expressions are always

| executed in the order in which they are presented in the metadata.

10.6.5 External

The entry may be validated by searching a server resource. The Resource is defined for
searching and the parameter list includes a set of suggested input fields, a set of result fields
to display and a set of result fields to populate into the fields of the resource being updated.
Information for external validation is provided in Section 11.4.10.

10.7 Reply Codes
Table 10-1 Update Transaction Reply Codes
Reply Code Meaning
0 Operation successful.
20301 Invalid parameter. Additional information is provided in the error block.
20302 Unable to save record on server.
20303 Miscellaneous Update Error.
20311 Var ni ngResponse was not given for all warnings that contained a
response-requi r edvalue of 2.
20312 W&r ni ngResponse was given for a warning that contained a r esponse-
requi r edvalue of 0.

The quoted-string of the body-start-line contains text that MAY be displayed to the user.

| Version 1.7.2 10-5

] 10-6 Real Estate Transaction Specification Version 1.7.2

METADATA FORMAT

Metadata enables a client that receives data from a compliant server to better format the
data for display, and to store it efficiently for future retrieval. While use of the metadata is
not necessary to retrieve data for simple display purposes, more sophisticated clients will
want to use the metadata to make more intelligent use of the information retrieved.
Metadata MUST be supplied by a compliant server.

11.1 Organization and Retrieval

11.1.1 Metadata Organization

Metadata is organized by table/object, with each table having its own unique set of
metadata describing the fields available in that table/object. The organization permits
access to summary or detailed information about one or more resources (see Figure 11.1,
“Metadata Structure”).

The client retrieves the metadata by using the GetMetadata Transaction specifying the
METADATA table/object(s) of interest as the Type, and the specific instance in the ID (see
Section 5). The server supplies the metadata as documents using the formats described in
this section. The client MUST accept fields and attributes in the metadata that are not
defined in this standard, although it is not required to process those fields in any way.

The client may cache the metadata between sessions. If it does, it MUST record the value
of the METADATA- SYSTEMtimestamp attribute from each session in which it caches
retrieved metadata, and MUST request new metadata whenever the Met adat aTi nest anp
Login response value changes except when previous versions are permitted by the

M nMet adat aTi mest anp value. If a client continues to send transactions using outdated
metadata, the server’s operation is undefined.

11.1.2 General Rules for Interpretation

In general, metadata keywords defined in this standard such as field names and reserved
| values are not case-sensitive. However, implementers are urged to adopt the strict-
generation/tolerant-acceptance rule and follow the case shown in this standard.

| Version 1.7.2 11-1

System

Resource - Class 1 Table

—P| ForeignKey —1 Object Update

—»| SearchHelp
UpdateType

— EditMask

—»{ UpdateHelp

—> Lookup —® LookupType

Validation- Validation-
Lookup LookupType

> Validation- - Validation-

External ExternalType

- Validation-

Expression

| Figure 11.1 Metadata Structure

Servers may choose to extend the content of any metadata table by including additional
keywords. Metadata field names for such extensions SHOULD begin with the letter “X”
followed by a hyphen, followed by an implementation-defined token in order to insure
compatibility with future versions of the standard.

Clients requesting metadata in COMPACT format MUST ignore any metadata fields
which they do not understand. In addition, the servers are permitted to send columns in
any order. The order shown in the examples is not normative.

] 11-2 Real Estate Transaction Specification Version 1.7.2

NOTE

Clients requesting metadata in XML format MUST ignore any <EXTENSI ON> or
<PROPRI ETARY> elements that they do not understand.

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires GetMetadata
responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that
complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML
Recommendation 1.0, Third Edition, for full information on XML.

11.1.3 Metadata Retrieval Hierarchy

The ID argument in the GetMetadata transaction reflects the metadata hierarchy as shown
in Figure 11.1. For any metadata element, the ID argument is a list of the names of the
parent elements for the desired element, separated by colons. For example, to retrieve the
EditMask table for a given named Resource, the argument is simply the ResourcelD:

Type: METADATA- EDI TMASK
ID: Property

where Property is the ID of one of the Resources listed in the Metadata-Resource table.
Since Tables are children of Classes, which are in turn children of Properties, the ID
parameter contains both parents:

Type: METADATA- TABLE
ID: Property : Res

where Res is a class listed in the Metadata-Class table under the resource Property.

11.1.4 Metadata Format

| Version 1.7.2

Compliant RETS servers MUST supply metadata in both formats: COMPACT, described
below and valid according to the RETS Compact DTD (public identifier - / / RETS/ / DTD
Compact Metadata 1.7.2//EN), and XML, valid according to the RETS XML Metadata
DTD (public identifier - / / RETS// DTD Met adata Content 1.7.2//EN). See Appendix A
for system identifiers.

The COMPACT metadata format consists of a sequence of segments with identical
structure, except for System-level metadata, which has its own structure. The general
structure for non-System metadata is a tab-delimited table, XML-encapsulated with the
header record contained within a <COLUWNS> element, and each successive row contained
within a <DATA> element.:

<NVETADATA- HEADER header - at t ri but es>

<COLUWNS>—f/ e/ dname * (—f/i el dnane) —»></ COLUVNS>

*(<DATA>—fi el ddata *(—f/ el ddat a) ></ DATA>)

</ METADATA- HEADER>
NMETADATA- HEADERs the header name for the segment, given with the description of each
type of metadata, as are the header - at t r i but es associated with each header. Each
fi el dname is the name of one of the metadata fields given below. Each 7/ e/ ddat a value

corresponds to the similarly-positioned 7/ e/ dnare, first to first, second to second and so
on.

11.2 System-Level Metadata

Clients can determine the number and type of searchable and updateable entities by
referencing the Resources. A server MUST advertise its resources. It MAY advertise all of
| its available resources or MAY restrict the advertised list by logon or other criteria. A
server’s advertisement of a resource does not require that the server be able to
accommodate any arbitrary search for that user; the server MAY restrict access to
| resources that it advertises. If the server supports multimedia objects then it MUST
advertise the supported types.

All resources that can be searched or updated are defined in the metadata described in this
section. There are three parts to the metadata. The first part provides system information
and describes the available resources, the second part describes the class specific metadata
for a resource, and the third part describes the shared metadata for a resource.

11.2.1 System

The System metadata starts with a <METADATA- SYSTEM> tag with Version and Date
attributes. This tag is followed by a <SYSTEM> section, which contains the system

| identification information and time offset. An optional <COMMENTS> section completes the
System metadata. The System metadata has the following format:

<METADATA- SYSTEM- Ver si on="syst em versi on" - Date="system datée" >
<SYSTEM. System D=" code- nane" - SystenmDescri ption="/ong- nang"

| [Ti meZoneCX f set =" ¢/ ne- zone- of fset™] | >
[<COWMMENTS>
*(comment)
</ COMMENTS> |
</ NETADATA- SYSTEM>
systemversion == 1*2D00GTS. 1 2D0GTS. 1*50G TS
system date = RETSDATETI VE
code- nane w= 1" 10ALPHANUM
/ ong- nane w= 1*64PLAI NTEXT
tinme-zone-of fset:= tine-offset
conmment s n= TEXT

| 11-4 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA- SYSTEM

Table 11-1 MetadataSystem Compact Header Attributes

Attribute Content

Ver si on This is the version of the Resource metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

COMPACT header tag: SYSTEM

Table 11-2 System Compact Header Attributes

Attribute

Content

Systemnl d

An identifier for the system

Syst enDescri ption

An implementation defined description of the system

Ti meZoneOf f set

The Time Zone Offset is the time offset of the server relative to
UTC. The server MAY provide the TimeZoneOffset to assist in
correctly calculating date and time values for requests to this
server. The format is defined in Section 2.4 for the atom time-
offset. Any server that provides the TimeZoneOffset value in
System Metadata MUST adhere to this value when responding
to requests. Client applications SHOULD use this value to calcu-
late the correct date and time criteria for requests.

Table 11-3 Metadata: System Field

Field Name

Content Type

Description

COMMENTS

TEXT

Optional comments about the system. The context
where the field contains characters may require that
those characters are escaped by other rules like entity
encoding.

|11.2.2 Resources

| Version 1.7.2

RETS does not require that any particular type of data be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard. Table 11-4 contains the
list of well-known resource names.

Table 11-4 Well-Known Resource Names

Resource Name Purpose

Act i veAgent A resource that contains information about active agents. These are agents that
are currently authorized to access the server (paid-up, not retired, etc.)

Agent A resource that contains information about agents.

H story A resource that contains information about the accumulated changes to each list-
ing.

Gfice A resource that contains information about broker offices.

Table 11-4 Well-Known Resource Names (continued)

Resource Name

Purpose

OpenHouse A resource that contains information about open-house activities.

Property A resource that contains information about listed properties. Information in this
resource is described by Real Estate Transaction XML DTD in addition to appro-
priate metadata.

Pr ospect A resource that contains information about sales or listing prospects.

Tax A resource that contains tax assessor information.

Tour A resource that contains information about tour activities.

Resource Metadata Content
COMPACT header tag: METADATA- RESOURCE

Table 11-5 Resource Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Resource metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Table 11-6 Metadata: Resource Description Fields (Sheet 1 of 3)

Field Name Content Type Description

Resourcel D RETSI D The name which acts as a unique ID for this resource.

St andar dNane 1*64AL PHANUM The name of the resource. This must be a well-known
name if applicable.

Vi si bl eNane 1*64PLAI NTEXT The user-visible name of the resource.

Description 1*64PLAI NTEXT A user-visible description of the resource.

KeyFi el d RETSI D The Syst emNane (see 11.3.2) of the field that pro-
vides a unique Resour ceKey for each element in
this resource. All classes within a resource must use
the same KeyFi el d.

Cl assCount PCS! TI VENUM The number of classes in this resource. There MUST
be Cl assCount METADATA_CLASS descriptions
for the resource. There MUST be at least one Class for
each Resource.

Cl assVersion 1*2D0G' TS . The latest version of the Class metadata for this

1*2D00G TS . Resource. The convention used is a
1"50/G TS “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only.

Cl assDat e RETSDATET! VE The date on which the Class metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management.

| 11-6 Real Estate Transaction Specification

Version 1.7.2

Table 11-6 Metadata: Resource Description Fields (Sheet 2 of 3)

Field Name Content Type Description
oj ect Ver si on 172D0G TS . The version of the Object metadata for this Resource.
1*2D00G TS . The convention used is a
150/ G'TS “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no Object metadata is available for this
Resource.
oj ect Dat e RETSDATETI ME The date on which the Object metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
Object metadata is available for this Resource.
Sear chHel pVer - 1"2D0G TS . The version of the SearchHelp metadata for this
sion 172D0G TS . Resource. The convention used is a
150/ G'TS “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no SearchHelp is available for this Resource.
Sear chHel pDate | RETSDATETI VE The date on which the SearchHelp metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
SearchHelp is available for this Resource.
Edi t MaskVer - 17*2D0G TS . The version of the EditMask metadata for this
si on 1"2D0G TS . Resource. The convention used is a
150/ G' TS “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no EditMask is available for this Resource.
Edi t MaskDat e RETSDATETI VE The date on which the EditMask metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
EditMask is available for this Resource.
LookupVer si on 1*2D0G' TS . The version of the Lookup metadata for this Resource.
1*2D00G TS . The convention used is a
1°50/ G'TS “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no Lookup is available for this Resource.
LookupDat e RETSDATETI ME The date on which the Lookup metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
Lookup is available for this Resource.
Updat eHel pVer - 1"2D0G TS . The version of the UpdateHelp metadata for this
sion 172D0G TS . Resource. The convention used is a
150G 73 “<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no UpdateHelp is available for this Resource.
Updat eHel pDate | RETSDATETI VE The date on which the UpdateHelp metadata for this

Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
UpdateHelp is available for this Resource.

Table 11-6 Metadata: Resource Description Fields (Sheet 3 of 3)

Field Name Content Type Description

Val i dati on- 172D00G TS . The version of the ValidationExpression metadata for
Expr essi onVers 1*2D00G' TS . this Resource. The convention used is a

ion 150/ G TS "<major>.<minor>.<release>" numbering scheme.

The version number is advisory only. A blank version
indicates no ValidationExpression is available for this

Resource.
| Val i dati on- RETSDATETI ME The date on which the ValidationExpression metadata
Expr essi onDat e for this Resource was last changed. Clients MAY rely

on this date for cache management. A blank date indi-
cates no ValidationExpression is available for this

Resource.
Val i dati on- 172D00G TS . The version of the ValidationLookup metadata for
LookupVer si on 1*2D0G' TS . this Resource. The convention used is a
1*50/ G TS “<major>.<minor>.<release>” numbering scheme.

The version number is advisory only. A blank version
indicates no ValidationLookup is available for this

Resource.
| Val i dati on- RETSDATETI ME The date on which the ValidationLookup metadata
LookupDat e for this Resource was last changed. Clients MAY rely

on this date for cache management. A blank date indi-
cates no ValidationLookup is available for this

Resource.
Val i dat i onEx- 17" 200G 7S . The version of the ValidationExternal metadata for
t ernal Versi on 1 2D0G TS . this Resource. The convention used is a
1*50/ G TS “<major>.<minor>.<release>” numbering scheme.

The version number is advisory only. A blank version
indicates no ValidationExternal is available for this

Resource.
| Val i dat i onEx- RETSDATETI VE The date on which the ValidationExternal metadata
ternal Date for this Resource was last changed. Clients MAY rely

on this date for cache management. A blank date indi-
cates no ValidationExternal is available for this
Resource.

11.2.3 Foreign Keys

The ForeignKeys metadata table allows a server to advertise relationships among its
offered resources. A RETS client MAY use this information to provide a richer display of
related information. The ForeignKeys metadata consists of tuples containing a parent
resource type, a child resource type, and the foreign keys used to traverse the relation.

The nesting of foreign keys MUST be such that recursive searches are NOT REQUIRED to
obtain data for well-known fields as defined in the RETS DTD. However, nesting of
foreign keys is allowed except in these cases.

| 11-8 Real Estate Transaction Specification Version 1.7.2

ForeignKeys Metadata Content
| COMPACT header tag: METADATA- FOREI GN_KEYS

Table 11-7 ForeignKeys Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the ForeignKeys metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Table 11-8 Metadata Content: Foreign Keys (Sheet 1 of 2)

Metadata Field

Content Type

Description

| For ei gnKeyl D

RETSI D

A Unique ID that represents the foreign key com-
bination.

| Par ent Resour cel D

RETSI D

The Resour cel D (Table 11-6) of the resource
for which this field functions as a foreign key. The
name given MUST appear in the METADATA-
RESOURCE table..

| Parent G assl D

RETSI D

The name of the resource class for which this field
functions as a foreign key. This name MUST
appear in the RESOURCE- CLASS table for the
given Par ent Resour cel D.

Par ent Syst emNane

RETSNAVE

The SystemName of the field in the given resource
class that should be searched for the value given in
the this field. This name must appear as a Sys-

t emNane in the METADATA- TABLE section of
the metadata for the ParentClassID, and the
named item must have its Searchable attribute set
to TRUE.

| Chi | dResourcel D

RETSI D

The Resour cel D(Table 11-6) of the resource
for which this field functions as a foreign key. The
name given MUST appear in the METADATA-
RESOURCE table.

| Chi 1 dCl assI D

RETSI D

The name of the resource class for which this field
functions as a foreign key. This name MUST
appear in the RESOURCE- CLASS table for the
given Chi | dResour cel D.

Chi | dSyst enNare

| Version 1.7.2

RETSNANVE

The Syst emNarre of the field in the given
resource class that should be searched for the value
given in this field. This name must appear as a Sys-
temName in the METADATA-TABLE section of
the metadata for the ChildClassID, and the named
item must have its Searchable attribute set to

TRUE.

Table 11-8 Metadata Content: Foreign Keys (Sheet 2 of 2)

Metadata Field Content Type |Description
Condi ti onal Parent - RETSNMANVE The Syst emNarre of a field in the parent’s
Field METADATA- TABLE that should be examined to

determine whether this parent-child relationship
should be used. If this is blank, the relationship is
unconditional. If Condi t i onal Par ent -

Fi el d is present and nonblank, then Condi -
ti onal Par ent Val ue MUST be present and

nonblank.
Condi ti onal Parent - RETSNMANE The value of the field designated by Condi -
Val ue tional Parent Fi el d indicating that this rela-

tion should be used. If the type of the field named
in Condi ti onal Par ent Fi el d is numeric,
then this value is converted to numeric type before
comparison. If the type of the field named in Con-
di ti onal Par ent Fi el d is character, then the
shorter of the two values is padded with blanks and
the comparison made for equal length. If Condi -
ti onal Parent Fi el dis present and nonblank,
then Condi t i onal Par ent Val ue MUST be
present and nonblank.

11.3 Metadata Format for Class Elements

All tables that can be searched are defined in a document with the format defined in this
section. There are three parts to this section. The first part describes the searchable tables,
the second part describes the lookups referenced within the table section, and the third
describes the help text associated with searches and edit masks associated with updates.

11.3.1 Class

A given data resource may contain multiple classes of entries that can be searched or
updated separately. The metadata for a resource supporting searchable classes MUST
contain a class description for each class supported.

COMPACT header tag: METADATA- CLASS

Table 119 Class Metadata Compact Header Attributes
Attribute Content

Ver si on This is the version of the Class metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.
Resour ce The ResourcelD for the resource in which this class resides.

] 11-10 Real Estate Transaction Specification Version 1.7.2

11.3.2 Table

| Version 1.7.2

Table 11-10 Metadata Content: Resource Class

Metadata Field

Content Type

Description

Cl assNanme

RETSI D

The name which acts as a unique ID for the class.

St andar dNane

1*64PLAI NTEXT

The XML standard name. This is the name from the
Real Estate Transaction XML DTD. Examples include
Resi denti al Property, LotsAndLand,
Commonl nterest, Mil ti Fam |y for the
Resource type of Property.

Vi si bl eNane

1*64PLAI NTEXT

The user-visible name of the class.

Descri ption

17 128PLAI NTEXT

A user-visible description of the class.

Tabl eVer si on

1°2DIG TS .
1"2D00G TS .
1"50/G' TS

The version of the Table metadata that describes this
Class. The convention used is a
"<major>.<minor>.<release>" numbering scheme.
The version number is advisory only.

Tabl eDat e

RETSDATETI NE

The date on which the Table metadata for this Class
was last changed. Clients MAY rely on this date for
cache management.

Updat eVer si on

120G TS .
1"2D/G'TS .
15D/ G TS

The latest version of any of the Update metadata for
this Class. The convention used is a
“<major>.<minor>.<release>” numbering scheme. A
blank version indicates no Update is available for this
Class. The version number is advisory only.

Updat eDat e

RETSDATETI VE

The date on which any of the Update metadata for this
Class was last changed. Clients MAY rely on this data
for cache management. A blank date indicates no
Update is available for this Class.

Cl assTi meSt anp

RETSNMAVE

The Syst enNane of the field in the METADATA-
TABLE that acts as the last-change timestamp for this
class.

Del et edFl ag-
Field

RETSMANVE

The Syst emName of the field in the METADATA-
TABLE that indicates that the record is logically
deleted. If this element is specified, then Del et ed-
FI agVal ue MUST be specified as well.

Del et ed-
FI agVal ue

1*32AL PHANUM

The value of the field designated by Del et edFl ag-
Fi el d indicating that a record has been logically
deleted. If the type of the field named by Del et ed-
FI agFi el d is numeric, then this value is converted
to a number before comparison. If the type of the field
named by Del et edFl agFi el d is character, then
the shorter of the two values is padded with blanks
and the comparison made for equal length.

HasKey| ndex

B EAN

When true, indicates that the Class supports the
retrieval of key data for fields advertised in the Table
Metadata as InKeyIndex.

The following table lists the minimum acceptable content for server-supplied metadata
used in describing a table.

11-1

COMPACT header tag: METADATA- TABLE

Table 11-11 Table Metadata Compact Header Attributes

Attribute

Content

Ver si on

This is the version of the Table metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce

The ResourcelD for the resource in which this table resides.

Cl ass

The ClassName for the class in which this table resides.

Table 11-12 Metadata Content - Tables (Sheet 1 of 4)

Field Name

Content Type

Description

Met adat aEn-
trylD

RETSI D

A value that never changes as long as the semantic
definition of this field remains unchanged. In particu-
lar, it should be managed so as to allow the client to
detect changes to the Syst emNarre.

Syst emNare

RETSNANVE

The name of the field as it is known to the native
server. The system name MUST be unique within the
Table.

St andar dNane

RETSNAVE

The name of the field as it is known in the Real Estate
Transaction XML DTD.

LongNane

17256 TEXT

The name of the field as it is known to the user. This is
alocalizable, human-readable string. Use of this field
is implementation-defined; it is expected that clients
will use this value as a title for this datum when it
appears on a report.

DBNanme

1*10AL PHANUM

A short name that can be used as a database field
name. This name may not start with a number nor can
it be an ANSI-SQL92 reserved word. This value can be
used by a client as the name of an internal database
field, so servers should attempt to provide a value for
this field that is unique within the table.

Short Narre

1*64TEXT

An abbreviated field name that is also localizable and
human-readable. Use of this field is implementation-
defined. It is expected that clients will use this field in
human-interface elements such as pick lists.

Maxi munmiengt h

] 11-12 Real Estate Transaction Specification

PQS! TI VENUM

The maximum possible unencoded length of a value
of this field. Given that the HTTP transport specifica-
tion converts all data types to a string representation
and that certain characters and entities may be
encoded for transmission, this is the maximum num-
ber of unencoded characters that can be expected for a
single instance of this field. See Appendix D for inter-
pretation.

Version 1.7.2

| Version 1.7.2

Table 11-12 Metadata Content - Tables (Sheet 2 of 4)

Field Name Content Type Description
Dat aType Bool ean A truth-value, stored using 7RUE and FALSE That
is 1 for true and 0 for false.
Char act er An arbitrary sequence of printable characters.
Dat e A date in RETSDATE format.
Dat eTi me A date and time in f 4/ / - dat e format.
Ti me A time in AETST/ VEformat.
Ti ny A signed numeric value that can be stored in no more
than 8 bits.
Smal | A signed numeric value that can be stored in no more
than 16 bits.
I nt A signed numeric value that can be stored in no more
than 32 bits.
Long A signed numeric value that can be stored in no more
than 64 bits.
Deci mal A decimal value that contains a decimal point (see
Precision).
Preci si on OPTNONNEGAT! VENU | The number of digits to the right of the decimal point
M when formatted. Applies to Decimal fields only.
Sear chabl e BOA.EAN When true, indicates that the field is searchable.

11-13

Table 11-12 Metadata Content - Tables (Sheet 3 of 4)

Field Name

Content Type

Description

Interpretation

Nurber
Currency
Lookup

LookupMul ti

LookupBi t -
string[depre-
cat ed]

LookupBi t -
mask[depr ecat ed]

An arbitrary number.
A number representing a currency value.

A value that should be looked up in the Lookup Table.
This is a single selection type lookup (e.g. STATUS).

This interpretation is also valid for Boolean data types,
in which case the LookupType specified by the
LookupNanme entry MUST contain exactly two ele-
ments, one with a Val ue of 0, and the other with a
Val ue of 1.

A value that should be looked up in the Lookup Table.
This is a multiple-selection type lookup (e.g. FEA-
TURES) where the character strings representing each
selection are separated by commas.The character
strings MAY be quoted text following the rules for
Value of section 11.4.3 Lookup Type.

[deprecated] A value that should be looked up in the
Lookup Table. This is a multiple-selection lookup that
is stored as a bit string. The bit string is represented as
a character string containing only the characters 0 and
1. The leftmost character represents the least-signifi-
cant bit. The lookup value of the bitstring element is
the ordinal position of each bit with the rightmost bit
designated as bit 0.

[deprecated] A value that should be looked up in the
Lookup Table. This is a multiple-selection type lookup
that is stored as a bitmask field. Fields of this type are
limited to 31 choices.(e.g. VI EW. When converted to
binary, each bit represents one of the possible choices.
The choices are from Isb to msb. Lookup values are
the numeric equivalent of each bit’s binary value (i.e.,
the low order bit represents the first lookup and the
high order bit represents the last lookup choice).
20value-1) s added to the total choice when querying
for its applicability.

Al'i gnment Left The value MAY be displayed left aligned.
Ri ght The value MAY be displayed right aligned.
Cent er The value MAY be centered in its field when dis-
played.
Justify The value MAY be justified within its field when dis-
played.
UseSepar at or BOA.EAN When true, indicates that the numeric value MAY be
displayed with a thousands separator.
Edi t Maskl D RETSMANE *(“, ” For each RETSNANE, the name of the METADATA-
RETSNANE) EDI TMASK EditMaskID containing the edit mask
expression for this field (see Section 11.4.5). Multiple
masks are permitted and are separated by commas.
LookupNane RETSNANVE The name of the METADATA- LOOKUP containing

] 11-14 Real Estate Transaction Specification

the lookup data for this field (see Section 11.4.2).
Required if Interpretation is Lookup, LookupMulti,
LookupBitstring or LookupBitmask.

Version 1.7.2

| Version 1.7.2

Table 11-12 Metadata Content - Tables (Sheet 4 of 4)

Field Name

Content Type

Description

MaxSel ect

Numeric

This field is required if Interpretation is Lookup-
Mul ti, LookupBitstringorLookupBit-
mask. This value indicates the maximum number of
entries that may be selected in the lookup.

Units

(Feet |Meters |
SqFt | SqMeters |
Acres |Hectares)

Unit of measure.

| ndex

BOA.EAN

When true, indicates that this field is part of an index.
The client MAY use this information to help the user
create faster queries.

M ni num

Numeric

The minimum value that may be stored in a field
(applies to numeric fields only).

Maxi mum

Numeric

The maximum value that may be stored in a field
(applies to numeric fields only).

Def aul t

SERI AL

The order that fields should appear in a default one-
line search result. Fields that should not appear in the
default one-line format should have a value of 0,
Fields that should never be visible to the user should
have a value of -1.

Requi red

Numeric

A non-zero value indicates the field is required when
searching. This value should be sequential starting
with one. If multiple fields share the same value, then
one of the fields with the same value is required. (e.g.
City = 1 & ZipCode = 1 implies that the user is
required to include either City or ZipCode in their

query).

Sear chHel pl D

RETSMANVE

The name of the entry in the METADATA-
SEARCH_HELP table (see Section 11.4.4).

Uni que

BOA.EAN

When true, indicates that this field is a unique identi-
fier for the record that it is part of.

ModTi neSt anp

BOALEAN

When true, indicates that changes to this field update
the class’s ModTi meSt anp field.

For ei gnKeyNarre

RETSI D

When nonblank, indicates that this field is normally
populated via a foreign key. The value is the For -

ei gnKeyl Dfrom the METADATA- FOREI GNKEYS
table.

For ei gnFi el d

RETSNMANME

The Syst emNane from the child record accessed via
the specified foreign key.

KeyQuer y[depre-
cated]

BOA.EAN

When true, indicates that this field may be included in
a query that uses the Key optional argument.[depre-
cated]

KeySel ect [depre-
cated]

BOALEAN

When true, indicates that this field may be included in
the Sel ect list of a query that uses the Key optional
argument.[deprecated]

InKeyIndex

BOA_EAN

When true, indicates that this field may be included in
the Select argument of a Search to suppress normal
Limit behavior following the rule described in Section
7.4.5

11-15

11.3.3 Update

A given data resource may contain multiple classes of entries that can be updated
separately. The metadata for a resource supporting updateable classes MUST contain a
Class Table description for each class supported.

COMPACT header tag: METADATA- UPDATE

Table 11-13 Update Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Update metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource to which this metadata table applies.

Cl ass The ClassName for the class to which this metadata table applies.

Table 11-14 Metadata Content - Update

Metadata Field Content Type Description

Met adat aEn- RETSI D A value that never changes so long as the semantic definition of this entry

trylD remains unchanged.

Updat eNane 1*24AL PHANUM This identifies the nature of the update, such as "add" or "modify". Some
update types, such as changes to a property record (e.g. "Sell", "Back on
Market"), will imply a set of business rules specific to the server. However,
where possible, the following standard type names should be used:
Update Name Function
Add Add a new record
Cl one Create a new record by copying an old one
Change Change an existing record
Del ete Delete an existing record

Descri ption 1*64PLAI NTEXT A user visible description of the Update Type.

KeyFi el d RETSNANVE The SystemName (see Section 11.3.2) of the field that must be used to
retrieve an existing record for the update.

Updat eTypeVer- |7 2D00G TS . The latest version of this Update Type metadata. The convention used is a

si on 1" 2D0G TS . “<major>.<minor>.<release>” numbering scheme. The version number is

1"50/ G TS advisory only.

Updat eTypeDat e | RETSDATETI VE The date on which any of the content of this Update Type was last
changed. Clients MAY rely on this date for cache management.

11.3.4 Update Type

A given resource may contain multiple classes of entries that can be updated separately.
Each of these classes may have different types of updates that can be performed. There

might be different test expressions or sequences. This section describes how each of those
are specified.

] 11-16 Real Estate Transaction Specification

Version 1.7.2

COMPACT header tag: METDATA- UPDATE_TYPE

Table 11-15 UpdateType Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Update Type metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource to which this metadata table applies.

Cl ass The ClassName for the class to which this metadata table applies.

Updat e The UpdateName for the Update to which this metadata table applies.

Table 11-16 Metadata Content — Update Type

Metadata Field Content Type Description
I| Met adat aEn- RETSI D A value that never changes as long as the semantic definition of this entry
trylD remains unchanged.
Syst emNane RETSNANVE This is the SystemName of the field as defined in Section 11.3.2.
Sequence 17500 G T Sequence number of the field, representing the order of entry
Attributes *(11213|41|51[, 1 Multiple entries are separated by commas.
Value Meaning Description
1 DisplayOnly Field may not be changed.
2 Required Field may not be left blank.
3 Autopop Field is populated by the server.
4 Interactive- When changed, the client can validate
Validate the field only by contacting the server.
All fields listed as “AdditionalField”
MUST also be passed.
5 ClearOnCloning | The field should be cleared when the
containing record is cloned.
Def aul t <PLAl NTEXT> Default value of field (i.e. value if not specified by user)
Val i dati onEx- RETSMANVE *(*“,” <multiple entries are separated by commas>
pressi onl D RETSNANE) The names of the ValidationExpressions to use. See section 11.4.9
Updat eHel pl D RETSNAVE The name of the entry in the METADATA- UPDATE_HELP table (see Sec-
tion 11.4.6).
Val i dati on- RETSNMANVE The name of the ValidationLookup to use. See section 11.4.7
LookupNarre
Val i dati onEx- RETSNMANVE The name of the ValidationExternal to use. See section 11.4.10
t er nal Narre
Max Updat e 1°500G'T For LookupMulti fields, the maximum number of values that may be spec-

ified for the field. This value has no meaning for fields with any other
interpretation.

| Version 1.7.2

11-17

11.4 Metadata Format for Shared Elements

11.4.1 Object

Object type names allow the operator of a particular server to advertise its supported
multimedia types. These types are standard MIME types as registered with IANA. RETS
does not require that a server make available any particular type of multimedia object.

However, a server MUST use a standard well-known name under which to make its
multimedia objects available, if a suitable well-known name is defined in the standard.
Multimedia names are defined in Table 11-17.

Table 11-17 Well-known Object Types

Object Name Purpose

Phot o A representation image related to the element defined by the resource Key-
Field.

Pl at An image of the property boundaries related to the element defined by the
resource KeyField

Vi deo A moving image with or without sound related to the element defined by the
resource KeyField.

Audi o A sound clip related to the element defined by the resource KeyField.

Thunbnai | A lower-resolution image related to the element defined by the resource Key-
Field.

Map A location image related to the element defined by the resource KeyField.

VR mage A multiple-view, possibly-interactive image related to the element defined by
the resource KeyField.

COMPACT header tag: METDATA- OBJECT

Table 11-18 Object Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Object metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.
Resour ce The ResourcelD for the resource to which this metadata table applies.

Table 11-19 Metadata Content: Resource Object (Sheet 1 of 2)

Metadata Field Content Type Description
| Met adat aEn- RETSI D A value that never changes as long as the semantic defi-
trylD nition of this field remains unchanged.
oj ect Type 1% 24 AL PHANUM The classification of the object. If one of the well-known
object types in Table 11-17 applies, then it MUST be
used.
| M METype A MIME type per The name of the object type. This is the MIME type that
RFC 2045 a client can pass to the "Accept" parameter in the Get
Object transaction (see Section 5.1).

] 11-18 Real Estate Transaction Specification

Version 1.7.2

11.4.2 Lookup

| Version 1.7.2

Table 11-19 Metadata Content: Resource Object (Sheet 2 of 2)

Metadata Field Content Type Description

Vi si bl eNarre 1*64PLAI NTEXT The user-visible name of the object type.

Descri ption 1*128PLAI NTEXT A user-visible description of the object type.

Qoj ect Ti me- RETSNANVE The Syst emNane of the field in a METADATA-

St anp TABLE that acts as the timestamp for objects of this
type. This Syst emrName MUST be one that appears in
every class that has objects of this type.

Obj ect Count RETSNMANVE The Syst emName of the field in a METADATA-
TABLE that acts as the count for objects of this type.
This Syst emNanme MUST be one that appears in every
class that has objects of this type.

This section describes the lookup tables that are referenced by the LookupName in the
Table section. There MUST be a corresponding lookup table for every "LookupName".

COMPACT header tag: METADATA- LOOKUP

Table 11-20 Lookup Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Lookup metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource in which this table resides.

Table 11-21 Metadata Content: Lookup

Field Name Content Type Description

Met adat aEn- RETSI D A value that never changes as long as the semantic defini-

trylD tion of this entry remains unchanged.

LookupNane RETSMANVE The name of Lookup Table. There MUST be an entry for
each LookupName value used in the Table metadata.

Vi si bl eNane 1*64PLAI NTEXT A description of the table that is human-readable.

Ver si on 1"2D0G TS . The latest version of this Lookup Table metadata. The

1772D0G'TS . convention used is a “<major>.<minor>.<release>” num-
500 G'TS bering scheme. The version number is advisory only.

Dat e RETSDATETI ME The date on which any of the content of this Lookup was
last changed. Clients MAY rely on this date for cache
management.

11.4.3 Lookup Type

This section describes the content of a lookup table that is referenced by the LookupName
in the Table section. There MUST be a corresponding lookup table for every "Lookup",
“LookupMulti”, “LookupBitstring” and “LookupBitmask”.

11-19

COMPACT header tag: METADATA- LOOKUP_TYPE

Table 11-22 Lookup Type Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Lookup Type metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The Resour cel Dfor the resource in which this table resides.

Lookup The LookupNarre for the class in which this table resides.

Table 11-23 Metadata Content: Lookup Type

Field Name Content Type Description

Met adat aEn- | RETS/ D A value that never changes so long as the semantic definition

trylD of this entry remains unchanged. In particular, it should be
managed so as to allow the client to detect changes to the
Val ue.

LongVal ue 1*128PLAl NTEXT | The value of the field as it is known to the user. This is a

localizable, human-readable string. Use of this field is imple-
mentation-defined; expected uses include displays on reports
and other presentation contexts. This is the value that is
returned for a COMPACT-DECODED or STANDARD-
XML format request.

Short Val ue 1*32PLAI NTEXT An abbreviated field value that is also localizable and human-
readable. Use of this field is implementation-defined;
expected uses include picklist values and other human inter-
face elements.

Val ue 1*128PLAI NTEXT | The value to be sent to the server when performing a search.
[(deprecated)This field must be numeric for LookupBitmask
and LookupBitstring types. For LookupBitmask fields,
20value-D) 5 yised to compute this component as part of the
applicable choices. For LookupBitstring fields, this is the
position with in the field, 1-based, at which the value con-
tains a“1”.] This is the value that is returned for a COM-
PACT format request.

11.4.4 Search Help

This section describes the Search Help text tables that are referenced in the Table section.
There MUST be a corresponding table entry for each Search HelpTextID referenced in the
METADATA- TABLE.

] 11-20 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA- SEARCH_HELP

Table 11-24 Search Help Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Search Help metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The Resour cel Dfor the resource to which this metadata table applies.

Table 11-25 Metadata Content: Search Help

Field Name Content Type Description
Met adat aEn- RETSI D A value that never changes so long as the semantic
trylD definition of this entry remains unchanged.
SearchHel pI D RETSNAVE A unique ID for the help text. This ID is referenced as
the SearchHelpID in section 11.3.2
Val ue 171024 TEXT The value to be displayed to the user.
11.4.5 Edit Mask

This section describes the Edit Mask table that is referenced in the Table section. There
MUST be a corresponding table entry for each Search Edi t Maskl Dreferenced in the
VETADATA- TABLE.

A Regular Expression is used to define the edit mask. Table 11-28 describes the structures
that make up RETS regular expressions.

COMPACT header tag: METADATA- EDI TMASK

Table 11-26 EditMask Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Edit Mask metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The Resour cel Dfor the resource to which this metadata table applies.

Table 11-27 Metadata Content: Edit Mask

Field Name Content Type Description

Met adat aEn- RETSI D A value that remains unchanged so long as the seman-

trylD tic definition of this field remains unchanged.

Edi t Maskl D RETSNAVE A unique ID for the Edit Mask. This ID is referenced
as the EditMaskID in section 11.3.2

Val ue 1*256TEXT The Regular Expression to be used.

11-21

RETS Regular Expression Specification

RETS regular expressions are a subset of POSIX 1003.2 extended regular expressions [12],

supporting the metacharacters in Table 11-28.

Table 11-28 RETS Regular Expression Metacharacters

Metacharacter Function

. (period) Matches any single character

* Matches zero or more of the preceding pattern
+ Matches one or more of the preceding pattern
?

Matches zero or one of the preceding pattern

Alternation: used between two subpatterns, matches either the one to its left
or the one to its right.

() parentheses

Grouping: causes the enclosed pattern to be treated as atomic. Parentheses
may not be nested; that is, only one level of grouping is required.

{m n[, max\}
(braces)

Quantifier: matches at least /77 7 and at most /78X of the preceding pattern,
where /77 nand max are both nonnegative integer values. If 72X is omitted,
matches exactly /77 11 of the preceding pattern.

[] brackets

Character class: matches any of the characters contained in the brackets.

Except for the circumflex, described below, and the closing bracket, charac-
ters within a character class are never treated as metacharacters.

Used as the first character of a character class, reverses the sense of the charac-
ter class; for example, [A0] matches any character excepta “0”.

A (circumflex)

- Operates only within brackets. Except as the first or last character, denotes a
range of characters on the default host collating sequence. For example, [0-9]
matches any digit. When - is the first or the last character, it is treated as a
member of the character class.

\ Escape: treats the following character as an ordinary character rather than a
metacharacter. For example, * matches a single asterisk. The \ character itself
must be escaped. The escape character is not needed within character classes.

The following is a simple example:

[0-9]+[a-fA-F][1-8][A] ?[0-9]{2}[A-C] {1, 3}
One or more digits, followed by an upper or lower case letter A - F, followed by a digit 1 -
8, optionally followed by one letter A, followed by two digits 0 - 9, followed by between
one and three of the letters A - C.
A phone number example:

[0-9]{3}-[0-9]{4}

11.4.6 Update Help

This section describes the Update Help Text tables that are referenced in the Update Type
section of the document. There MUST be a corresponding table entry for each Update
Help Text ID referenced in any of the METADATA- UPDATE_TYPEs.

] 11-22 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA- UPDATE_HELP

Table 11-29 Update Help Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Update Help metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The Resour cel Dfor the resource to which this metadata segment belongs.

Table 11-30 Metadata Content: Update Help

Field Name Content Type Description

Met adat aEn- RETSI D A value that remains unchanged so long as the seman-

trylD tic definition of this entry remains unchanged.

Updat eHel pl D RETSNMANME A unique ID for the help text. This ID is referenced as
the UpdateHelpID in section 11.4.6.

Val ue 11024 TEXT The value to be displayed to the user.

11.4.7 Validation Lookup

| Version 1.7.2

This section describes the Validation Lookup tables that are referenced in the Update Type
section of the document. There MUST be a corresponding Validation Lookup Table for
each one referenced in the METADATA- UPDATE_TYPEs.

COMPACT header tag: METADATA- VALI DATI ON_LOOKUP

Table 11-31 ValidationLookup Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Table metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource in which this table resides.

Table 11-32 Metadata Content: Validation Lookup (Sheet 1 of 2)

Field Name Content Type Description

Met adat aEn- RETSI D A value that remains unchanged so long as the semantic

trylD definition of this entry remains unchanged.

Val i dati on- RETSNMAVE The unique name of this Validation Lookup. Each Name in

LookupNane the Update Type ValidationLookupName field MUST have
a definition.

Parent 1Fiel d RETSNMANME If a value is present, it is a SystemName field in the same
table as defined in Section 11.3.2 and indicates a depen-
dency on this field.

Par ent 2Fi el d RETSNANVE If a value is present it is a SystemName field in the same
table as defined in Section 11.3.2 and indicates an addi-
tional dependency on this field.

11-23

Table 11-32 Metadata Content: Validation Lookup (Sheet 2 of 2)

Field Name Content Type Description
Ver si on 172D00G'TS . The version of this Validation Lookup metadata. The con-
17"2D0G TS . vention used is a “<major>.<minor>.<release>” numbering
17500 G TS scheme. This version number is advisory only.
| Dat e RETSDATETI ME | The date on which any of the content of this Validation
Lookup metadata was last changed. Clients MAY rely on
this date for cache management.

11.4.8 Validation Lookup Type

This section describes the content of the Validation Lookup tables that are referenced in
the Table section of the document. There MUST be a corresponding Validation Lookup
Type table for each one referenced in the METADATA- UPDATE_TYPE.

The Validation Lookup Type provides a list of all the valid values for a field. This is
different than the Lookup described in Section 11.4.2. The Validation Lookup is used for
two cases: 1) the list is too long to be provided as a standard lookup (e.g. Street Name) and
2) there is a dependency on the value in another field. For example, a valid entry for a
School District might depend on the Area and SubArea that is entered.

COMPACT header name: METADATA- VALI DATI ON_LOOKUP_TYPE

Table 11-33 Validation Lookup Type Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Validation Lookup metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourcelD for the resource in which this table resides.

Val i dation- |The ValidationLookupName for the METADATA- VALI DATI ON_LOOKUP entry to

Lookup which this entry belongs.

Table 11-34 Metadata Content: Validation Lookup Type

Field Name Content Type Description

| Met adat aEn- RETSI D A value that remains unchanged so long as the semantic
trylD definition of the entry remains unchanged.

| Val i dText RETSNANVE A valid value for the field.

| Par ent 1Val ue RETSNAVE If this field is present then the ValidText can be used if

the data in the Parentl1 field is set to this value. If Parentl
is present in the PARENTFIELDS tag then this field is
required.

| Par ent 2Val ue RETSNANVE If this field is present then the ValidText can be used if
the data in the Parent2 field is set to this value. If Parent2

is present in the PARENTFIELDS tag then this field is
required.

] 11-24 Real Estate Transaction Specification Version 1.7.2

11.4.9 Validation Expression

| Version 1.7.2

This section describes the ValidationExpression table that is referenced in Section 11.3.4.
There MUST be a corresponding table entry for each ValidationExpressionID referenced
in the METADATA- UPDATE_TYPEs for a Resource.

The table contains expressions that are to be evaluated when a field value is entered by the
user. Expressions in the list MUST be evaluated in the order in which they appear in the
list. There are three types of validation expressions, each introduced by a reserved token
preceding the expression, given in Table 11-35:

Table 11-35 Validation Expression Types

Keyword Type Purpose

ACCEPT Boolean If the expression is true, the field value is considered accepted without
further testing. Subsequent SET expressions MUST be executed.

REJECT Boolean If the expression is true, the field value is considered rejected without
further testing. Subsequent SET expressions MUST NOT be evaluated.

SET Assignment The expression MUST begin with a field name and an equal sign (“=”).
The following expression is evaluated and the result stored in the desig-
nated field.

Expressions are algebraic formulas containing keywords and operators. Expressions may
contain parentheses, and consist of keywords representing any of:

« The current value of any field in the input list

+ The current value of any Well-Known Name field in the user’s agent record that is
returned in the response to the login transaction (see 4.9, “Well-Known Names”).

o Literal values.

o A special token (Table 11-18 Metadata Content — Validation Expression Special
Operand Tokens).

together with the operators in Table 11-36. Arithmetic operations MUST be carried out
using IEEE-754 arithmetic with a representation of at least 64 bits. Comparison operations
on strings MUST use simple binary collation. If an error or arithmetic exception occurs

11-25

during expression evaluation, field value is considered erroneous, regardless of the

expression type.

Table 11-36 Validation Expression Operators

Operator

Prece-
dence

Operation

/,*, . MOD.

1

Division, multiplication, and remainder (modulo)

+—

2

Addition and subtraction, applied as follows:
1. If both operands are numeric, the operation is algebraic.

2. If either operand is a string, it is converted to numeric and the oper-
ation is algebraic. If an error occurs during the conversion, the field
value MUST be rejected.

«, »

3. For “+7, if either operand is a date, the other must be an integer, a
string that can be converted to an integer, or a string representing an
interval in ISO8601 format. If no conversion is possible, the field value
MUST be rejected

4. For “-7, if the left operand is a date or time, the other operand must
be a date, a time, or a string representing an interval, and the result
must be a string representing an interval in ISO8601 format.

. CONTAI NS.

A Boolean operator taking strings as its left and right operands. The
operation is TRUE if the left operand contains the right operand as a
substring anywhere within it.

<, >, <=,>=,

Comparison operators with their conventional meaning. If one oper-
and is numeric and the other is a string, the string MUST be converted
to a number prior to the comparison. If an error occurs during the con-
version, the field value must be rejected.

Comparison operators with their conventional meaning. If one oper-
and is numeric and the other is a string, the string MUST be converted
to a number prior to the comparison. If an error occurs during the con-
version, the field value must be rejected.

A Boolean operator that takes two Boolean operands, and whose value
is TRUE if and only if both of its operands are TRUE.

3

A Boolean operator that takes two Boolean operands, and whose value
is TRUE if either of its operands is TRUE.

A Boolean operator that takes a single Boolean operand and returns its
inverse.

Literal values to be compared against dates or times are expressed in the ISO8601 format.

Table 11-37 Validation Expression Special Operand Tokens (Sheet 1 of 2)

] 11-26 Real Estate Transaction Specification

Token Value

. TODAY. The current date.

. NOW The current time.

. ENTRY. The current field text, as a string.

. EMPTY. A value that matches an empty or all-blank field. Supplies an empty (zero-
length) field when used in a SET expression.

. CLDVALUE. The text that was in the field as returned from the host in the search opera-
tion. If the field is new, . OLDVALUE. is an empty string.

. USERI D. The value of the user-id field returned in the Login transaction (Section 4.9).

Version 1.7.2

Table 11-37 Validation Expression Special Operand Tokens (Sheet 2 of 2)

Token Value

. USERCLASS. The value of the user-class field returned in the Login transaction (Section
4.9).

. USERLEVEL. The value of the user-level field returned in the Login transaction (Section
49).

. AGENTCODE. The value of the agent-code field returned in the Login transaction (Section
49).

. BROKERCODE. The value of the broker-code field returned in the Login transaction (Section
49).

. BROKERBRANCH. | The value of the broker-branch field returned in the Login transaction (Sec-

tion 4.9).

The Validation Expression metadata starts with a <METADATA- VALI DATI ON_EXPRESSI ON>

tag

COMPACT header tag: METADATA- VALI DATI ON_EXPRESSI CN

Table 11-38 Validation Expression Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Validation Expression metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource to which this metadata table applies.

Table 11-39 Metadata Content: Validation Expression

Field Name Content Type Description

Met adat aEn- RETSI D A value that remains unchanged so long as the semantic

trylD definition of this entry remains unchanged.

Val i dati on- RETSNANVE A unique ID for the ValidationExpression. This ID is

Expressi onl D referenced as the ValidationExpression in Section
11.3.4.

Val i dati on- 1*32AL PHANUM A validation expression type from Table 11-35.

Expressi onType

Val ue 1*512TEXT The test expression to be evaluated.

11.4.10 Validation External

This section describes the Validation External tables that are referenced in the Update

Type section of the document. There MUST be a corresponding Validation External table

for each one referenced in any of the METADATA- UPDATE_TYPEs for the Resource.

11-27

COMPACT header tag: METADATA- VALI DATI ON_EXTERNAL

Table 11-40 Validation External Metadata Compact Header Attributes

Attribute Content

Ver si on This is the version of the Validation External metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource to which this metadata table applies.

Table 11-41 Metadata Content: Validation External

Field Name Content Type Description
Met adat aEn- RETSI D A value that remains unchanged so long as the semantic
trylD definition of this entry remains unchanged.
Val i dat i onEx- RETSNAVE The unique name of this Validation External. Each Name
t er nal Nane in the Update Type ValidationExternalName field MUST
have a definition.
Sear chResource | RETSNMAME The Resour cel Dof the Resource to be searched from
11.2.2.
Sear chCl ass RETSNAVE The Gl assNane within the Resource to be searched
from 11.3.1.
Ver si on 1772D00G 7S ". " The latest version of this Validation External metadata.
17"2D00G'T7S ". " The convention used is a “<major>.<minor>.<release>”
1500 G 1S numbering scheme. The version number is advisory only.
Dat e RETSDATETI VE The date on which any of the content of this Validation

External was last changed. Clients MAY rely on this date
for cache management.

11.4.11 Validation External Type

This section describes the content of the Validation External Type tables that are
referenced in the Table section of the document. There MUST be a corresponding
Validation External Type table for each one referenced in the METADATA- UPDATE_TYPEs

for the Resource.

The Validation External Type provides lists of search, display, and results fields. The
Validation External may be used for several cases: 1) The database involved is too large or
dynamic to be provided as a standard lookup (e.g. Tax). 2) There are business rules that
can only be enforced on the server (e.g. expiration dates). 3) The content of a field
populates fields from another database (e.g. Sal e_agent _nane, Sal e_of f i ce_nane,

Sal e_of fi ce_i d from Sal e_agent _i d).

] 11-28 Real Estate Transaction Specification

Version 1.7.2

COMPACT header tag: METADATA- VALI DATI ON_EXTERNAL_TYPE

Table 11-42 Validation External Type Metadata Compact Header Attributes
Attribute Content

Ver si on This is the version of the Validation External Type metadata. The con-
vention used is a "<major>.<minor>.<release>" numbering scheme.
Every time any contained metadata element changes the version num-

ber MUST be increased.

Dat e The latest change date of any contained metadata. This MUST be in the
format described in chapter 2 for RETSDATETIME.

Resour ce The ResourcelD for the resource to which this metadata table applies.

Val i dati onExt er nal Nanme | The Val i dat i onExt er nal Name to which this entry type applies.

Table 11-43 Metadata Content: Validation External Type

Field Name Content Type Description
| Met adat aEn- RETSI D A value that remains unchanged so long as the seman-
trylD tic definition of this entry remains unchanged.

Sear chFi el d 1*512PLAI NTEXT A comma separated list of valid fields using Syst em
Nane from Section 11.3.2.

Di spl ayFi el d 1*512PLAI NTEXT A comma separated list of valid fields using Syst em
Narre from Section 11.3.2.

Resul t Fi el ds 71*1024PLAI NTEXT | A comma separated list of valid field pairs joined by =
(equal) the first is a target field in the table being
updated and the second is a source field in the table
being searched. The fields use a Sy st emNarme from
Section 11.3.2.

| Version 1.7.2 11-29

] 11-30 Real Estate Transaction Specification Version 1.7.2

GETMETADATA TRANSACTION

The GetMetadata transaction is used to retrieve structured information known as
metadata related to the system entities. Metadata requested and returned from this
transaction are requested and returned as MIME media types.

12.1 Required Client Request Header Fields

There are no additional required client header fields.

12.2 Required Request Arguments

Type n= <A grouping of related metadata elements (see Section 11)>

The type of metadata being requested. The Type MUST begin with METADATA and
MAY be one of the defined metadata types (see Section 11).

I D = npetadata-id: metadata-id]

met adat a- i d 1*ALPHANUM | *

Metadata is organized hierarchically. Each level specifies in its first field an identifier for
the metadata contained within that level (e.g. for the Resource level: ResourceID--Agent,
Property, etc. for the Lookup level: LookupName—Status, Area, etc.). This identifier can
be used to restrict requests to the Type metadata contained within specific instances of
higher levels. If the last metadata-id is 0 (zero), then the request is for all Type metadata
contained within that level; if the last metadata-id is “*”, then the request is for all Type
metadata contained within that level and all metadata Types contained within the
requested Type. This means that for a metadata-id of METADATA- SYSTEM for example, the
server is expected to return all metadata.

Note: The metadata-id for METADATA- SYSTEMand METADATA- RESOURCE must be 0 or *.

12.3 Optional Request Arguments

Format = COVPACT | STANDARD- XML | STANDARD- XML: ver s/ on

versi on == <RETS metadata public identifier>

Version 1.7.2 12-1

“COMPACT” means a table descriptor, field list <OOLUWNS> followed by a delimited set of
the data fields. See Section 11 for more information on the COMPACT formats.
“STANDARD-XML” means an XML presentation of the data in the format defined by the
RETS Metadata XML DTD. Servers MUST support all formats. If the format is not
specified, the STANDARD-XML presentation will be returned.

When the client requests the STANDARD-XML representation, it MAY also specify the
public identifier of the DTD that it expects. The server MUST support the current version
and SHOULD support the prior version.

12.4 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.3 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. This field MUST be set to the type of media
returned.

Cont ent - Type x= Content-Type : type | subtype

Example: Content-Type: text/xn

12.5 Required Response Arguments

There are no required response arguments.

12.6 Optional Response Arguments

There are no optional response arguments.

12.7 Metadata Response Body Format

The body of the metadata response has the following format when replying to a request
with the format set to “COMPACT”:

<RETS 7*SP Repl yCode=quot ed-rep! y-code 1*SP
Repl yText =quot ed-string *SP > CHLF

[* met adat a- segrent]

[rets-status-tag]

</ RETS> CALF

met adat a- segnment :== <A metadata segment as defined in Section 11.>

The body of the metadata response has the following format when replying to a format
request of "STANDARD-XML" data:

<?xm version="1.0" ?>

[doct ypel

<RETS 77*SP Repl yCode=quot ed-rep! y-code 1*SP
Repl yText =quot ed-string *SP >

[* XM_- net adat a- segnent]

[rets-status-tag]

</ RETS> CALF

12-2 Real Estate Transaction Specification Version 1.7.2

NOTE

doct ype

w= <! DOCTYPE RETS PUBLIC "-//RETS//DTD Met adat a
Content 1.7.2//EN'>

XM.- met adat a- segment :=A metadata segment as defined by the RETS Metadata XML

DTD.

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires GetMetadata

responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that

complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML
Recommendation 1.0, Third Edition, for full information on XML.

12.8 Reply Codes

Version 1.7.2

Table 12-1 GetMetadata Reply Codes (Sheet 1 of 2)

Reply Code Meaning
20500 Invalid Resource
The request could not be understood due to an unknown resource.
20501 Invalid Type
The request could not be understood due to an unknown metadata type.
20502 Invalid Identifier
The identifier is not known inside the specified resource.
20503 No Metadata Found
No matching metadata of the type requested was found.
20506 Unsupported MIMEType
The server cannot return the metadata in any of the requested MIME types.
20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which
the supplied login does not grant access (e.g. Update Type data).
20508 Resource Unavailable
The requested resource is currently unavailable.
20509 Metadata Unavailable
The requested metadata is currently unavailable.
20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.
20511 Timeout
The request timed out while executing.
20512 Too many outstanding requests

The user has too many outstanding requests and new requests will not be
accepted at this time.

12-3

Table 12-1 GetMetadata Reply Codes (Sheet 2 of 2)

Reply Code Meaning

20513 Miscellaneous error

The server encountered an internal error.

20514 Requested DTD version unavailable.

The client has requested the metadata in STANDARD-XML format using a
DTD version that the server cannot provide.

12-4 Real Estate Transaction Specification Version 1.7.2

ComMPACT DATA FORMAT

Clients may choose to access data from a server in a compact data format that does not use
full XML representation. When a client requests information from a compliant server in
“COMPACT” or “COMPACT-DECODED” format, it will typically need to interpret the
result by using the metadata that the server makes available.

13.1 Overall format

Compact format records are sequences of fields separated by delimiter. A tab character (an
octet with a value of 09) is the default delimiter unless another is specified as part of the
transaction. The delimiter MUST be some character other than the comma ,” character.
This character is reserved for separating values in any field with an interpretation of
LookupMulti where more than one value may be applied to that field. The sequence of
fields MUST be described by a <OOLUWNS> tag in the body of the message that carries the
compressed records. No field described in the <COLUWS> tag may be omitted from the
<DATA>; if the value of a particular field for some record is undefined or is suppressed for
authorization reasons, the value MUST be represented by two delimiters with no
intervening space. No field omitted in the COLUWNS tag may be added in any DATA tag. The
number of fields in the <COLUWNS> tag MUST match the number of fields in the <DATA>

tags.

Each compact records is enclosed within a <DATA> start tag and a </ DATA> end tag.
Fields with an interpretation of Lookup, LookupMulti, LookupBitstring or
LookupBitMask contains the LookupType Value from Table 11-20 when the format is

COMPACT and the LookupType LongValue from Table 11-20 when the format is
COMPACT-DECODED.

13.2 Decoded Format

Version 1.7.2

COMPACT-DECODED format requires sending field data in an expanded form. For
example, if a field representing data for City is given the interpretation of Lookup in the
Metadata, there will be a corresponding LookupType table that contains at least two
values, Value and LongValue. It may also contain a ShortValue, but that is not relevant to
the example. For this example, the Value is 101 and the LongValue is Anytown. In the

13-1

COMPACT format, the returned data for this field is 101. This is referred to as the coded
value. In the COMPACT-DECODED format case, the returned data for this field is
Anytown. This is referred to as the decoded value. A server MUST perform the expansion
from the Value to the LongValue for fields with an interpretation of Lookup,

| LookupMulti, LookupBitString or LookupBitMask.

|13.3 Multivalued Fields

If the field is multivalued, values MUST be separated by commas and an optional space
between each value. The final value does not have the comma or space before the field
delimiter.

13.4 Transmission standards

A client or server transmitting a compact record MUST encode the data according to
Table 13-1.

Table 13-1 Compact Data Field Format Representation

Type Encoding Format

| Numeric An optional negative sign, followed by zero or more digits, followed by an
optional period, followed optionally by zero or more digits. The interpreta-
tion determines if an optional character may be included. A valid number
value may contain leading zeros before the decimal point. The value may con-
tain trailing zeros after the decimal point and fraction, if any. Data types Tiny,
Small, Int and Long (Table 11-12) may be signed but may not have a decimal
point or fraction. Values with the interpretation LookupBitmask must not be
signed, nor may they have nonzero digits after the decimal point.

Character The plain character sequence, except for LookupMulti, which contains multi-
ple sequences of characters separated by commas. Values with the interpreta-
tion LookupBitstring must contain only the characters “0” and “1”.

| Date A date in full-date ARETSDATE format.
Time A date in RETST! VE format.
Date-Time A date in RETSDATET! VE format.
MultiSelect A string consisting of one or more substrings, comma-delimited, each of

which corresponds to an entry in the field’s associated MetadataLookup table.

Boolean A single character, either 1 for true or 0 for false.

13-2 Real Estate Transaction Specification Version 1.7.2

SESSION PROTOCOL

A RETS session follows a well-defined timing sequence in becoming established and in
terminating. In particular, the authorization sequence MUST be followed in order to begin
using other transactions within the protocol. The protocol contains four phases:
connection establishment, authorization, session and termination.

14.1 Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any
mutually agreed TCP port, with the default being 6103 for unencrypted connections, and
port 12109 for SSL-encrypted connections. When the TCP connection has entered the
Established state, the session proceeds to the start of the Authorization phase.

14.2 Authorization

| Version 1.7.2

Authorization begins when the client sends the server a Login transaction. The Login
transaction contains the basic information that the server requires in order to start an
authorization decision: the user ID and optionally, some information about the client
software.

A server responds to the Login request by sending back a “401 Unauthorized” status code
and a WWW-Authenticate header. This is part of an authentication challenge to the client.
Part of the WWW-Authenticate header may contain a checksum (nonce) of a
concatenation of the following:

1 The client-IP.

2 The server-supplied timestamp.

3 The server’s private-key.

Server implementers should note that because of intervening proxy servers, the client IP
address may change from connection to connection.

The client concatenates the nonce to the checksum of the Request-URI; then performs an
MD?5 digest using a concatenation of the username, realm and password as the secret. This
result is then returned to the server as part of an Authorization header. The server MUST

14-1

then compute the equivalent function using its own stored copy of the user’s password. If
the two match and the nonce is the same, the user is considered authenticated, and the
login can proceed with the server informing the client of the available capabilities. The
login has been accomplished without actually sending the password. A server MAY
provide an anonymous login. A client wishing an anonymous login sends an empty
Authentication field in its Login transaction, after which the authorization proceeds as
before.

14.3 Session

Once the Authorization phase has been completed, both endpoints enter the Session
phase. During the Session phase, clients may issue any combination of requests for which
they are authorized. The first of these MUST be to issue a GET requests for the “Action”
URL, if any, included in the Login response (Section 4.10). After this, clients may issue
other transactions.

Clients MAY issue multiple transactions without waiting for responses. However, servers
are not required to process these requests in parallel, nor are servers required to complete
the requests in the order in which they were issued. If a client issues a request before
receiving a response to some earlier request, the client MUST be prepared to receive the
responses in any order. The only way for a client to guarantee sequential execution of
requests on every server is to wait for a response to any outstanding request before issuing
a new request.

14.4 Termination

A client SHOULD initiate termination of the session by sending a Logoff transaction. If a
server receives a Logoff transaction while other operations are pending, it SHOULD abort
those pending operations. However, a server MUST NOT rely on receiving a Logoff
transaction in order to terminate a session, due to the possibility of communications
problems preventing the transmission of the Logoff transaction by the client.

Servers SHOULD provide a timeout mechanism, and if they do, MUST inform the client
of the timeout interval during the Login transaction (Section 4.7).

| 14-2 Real Estate Transaction Specification Version 1.7.2

[DEPRECATED] SERVERINFORMATION
TRANSACTION

The ServerInformation transaction allows retrieving global information about a server, or
dynamic information about resources offered by a server.[deprecated]

15.1 Required Request Arguments

There are no required request arguments. A ServerInformation transaction with no
request arguments requests global information.

15.2 Optional Request Arguments

Resour ce The name of the resource for which dynamic information is
requested. This is interpreted as a SystemName unless the
St andar dNames argument is present and nonzero.

Cl ass The name of the class within the resource for which dynamic
information is requested. This is interpreted as a SystemName
unless the St andar dNames argument is present and nonzero.

St andar dNarres A numeric value which, if zero, indicates that Resource and Class
are both SystemName values, and which, if equal to 1, indicates
that the Resource and Class names are both StandardName
values.

15.3 Response Format

The response to the ServerInformation transaction is a well-formed XML document:

<RETS Repl yCode="rep/ ycode" Repl yText="rep/ ytext">
<Server | nf or mat i on>
<Par anet er name=" paranet er nane" [resource="resourcel
[cl ass="c/ass/[']]>
val ue
</ Par amet er >

Version 1.7.2 15-1

NOTE

</ Server | nformati on>
</ RETS>

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires
ServerInformation transaction responses to be valid XML. In addition, RETS requires that clients parse
server responses as XML, not as simple text streams. The response formats shown here are normative with
respect to content, but not normative with respect to form. That is, servers are free to produce response
XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with
respect to the appropriate DTD. XML escaping of content is implied. See the W3C XML Recommendation
1.0, Third Edition, for full information on XML.

The server MUST supply the information that applies to the Class level even if the
information is global to the system. That is, the client is not required to infer information
from the class hierarchy.

The well-known names for parameters are given in Table 15-1.

15.4 Well-known names

Table 15-1 lists the well-known names for parameters defined in this specification. Servers
may extend this list, but MUST precede their parameter names with the string “X-".

Table 15-1Well-Known Parameter Names

Parameter Level Type Description

Current Ti meSt anp | System DateTime The current system date and time, including the server
time zone, in ISO 8601 format.

Last Ti meSt anp ResourceClass DateTime The most recent modification timestamp of any record in
the given resource and class, in ISO 8601 format.

M ni murdi mi t ResourceClass Numeric/ The minimum Li i t value for any search in this class.

String the value NONE may be returned if there is no minimum

limit.

KeyLi i t [depre- ResourceClass Numeric/ The minimum Li i t for any search in this class that

cated] String includes a Key optional parameter. the value NONE may
be returned if there is no minimum limit.[deprecated]

Repl i cat i onSup- Resource/Class Character An indication of the level of replication support available

port [deprecated] for the given resource/class:

Nindicates that replication is not supported for this
resource/class.

Y indicates that replication is supported, that the server
supports the optional Key search argument, and that all
fields are marked as to their controlling timestamp or for-
eign key. A blank query may be used to retrieve all
records that the user is permitted to access.

Kindicates that replications is supported, and that the
server supports the optional Key search argument. A
query MUST contain one or more of the fields marked in
the metadata with the Key Quer y flag.[deprecated]

15-2 Real Estate Transaction Specification

Version 1.7.2

15.5 Reply Codes

Table 15-2Serverinformation Reply Codes

Reply Code Meaning

0 Operation successful.

20601 Not supported.
The transaction is not supported for the given resource and class.

20602 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional infor-
mation.

Version 1.7.2 15-3

15-4 Real Estate Transaction Specification Version 1.7.2

ACKNOWLEDGMENTS

The creation of this specification would not have been possible without the sponsorship
and coordination of efforts provided by the National Association of REALTORS".

This document has benefited greatly from the comments of all those participating in the
National Association of REALTORS®-Standards Work Group.

In addition to the authors, valuable discussion instrumental in creating this document has
come from:

Richard Mendenhall
National Association of REALTORS®

Dale Stinton
National Association of REALTORS®

Mark Lesswing
National Association of REALTORS®

Larry Colson
Moore Data Management Services

Tom Curtis
Metro MLS

Kevin Knoepp
GTE Enterprise Solutions

Tom McLean
Resolution Software Consulting, Inc.

Tony Salvati
Grant Thornton

Errol Samuelson
RealSelect, Inc.

Allan Shapiro
Wantao Zhou
Interealty Corporation

| Version 1.7.2 16-1

Stuart Schuessler

Libor Viktorin

Mathew McGuire

Steve Clarke
MarketLinx Corporation

Michael DelGaudio
MRIS, Inc.

Maggie Diaz

Brita Brodin

Laure Chipman
WyldFyre, Inc.

Joshua Vosper
Rapattoni Corporation

Laila Sharshar
NewportWorks, Inc.

Eric Schlosser
Hewlett-Packard Company

Frank Tadman
MLSListings Inc.

Sergio Del Rio
Templates for Business Inc.

Jaison Freed
FBS Data Systems, Inc.

Ryan Bonham
Transparent Technologies Inc.

Gina Accawi

Falcon Technologies Corp.

| 16-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

Leo Bijnagte

Vista Information Systems

100 Washington Square, Suite 1000
Minneapolis, MN 55401

Dan Musso

WyldFyre Technologies, Inc.
900 East Hamilton Ave.
Suite 500

Campbell, CA 95008

Bruce Toback

OPT, Inc.

11801 N. Tatum Blvd.
Suite 142

Phoenix, AZ 85028

Paul Stusiak

Falcon Technologies Corporation.
635 Ivy Ave..

Coquitlam, BC V3] 2H8

Email: pstusiak@falcontechnologies.com

AUTHORS

17-1

| 17-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

REFERENCES

Braden, R., “Requirements for Internet Hosts — Communication Layers” STD 3,
RFC 1123, IETF 1989.

Fielding, R., “Hypertext Transfer Protocol — Version 1.17, REC 2616, January
1997

Rivest, R., “The MD5 Message Authentication Algorithm”, RFC 1321, April 1992
Crocker, D., “Standard for ARPA Internet Text Messages”, RFC 2822, IETF 2001

US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information
Interchange. Standard ANSI X3.4-1986, ANSI, 1986.

Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L.
Stewart, “An Extension to HTTP: Digest Access Authentication”, RFC 2617,
January 1997.

International Organization for Standards, “Data Elements and Interchange
Formats - Information Interchange - Representation of Dates and Times”, ISO
8601, June 1988.

Borenstein, N., Freed, F., “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies”, RFC 2045, November 1996.

American National Standard for Data Encryption Algorithm (DEA). Standard
ANSI X3.92, ANSI, 1981.

Data Encryption Standard, FIPS46-2, December 30, 1993.
DES Modes of Operation, FIPS81, December 2, 1980

IEEE/ANSI Std. 1003.2-1992, Information Technology - Portable Operating
System Interface (POSIX®) Part 2

Berners-Lee et al., “Uniform Resource Identifiers (URI): Generic Syntax”,
RFC 2396, IETF 1998

Kaliski, “PKCS #7: Cryptographic Message Syntax Version 1.5”, REC 2315, IETF
1998

18-1

[15] Kristol, D. and Montulli, L., “HTTP State Management Mechanism”, REC 2109,
IETF 1997

[16] W3C, “HTML 4.01 Specification”, W3C Recommendation 24 December 1999
(http://www.w3.0rg/TR/html401/)

[17] W3C, “Extensible Markup Language (XML) 1.0 (Third Edition)”, W3C
Recommendation 4 February 2004 (http://www.w3.0rg/TR/2004/REC-xml-
I 20040204/)

[18] Rescorla, E., “HTTP Over TLS”, RFC 2818, May 2000

[19] International Standards Organization, “ISO 8601:2004(E) Date elements and
interchange formats - Information interchange - Representations of dates and
times”

[20] W3C, “Date and Time Formats”, W3C Note 15 September 1997 [online] (http://
www.w3.0rg/TR/NOTE-datetime)

[21] Klyne, G. and Newman, C., “Date and Time on the Internet: Timestamps”,
RFC 3339, IETF 2002

[22] Crocker, D. and Overell, P., “Augmented BNF for Syntax Specification: ABNF”,
RFC 2234, IETF 1997

| 18-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

DTD REFERENCES

Table A-1 DTD References

Description

Public Identifier
System Identifier

Description

Public Identifier
System Identifier

Description

Public Identifier
System Identifier

Description

Public Identifier
System Identifier

Description

Public Identifier
System Identifier

The document returned by a search specifying STANDARD-XML format.
This DTD describes the document only, not the entire response. It may be
used when transmitting listing or membership data through a channel other
than a RETS server (for example, FTP).

-/ / RETS// DTD RETS Data Content 1.7.2//EN
http://ww.rets. org/dtd/ 2008/ 08/ REDat a- 20080829. dt d

The response returned by a search specifying STANDARD-XML format. This
DTD simply encapsulates the REData DTD (above) in a standard RETS
response element.

-/ / RETS// DTD RETS XM. Search Response 1.7.2//EN
http://ww. rets. org/dtd/ 2008/ 08/ RETS-20080829. dt d

The response returned by a search specifying COMPACT or COMPACT-
DECODED format.

-// RETS// DTD RETS COWPACT Search Response 1.7.2//EN
http://ww.rets.org
/ dt d/ 2008/ 08/ ret s-conpact -search-1_7_2.dtd

This DTD describes the STANDARD-XML metadata format. It may be used
when transmitting metadata through a channel other than a RETS server.

-// RETS// DTD Met adata Content 1.7.2//EN
http://ww.rets.org
/ dt d/ 2008/ 08/ r et s- met adat a-content-1_7_2.dtd

The document returned by a GetMetadata transaction specifying a format of
STANDARD-XML. This encapsulates the RETS Metadata Content DTD in a
standard RETS response element.

-// RETS//DTD Metadata 1.7.2//EN
http://ww.rets.org
/dtd/ 2008/ 08/ rets-netadata-1_7_2.dtd

A-1

Table A-1 DTD References

|
Description The document returned by a GetMetadata transaction specifying a format of
COMPACT.
| Public Identifier -// RETS// DTD Compact Metadata 1.7.2//EN
System Identifier http://ww.rets.org
/ dt d/ 2008/ 08/ r et s- conpact - net adata-1_7_2. dtd
|
| Description The document returned by a Login transaction.
| Public Identifier -// RETS// DTD Logi n Response 1.7.2//EN
System Identifier http://www. rets.org
/ dt d/ 2008/ 08/ rets-1ogin-1_7_2.dtd
|
| Description The document returned by an Update transaction.
| Public Identifier -// RETS// DID Update 1.7.2//EN
System Identifier http://ww. rets.org

/ dt d/ 2008/ 08/ ret s-update-1_7_2.dtd

Note Certain System Identifier values have been split across multiple lines to prevent
hypenation characters being added to the document that are not part of the identifier.
Each System Identifier is a well-formed URI.

] A-2 Real Estate Transaction Specification Version 1.7.2

SAMPLE COMPACT METADATA RESPONSES

This appendix contains examples for COMPACT metadata responses. It is NON-
NORMATIVE: these examples illustrate one way of formatting COMPACT metadata, and
one set of values. Section 11 describes the content and formatting rules in detail.

B.1 System

| <METADATA- SYSTEM Ver si on="1. 00. 000" Dat e="2002-03-20T12: 03: 382" >
<SYSTEM Syst em D= "NTREI S" SystemDescription= "North Texas Real Estate
Information Systent />
<COWMENTS>
This is a coment |ine
</ COVMWENTS>
</ METADATA- SYSTEM>

B.2 Resource

<METADATA- RESOURCE Ver si on="1. 00. 000"
| Dat e="2002- 03-20T12: 03: 382" >
<COLUWNS>—Resour cel DSt andar dName—Vi si bl eName—Descri pti on—
Cl assCount »KeyFi el d—>C assVer si on—»>C assDat e—>bj ect Ver si on—>
(bj ect Dat e—>Sear chHel pVer si on—Sear chHel pDat e—Edi t MaskVer si on—
Edi t MaskDat e —LookupVer si on—LookupDat e—~»Updat eHel pVer si on—
Updat eHel pDat e —Val i dati onExpressi onVer si on—
Val i dat i onExpressi onDat e—»Val i dati onLookupVer si on —
Val i dati onLookupDat e—Val i dat i onExt er nal Ver si on—
Val i dat i onExt er nal Dat e—»</ COLUWMNS>
<DATA>—Agent »Agent —» Agent -»Agent Tabl e»1— Agenti d—1.00. 000~
| 2002- 03-20T12: 03: 38Z / DATA>
<DATA>—Pr opert y—Property—Property—Property Tabl es»>5—
LN—1. 00. 000—2002- 03-20T12: 03: 38Z—1. 00. 000~
2002- 03-20T12: 03: 38Z—1. 00. 000~
2002- 03-20T12: 03: 38Z—1. 00. 000~
2002- 03-20T12: 03: 38Z—1. 00. 000—
2002- 03-20T12: 03: 38Z—1. 00. 000—
2002- 03-20T12: 03: 38Z—1. 00. 000—
2002- 03-20T12: 03: 38Z—1. 00. 000—
2002- 03-20T12: 03: 38Z—1. 00. 000~
2002- 03-20T12: 03: 38Z—></ DATA>
<DATA>—Tax—Tax—>Tax—>Mil ti nedi a obj ect s»2—-0— PI D—1. 00. 000~

| Version 1.7.2 B-1

2002- 03-20T12: 03: 38Z / DATA>
</ METADATA- RESOURCE>

B.3 Foreign Keys

<METADATA- FOREI GNKEYS Ver si on="1. 00. 000000"

Dat e="2002- 01- 23T12: 37: 382" >
<COLUMNS>PARENT_RESOURCE_| D—»>PARENT_CLASS_| D—>PARENT_SYSTEMNAME—
CH LD_RESCURCE_I D—»CHI LD_CLASS_| D—CHI LD_SYSTEMNAMVE—></ COLUMNS>
<DATA>—Pr oper t y >RES—>M.SNUM-TAX—TAX—->M.SNUM-</ DATA>
<DATA>—Pr oper t y >RES->M.SNUM—H st or y—>H st or y >M_.SNUM-</ DATA>
<DATA>—Pr oper t y >RES—>M.SNUM—OpenHouse—»>0OpenHouse—»>M_SNUM-</ DATA>
<DATA>—Pr opert y—>RES—Li st i ngAgent | D->Agent »Agent —Agent | D»</ DATA>
<DATA>—Pr oper t y >RES—CCLi st i ngAgent | D->Agent —»Agent —Agent | D—></ DATA>
<DATA>—Pr opert y—>RES—Sel | i ngAgent | D->Agent -»Agent —Agent | D—»</ DATA>
<DATA>—Pr opert y>RES—CCSel | i ngAgent | DvAgent —»Agent —Agent | D></ DATA>
<DATA>—Pr opert y—>RES—Li stingO ficel DO fice->Ofi ce»0O fi cel Do</ DATA>
<DATA>—Pr opert y—>RES—>Sel | i ngO fi cel DO fi ce»>O fi ce-O fi cel D»</ DATA>
</ METADATA- FOREI GNKEYS>

B.4 Class

| B-2

GetMetadata request:

Type: METADATA- CLASS
ID: 0

Compact reply:

<METADATA- CLASS Resour ce="Property" Version="1.00.000"
Dat e="2002- 03-20T12: 03: 382" >
<COLUWNS>—Cl assNane—Vi si bl eNane—St andar dName—Descri pti on—
Tabl eVer si on—Tabl eDat e—Updat eVer si on —Updat eDat e —</ COLUWNS>
<DATA>—RES—Si ngl e Fami | y—>Resi denti al —»
Single Fam |y Residential »1.00.000—>
2002- 03- 20T12: 03: 38Z—1. 00. 000~
2002- 03- 20T12: 03: 38Z—></ DATA>
<DATA>—CON-Condos—Cormonl nt er est »Condos—1. 00. 000—
2002- 03- 20T12: 03: 38Z—>1. 00. 000—
2002- 03- 20T12: 03: 38Z—</ DATA>
<DATA>—>MIL—-Mil ti Fanmily—-Milti Fami | y—
Mil ti Family Residential »1.00.000—~
2002- 03-20T12: 03: 38Z—>1. 00. 000—
2002- 03- 20T12: 03: 38Z—></ DATA>
<DATA>—-MXB—-Mbbi | e Home—Resi dent i al Property—
Mobi | e Homes—1. 00. 000—»2002- 03-20T12: 03: 38Z—
1. 00. 000»2002- 03-20T12: 03: 38Z—></ DATA>
<DATA>—LND-Lots and Land—Lots and Land—Lots and Land—
1. 00. 000»2002- 03- 20T12: 03: 38Z—1. 00. 000
2002- 03- 20T12: 03: 38Z—></ DATA>
</ METADATA- CLASS>
<METADATA- CLASS Resour ce="Agent" Version="1.00.000"
Dat e="2002- 03-20T12: 03: 382" />
<COLUMNS>—C assName—Vi si bl eNane—St andar dName—Descri pti on—
Tabl eVer si on—Tabl eDat e—»Updat eVer si on —Updat eDat e —</ COLUMNS>
<DATA>—Agent -»Agent -»Agent -Al | Agent s—1. 00. 000>
2002- 03- 20T12: 03: 38Z>—>—</ DATA>
</ METADATA- CLASS>

Real Estate Transaction Specification Version 1.7.2

B.5 Table

B.6 Update

GetMetadata request:

Type: METADATA- TABLE
ID: Property: RES

Compact reply:

<METADATA- TABLE Resource="Property" C ass="RES" Version="1.00.000"
Dat e= "2002-03-20T12: 03: 382" >
<COLUWNS>—Syst enName—St andar dNanme—LongName—DBNane—Shor t Nane—
Maxi muml engt h—Dat aType—Pr eci si on—»>Sear chabl e—I nterpretati on—
Al'i gnnment »UseSepar at or »Edi t Maskl D—~LookupName—MaxSel ect —»>Uni t s—
I ndex—M ni mum-Maxi mum-Def aul t -Requi r ed—»Sear chHel pl D—
Met adat aEnt ryl D->ModTi meSt anp—For ei gnKey—For ei gnFi el d—>KeyQuer y—
KeySel ect —</ COLUWNS>
<DATA>—LN-Li st | D-lLi sting | DoLN-Li st | D»8—lnt 501>
Nurmber —»Lef t -0 1 1 </ DATA>
<DATA>—PTYP—PropType—Property Type—>PT—Prop Type—
2l nt 50->1->Nunber -Lef t -0 1 / DATA>
<DATA>—LP-Li st Pri ce—Li st Price—-LP-Lst Pr—8-lnt 051>
Currency—Ri ght »>1 14 2 1 / DATA>
<DATA>—>OM-—O0wner ->Owner Name—>OM-—>Own Name—20—Char act er -
0—-0—»>—Left >0 / DATA>
<DATA>—VEWS Vi ew—Vi ew—VEWSV ew—10—Long—>0—1-LookupBi t msk—Left —
0->—>VEWH1 1 / DATA>
<DATA>—EF—Ext Feat »>Feat ur es>EF—»>Ext Feat -10—Character -0->1—
LookupMul ti —»Lef t 50>—EFT—>2 1 / DATA>
<DATA>—SD—SchDi st »School Di strict »SD—»>SchDi st »10—Char acter —»
0—1-Lookup—Left -0—-—SD 1 / DATA>
<DATA>—-AR->M.SAr ea—>M.S Ar ea—>AR->Ar ea—4—l nt -50—>1-Lookup—Left —
0-—AR 30 31 1 / DATA>
</ METADATA- TABLE>

GetMetadata request:

Type: METADATA- UPDATE
ID: Property: RES

Compact reply:

<METADATA- UPDATE Resource="Property" C ass="RES" Version="1.00.000"
Dat e= "2002- 03-20T12: 03: 382" >

<COLUWNS> —Updat eNamme—Descr i pti on—KeyFi el d—»Ver si on—Dat e—
Met adat aEnt ryl D»></ COLUWNS>

<DATA>—Add—Add a new Residential Listing—»>—1.00.000—
2002- 03- 20T12: 03: 38Z—>—</ DATA>

<DATA>—Change—Change a Residential Listing—ListNunber—1.00.000—>
2002- 03- 20T12: 03: 38Z>—</ DATA>

<DATA>—»BOM>Put a Residential Listing Back on Market —ListNunber—
1. 00. 000»2002- 03-20T12: 03: 38Z—»>—</ DATA>

</ METADATA- UPDATE>

B.7 Update Type

| Version 1.7.2

GetMetadata request:

Type: METADATA- UPDATE_TYPE
ID: Property: RES: Add

Compact reply:
<METADATA- UPDATE_TYPE Resource="Property" C ass="RES" Update="Add"
| Versi on="1.00. 000" Date="2002-03-20T12:03: 382" >

<COLUWNS>—Syst emName—Sequence—At t ri but es—Def aul t -
Val i dati onExpr essi onl D»Updat eHel pl D—Val i dat i onLookupName—
Val i dat i onExt er nal Name—Met adat aEnt ryl D—>MaxUpdat e—></ COLUVNS>
<DATA>—-STNUM->1-52—-——St NuntHel p—>—»>———</ DATA>
<DATA>—STNAME—»2—2—5>—>—>—St r eet Name—»>—>——</ DATA>
<DATA>—LD—»3—>2—-Li st Dat e—Dat eHel p>—>—>——</ DATA>
<DATA>—LI STOFF—»4—-2, 35—>—>—>—>—</ DATA>
</ METADATA- UPDATE_TYPE>

B.8 Object
GetMetadata request:
Cl ass: METADATA- OBJECT
ID:0
Compact reply:
<METADATA- OBJECT Resour ce="Property" Version="1.00.000"
| Dat e="2002- 03-20T12: 03: 382" >
<COLUWNS>—bj ect Type—St andar dNane—Vi si bl eName—Descri pti on—
Met adat aEnt ryl D->M METype—bj ect Ti meSt amp—Cbj ect Count —</ COLUWNS>
<DATA>—Phot 0—i mage—Ful | Phot os—H gh Resol uti on Property Photos—
1—i mage/ j peg—>Phot oTi mest ap—Phot oCount —</ DATA>
<DATA>—Thunbnai | —»i mage—>Snal | Phot os—>Low Resol ution Property Photos—
1—i mage/ j peg—>Phot oTi mest ap—Phot oCount —</ DATA>
</ METADATA- OBJECT>
B.9 Lookup
GetMetadata request:
Type: METADATA- LOOKUP
ID: 0
Compact reply:
<METADATA- LOOKUP Resour ce="Property" Version="1.00.000"
| Dat e="2002- 03- 20T12: 03: 382" >
<COLUWNS>—LookupNane—Vi si bl eName—Ver si on—Dat e—~>Met adat aEnt r y| D></ COLUWNS>
<DATA>—1-5t at us—1. 00. 000—»2002- 03- 20T12: 03: 38Z—></ DATA>
<DATA>—2—Phone Type—1.00. 000—»2002- 03- 20T12: 03: 38Z—></ DATA>
</ METADATA- LOOKUP>
<METADATA- LOOKUP Resour ce="Agent" Version="1.00.000"
| Dat e="2002- 03- 20T12: 03: 382" >
<COLUWNS>—LookupNane—Vi si bl eName—Ver si on—Dat e—»>Met adat aEnt r y| D-></ COLUVNS>
| <DATA>—1-5t at us—1. 00. 000—»2002- 03- 20T12: 03: 38Z—>—</ DATA>
</ METADATA- LOOKUP>
B.10 Lookup Type

GetMetadata request:

| B-4 Real Estate Transaction Specification Version 1.7.2

Type: METADATA- LOOKUP_TYPE
1D *

Compact reply:

<METADATA- LOOKUP_TYPE Resour ce="Property" Lookup="AR' Version="1.00.000"
| Dat e="2002- 03- 20T12: 03: 382" >

><COLUMNS>—LongVal ue—Shor t Val ue—Val ue—Met adat aknt r yl D></ COLUWNS>

<DATA>—Capi tol Hi Il —>Cap Hi Il —>1-></ DATA>

<DATA>—Juanita Hi |l —>Juanita—>2->—-</ DATA>

<DATA>—Mapl e Val | ey—Mpl Val | ey—>3—>—</ DATA>

<DATA>—Downt own Rednond—Dnt n Rdnd<4>——</ DATA>

</ METADATA- LOOKUP_TYPE>

<METADATA- LOOKUP_TYPE Resour ce="Agent" Lookup="STAT" Version="1.00.000"
| Dat e= "2002- 03-20T12: 03: 382" >

<COLUWNS>—LongVal ue—Shor t Val ue—Val ue—Met adat aEnt r yl| D-></ COLUWNS>

<DATA>—Acti ve —-ACT—>1—->—</ DATA>

<DATA>—Suspended—SUS—»2—>—</ DATA>

<DATA>— | nact vi el NA»>3—>—</ DATA>

</ METADATA- LOOKUP_TYPE>

B.11 Search Help

GetMetadata request:

Type: METADATA- SEARCH_HELP
ID: Property

Compact reply:

<METADATA- SEARCH_HELP Resour ce="Property" Version="1.00.000"

| Dat e="2002- 03-20T12: 03: 382" >
<COLUWNS>—Sear chHel pl D—Val ue—Met adat aEnt r yl D></ COLUWNS>
<DATA>—1-Enter the nunber in the following format dxd——</ DATA>
<DATA>—2—Enter the nunber in the following format d.dd——</ DATA>
</ METADATA- SEARCH_HELP>

B.12 Edit Mask

GetMetadata request:

Type: METADATA- EDI TMASK
ID: Property

Compact reply:

<METADATA- EDI TMASK Resource="Property" Version="1.00.000" Date= "2002-03-
20T12: 03: 382" >

<COLUWNS>—Edi t Maskl D—Val ue—Met adat aEnt r yl D></ COLUWNS>

<DATA>—1-[0-9]{ 1, 2}[x][0-9]{1, 2} —</DATA>

<DATA>—2-[0-9]{3}-[0-9]{2}-[0-9}{4} —</DATA>

</ METADATA- EDI TMASK>

B.13 Update Help

GetMetadata request:

Type: UPDATE_HELP
ID: Property

Compact reply:

| Version 1.7.2

B-5

<METADATA- UPDATE_HELP Resour ce="Property" Versi on="1.00. 000"

Dat e="2002- 03-20T12: 03: 382" >
<COLUWNS>—Updat eHel pl D—Val ue—Met adat aEnt ryl D—></ COLUWNS>
<DATA>—1—Enter the nunmber in the followi ng format dxd—>—</DATA>
<DATA>—2—Enter the nunber in the followi ng format d.dd——</ DATA>
</ METADATA- UPDATE_HELP>

B.14 Validation Lookup

GetMetadata request:

Type: METADATA- VALI DATI ON_LOOKUP
ID: Property

Compact reply:

<METADATA- VALI DATI ON_LOOKUP Resour ce="Property" Version="1.00.000"
Dat e= "2002- 03-20T12: 03: 382" >
<COLUWNS>—Val i dati onLookupNane—Par ent 1Fi el d— Par ent 2Fi el d—
Ver si on—Dat e—Met adat aEnt r yl D»</ COLUWNS>
<DATA>—School -»Ar ea—»Subar ea—1. 00. 000—-2002- 03- 20T12: 03: 38Z»>—
</ DATA>
<DATA>—Zi pCode—Ar ea——1. 00. 000»2002- 03- 20T12: 03: 38Z—~>—</ DATA>
<DATA>—Gi t y—>—>—1. 00. 000—»2002- 03- 20T12: 03: 38Z ——</ DATA>
</ METADATA- VAL| DATI ON_LOOKUP>

B.15 Validation Lookup Type

GetMetadata request:

Type: METADATA- VALI DATI ON_LOOKUP_TYPE
ID: Property: School

Compact reply:

<METADATA- VAL| DATI ON_LOOKUP_TYPE Resour ce=""Property"
Val i dat i onLookup="School " Versi on="1.00. 000"
Dat e="2002- 03-20T12: 03: 382" >

<COLUWNS>—Val i dText —»Par ent 1Val ue— Par ent 2Val ue—Met adat aEnt r yl| D-></ COLUWNS>

<DATA>—133—AREA1 -»SUBAREA1 »—</ DATA>
<DATA>—134—AREA1 —-»SUBAREA2 »—</ DATA>
<DATA>—135—-AREA2 »>——</ DATA>

</ METADATA- VALI DATI ON_LOOKUP_TYPE>

B.16 Validation Expression

| B-6

GetMetadata request:

Type: METADATA- VALI DATI ON_EXPRESSI ON
ID: Property

Compact reply:

<METADATA- VAL| DATI ON_EXPRESSI ON Resour ce="Property" Version="1.00.000"

Dat e= "2002-03-20T12: 03: 382" >

<COLUWNS>—Val i dat i onExpr essi onl D-Val i dati onExpr essi onType—Val ue—
Met adat aEnt r yl D»></ COLUWNS>

<DATA>-O f i ce1—>ACCEPT>—

LAG=. AGENTCODE. .OR (LO=. BROKERCCDE. . AND. .ENTRY. =0OFFI CE) »—</ DATA>
<DATA>—Agent 1>ACCEPT—(LAG=. AGCENTCODE.) . OR (SAG=. AGENTCCDE.) »—</ DATA>

Real Estate Transaction Specification

Version 1.7.2

<DATA>—Li st Dat e->ACCEPT— LD>. TCDAY. - 3 . AND. LD<. TODAY. + 3——</DATA>
</ NETADATA- VAL| DATI ON_EXPRESSI ON\>

B.17 Validation External

GetMetadata request:

Type: METADATA- VALI DATI ON_EXTERNAL
ID: Property

Compact reply:

<METADATA- VALI DATI ON_EXTERNAL Resource="Property" Version="1.00. 000"
| Dat e= "2002- 03-20T12: 03: 382" >
<COLUMNS>—Val i dat i onExt er nal Name—Sear chResour ce—Sear chCl ass—Ver si on—Dat e—
Met adat aEnt ryl D»</ COLUWNS>
<DATA>—1-50Ofice— Ofice—1.00.00052002-03-20T12: 03: 38Z—</ DATA>
<DATA>—2—>Tax—HENN—1. 00. 000—»2002- 03- 20T12: 03: 38Z—~>—</ DATA>
</ MNETADATA- VAL| DATI ON_EXTERNAL>

B.18 Validation External Type

GetMetadata request:

Type: METADATA- VALI DATI ON_EXTERNAL_TYPE
ID: Property: VET1

Compact reply:

<METADATA- VAL| DATI ON_EXTERNAL_TYPE Resour ce="Property"

Val i dati onExt ernal =" VET1" Version="1.00.000"
| Dat e="2002- 03-20T12: 03: 382" >

<COLUWNS>—Sear chFi el d—Di spl ayFi el d>Resul t sFi el ds—Met adat aEntryl D—
</ COLUWNS>

<DATA>—Agent I D, Agent Code—Agent Name, O fi ceNane—Sal eAgent | D=Agent | D,
Sal eAgent Name=Agent Nanme, Sal e ficel D=Oficel D,
Sal e fi ceName=CX f i ceName——</ DATA>

</ METADATA- VALI DATI ON_EXTERNAL_TYPE>

| Version 1.7.2 B-7

| B-8 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

SUMMARY OF RETS REPLY CODES

Table C-1 Consolidated list of RETS reply codes (Sheet 1 of 4)

Reply Code Meaning

0 Operation successful

10000 System error
The server has detected an error with the request that prevents it from
identifying the type of request, or that prevents the server from routing the
request for processing. This return code MUST NOT be used when a more
specific return code can be determined.

20003 Zero Balance
The user has zero balance left in their account.

20004 thru 20011 RESERVED

20012 Broker Code Required
The user belongs to multiple broker codes and one must be supplied as part of
the login. The broker list is sent back to the client as part of the login response
(see section 4.6).

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019 RESERVED

20022 Additional login not permitted
There is already a user logged in with this user name, and this server does not
permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037 Client authentication failed.
The server requires the use of a client password (section 4.1.2), and the client
either did not supply the correct client password or did not properly compute
its challenge response value.

20041 User-agent authentication required.
The server requires the use of user-agent authentication (section 4.1.2), and
the client did not supply the user-agent header values.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

20140 Insecure password.

The password does not meet the site’s rules for password security.

Table C-1 Consolidated list of RETS reply codes (Sheet 2 of 4)

Reply Code Meaning
20141 Same as Previous Password.
The new password is the same as the old one.
20142 The encrypted user name was invalid.
20200 Unknown Query Field
The query could not be understood due to an unknown field name.
20201 No Records Found
No matching records were found.
20202 Invalid Select
The Select statement contains field names that are not recognized by the
server.
20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed
to the user.
20206 Invalid Query Syntax
The query could not be understood due to a syntax error.
20207 Unauthorized Query

The query could not be executed because it refers to a field to which the
supplied login does not grant access.

20208 Maximum Records Exceeded

Operation successful, but all of the records have not been returned. This reply
code indicates that the maximum records allowed to be returned by the server
have been exceeded. Note: reaching/exceeding the "Limit" value in the client
request is not a cause for the server to generate this error.

20209 Timeout

The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be
accepted at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains
too many nesting levels or too many values for a lookup field.

| 20212 [deprecated] Invalid key request [deprecated]
The transaction does not meet the server’s requirements for the use of the
Key option.

| 20213 [deprecated] Invalid Key [deprecated]

The transaction uses a key that is incorrect or is no longer valid. Servers are
not required to detect all possible invalid key values.

20301 Invalid parameter. Additional information is provided in the error block.
20302 Unable to save record on server.
20303 Miscellaneous Update Error.
20311 War ni ngResponse was not given for all warnings that contained a
response-requi redvalue of 2.
20312 War ni ngResponse was given for a warning that contained a r esponse-
requi r edvalue of 0.
20400 Invalid Resource
The request could not be understood due to an unknown resource.
20401 Invalid Type
The request could not be understood due to an unknown object type for the
resource.
20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.
20403 No Object Found

No matching object was found to satisfy the request.

] C-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

Table C-1 Consolidated list of RETS reply codes (Sheet 3 of 4)

Reply Code Meaning
20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.
20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the
supplied login does not grant access.
20408 Resource Unavailable
The requested resource is currently unavailable.
20409 Object Unavailable
The requested object is currently unavailable.
20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.
20411 Timeout
The request timed out while executing
20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.
20413 Miscellaneous error
The server encountered an internal error.
20500 Invalid Resource
The request could not be understood due to an unknown resource.
20501 Invalid Type
The request could not be understood due to an unknown metadata type.
20502 Invalid Identifier
The identifier is not known inside the specified resource.
20503 No Metadata Found
No matching metadata of the type requested was found.
20506 Unsupported MIMEType
The server cannot return the metadata in any of the requested MIME types.
20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which
the supplied login does not grant access (e.g. Update Type data).
20508 Resource Unavailable
The requested resource is currently unavailable.
20509 Metadata Unavailable
The requested metadata is currently unavailable.
20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.
20511 Timeout
The request timed out while executing.
20512 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.
20513 Miscellaneous error
The server encountered an internal error.
20514 Requested DTD version unavailable.

The client has requested the metadata in STANDARD-XML format using a
DTD version that the server cannot provide.

C-3

Table C-1 Consolidated list of RETS reply codes (Sheet 4 of 4)

Reply Code Meaning

20701 Not logged in
The server did not detect an active login for the session in which the Logout
transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional
information.

] C-4 Real Estate Transaction Specification Version 1.7.2

MAXIMUM FIELD LENGTH AND DISPLAY
INFORMATION

This appendix contains examples for METADATA-TABLE Maximum Field Length and
sample displays for various combinations of data types, interpretation and other attributes
of a field. It is NON-NORMATIVE: these examples illustrate one case of calculating and
formatting field values and their metadata and one set of values. Section 11.3.2 describes
the rules in detail.

| D.1 Datatype Boolean

Interpretation | Precision | Separator | Units | Max Select | Extreme Maximum Display Example
Example Length

null n/a n/a n/a |[n/a 0 1 Fal se

null n/a n/a n/a |n/a 1 1 True

Lookup n/a n/a n/a |n/a 12345678 8 from lookup
LookupName,
longvalue,
lookup

shortvalue, the
value from the
corresponding
lookup values,
from value, 0
orl

| Version 1.7.2 D-1

| D.2 Datatype Character

Interpretation | Precision | Separator | Units | Max Select | Extreme Maximum Display Example
Example Length
null n/a n/a n/a [n/a random_string |13 randomstrin
g
Lookup n/a n/a n/a |n/a random_string 13 from | ookup
LookupNarre,
True
| D.3 Datatype Decimal
Interpretation | Precision | Separator | Units | Max Select | Extreme Maximum Display Example
Example Length
Numeric |2 , null {n/a -12342.21 9 -12,342. 21
Numeric 1 , Feet [n/a 123.1 5 123.1 feet
Currency |2 , n/a [n/a 1246.227 7 $1246. 22

| D-2 Real Estate Transaction Specification

Version 1.7.2

DOCUMENT REVISION HISTORY

This appendix contains the document revision history that identifies changes to the
document. Such changes will be minor grammar, formating and spelling corrections and
additional examples. Changes that modify the compliance suite for the standard or
changes that add functionality are not reflected in this appendix. Those types of changes
will be reflected in a new version number for the document.

Table E-1 Revision History

Date Author Sections Notes

2008-08-29 |P. Stusiak all Release of 1.7.2

2008-09-10 |(P. Stusiak 3,5,7,11, |Correct the doctype url of section 7.6, page
12,15 7-7, section 11.1.4, section 12 and section

15 to that for 1.7.2

| Version 1.7.2 E-1

J E-2 Real Estate Transaction Specification Version 1.7.2

Index of Compliance Items

B Minimum requirements for compact-decoded for-
Backwards compatibility for XML metadata 2 mat 2

Backwards compatibility in XML 4, 7 P

C Pending transactions at logoff 2

Cache-Control header 6 Q

Classless searches, resource identifier 2

uery parameter rounding 9
Compression options 7 Query p &

cookies 1 R

E Representation of undefined data in COMPACT
d-reply-cod ful transaction 5 format 1, 2

end-reply-code on successful transaction Requirement for seatch 5

: s

Interpretation of the LIMIT tag 4 Session timeout 5

L T

Logoff 2 . TCP port for SSL connection 2

Logout transaction 1

M \

Version identifier usage 2
Metadata extension names 2, 3, 4, 5 &

MIME type acceptance 1

Version 1.7.2 Real Estate Transaction Specification 10C-1

I0C-2 Real Estate Transaction Specification Version 1.7.2

Symbols
ANY. token, 7-9
.EMPTY. token, 7-9

A

Accept-Encoding header, 3-7
account balance, 4-5
Accounting, 4-5

billing information, 6-1

logout, 6-1
agent code, 4-5
Authentication, 9-2, 14-1
Authorization, 4-2

example, 4-2
Auto-population, 10-1, 11-17

B

Body, response, 3-2
Broker Code, 4-2
Broker information, 4-2

in expressions, 4-6
in login, 4-3, 4-6

C
Cache-Control header, 3-5
Capability URL, 4-7
Case-sensitivity, 11-1
Change Password transaction, 9-1
Class

defined, 1-2
ClassName, 11-11
Client Authentication, 4-1
Client password, 3-3, 3-9
Compatibility, 1-2
Compliance, 1-1
compliance, 1-2, 10-4
compression, 3-7
Content-Type header, 3-6
Cookies, 3-1, 3-3, 3-7, 4-1
Count, retrieving, 7-3
cursor, 7-4

D
data types, 11-13
Date header, 3-5

dates
calculations, 11-26
format, 2-4
time zone, 7-9

defaults, required specification items, 1-2
Delimiters
field, 7-2

Version 1.7.2

Index

E
ECB padding, 9-2
Edit Mask, 11-21
End reply code, 3-5
Error handling

GetObject, 5-6

multipart, 5-6

reporting, in update, 10-2, 10-3
Examples

update transaction, 10-1
Extending, 1-1

adding transactions, 4-7
Extensions

capability URL, 4-7

functions, 4-7
extensions, metadata, 11-2
External validation, 10-5

F
Field
selecting in search, 7-5
Field delimiter, 7-7
fields, restricting access to, 7-5
foreign keys, 11-8, B-2, D-2

G
GET transaction, 8-1

H

header
Accept-Encoding, 3-3, 3-7
Authorization, 3-3
Cache-Control, 3-5
Content-Length, 3-6
Content-Type, 3-6
Cookie, 3-3
Date, 3-5
Location, 5-4
RETS-Request-ID, 3-3, 3-7
RETS-Server, 3-7
RETS-UA-Authorization, 3-3
RETS-Version, 3-3, 3-6
server response, 3-7
Set-Cookie, 3-7
Transfer-Encoding, 3-6
User-Agent, 3-2

Headers
RETS version, 3-3

help text
search, 11-20
update, 11-22

HTTP
GET vs. Post, 3-2
Header usage, 3-2
method, 10-1
status code, usage, 3-4
Status codes, 3-8
update and, 10-1

Real Estate Transaction Specification 1X- 1

J
Justification, text, specifying, 11-14

K
KeyField, 11-6

L

literal string, 7-9
Login, 4-1
Logout, 6-1

M
MAXROWS, 7-4, 7-7
Message format, 3-1
Metadata
version control, 4-4
versioning, 4-3
metadata, 11-1
caching, 11-1
system, 11-4

version control, 11-1, 11-5, 11-6, 11-9, 11-10, 11-12, 11-16,
11-17, 11-18, 11-19, 11-20, 11-21, 11-23, 11-24, 11-27,

11-28, 11-29
Metadata extensions, 11-2
Metadata fields, unknown, 11-2
metadata, case-sensitivity, 11-1

MIME (Multimedia Internet Mail Extensions), 5-1

Multipart responses, 5-5
MIME Type, 5-1
multimedia

location, 5-3, 5-4
Multi-select

in update, 10-5

interpretation, 11-14

N
NOW, search token, 7-9

0
Object description, 5-4
Object ID, 5-2
Office list tag, 4-6
offset, in query, 7-4
Optional

defined, 1-3

P

Password expiration, 4-5
Passwords
expiration, 4-5
photos
location, 5-3, 5-4
object-ID, 5-2
Port number, 14-1
port number, 4-2

IX-2 Real Estate Transaction Specification

Q
Query

example, 7-10
field names in, 7-6
limiting records returned, 7-3
specification, 7-3
query
cursor, 7-4
query language, 7-8
qvalue, 5-2

R

record count, 7-2, 7-7
record limit, 7-3
regular expressions, 11-22
Reply code

at end of reply, 3-5
Request

arguments, 3-1

defined, 3-1

required headers, 3-2
Request format, 3-2
Request ID

defined, 1-3

in response, 3-7

transmitting, 3-3
Resource

defined, 1-3

standard names for, 11-5
Resource ID, 5-2
resources

well-known names, 11-5
Response, 3-2

general format, 3-4
RestrictedIndicator, 7-5
RETS status code, 3-4
RETS-Request-ID

header, 3-7
RETS-Server header, 3-7
RETS-Version header, 3-3, 3-6
rounding, in query computations, 7-9

S

Search
return format, 7-3
Search Help, 11-20
Search types, 7-1
Security, 4-1
controlling access to functions, 4-6
security
controlling access to fields, 7-5
password, 9-1
Server header, 3-7
ServerInformation transaction, 15-1
Set-Cookie header, 3-7
Sign-off message, 6-1
SSL, 4-1

Version 1.7.2

SSL (Secure Sockets Layer), 14-1 Update transaction, 10-1

Standard name Update warnings, 10-2
defined, 1-3 User class, 4-5
syntax, 2-3 User information, 4-4
standard name, 7-6, 11-6 User level, 4-5
Standard-Name User-Agent, 3-3

searching with, 7-10
System Name

defined, 1-3
SystemName, 7-10

User-Agent header, 3-2

v

Validation

T external, 10-5, 11-17

validation, 10-4

validation expression, 11-25
Validation expressions, 10-5, 11-17
VisibleName, 11-6, 11-11

TCP port number, 14-1
Text justification, 11-14
Timeouts, 4-5

Timestamp
metadata, 4-3

TODAY, search token, 7-9 w

transaction Warning blOCk, 10-4
Change Password, 9-1 well-known names
GET, 8-1 login fields, 4-6
Update, 10-1 object types, 11-18

resources, 11-5
1] transactions, 4-7

Update Help, 11-22

Version 1.7.2 Real Estate Transaction Specification IX-3

IX-4 Real Estate Transaction Specification Version 1.7.2

	Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Requirements
	1.3.1 Required Features
	1.3.2 Compatibility with Prior Versions

	1.4 Terminology

	Notational Conventions
	2.1 Augmented BNF
	2.2 Typographic Conventions
	2.3 Rules
	2.4 Atoms and Primitive Entities

	Message Format
	3.1 General Message Format
	3.1.1 RETS HTTP/1.1 Encapsulation
	3.1.2 Request Arguments
	3.1.3 Response Bodies

	3.2 Request Format
	3.3 Required Client Request Header Fields
	3.4 Optional Client Request Header Fields
	3.5 Response Format
	3.6 Required Server Response Header Fields
	3.7 Optional Server Response Header Fields
	3.8 Data Compression in RETS Transactions
	3.9 General Status Codes
	Table 3-1 General Status Codes

	3.10 Computing the RETS-UA-Authorization Value

	Login Transaction
	4.1 Security
	4.1.1 User Authentication
	4.1.2 Client Authentication
	4.1.3 Data Security

	4.2 Authorization Example
	4.3 Required Request Arguments
	4.4 Optional Request Arguments
	4.4.1 BrokerCode Argument
	4.4.2 SavedMetadataTimestamp Argument

	4.5 Optional Response Header Fields
	4.6 Login Response Body Format
	4.7 Required Response Arguments
	4.7.1 Broker
	4.7.2 Member Name
	4.7.3 Metadata Version Information
	4.7.4 User information
	4.7.5 Capability URL List

	4.8 Optional Response Arguments
	4.8.1 Accounting Information
	4.8.2 Access Control Information
	4.8.3 Office List Information

	4.9 Well-Known Names
	Table 4-1 Well-Known Names for Input Fields

	4.10 Capability URL List
	Table 4-2 Capability URL Descriptions

	4.11 Reply Codes
	Table 4-3 Valid Reply Codes for Login Transaction

	GetObject Transaction
	5.1 Required Client Request Header Fields
	5.2 Optional Client Request Header Fields
	5.3 Required Request Arguments
	5.4 Optional Request Arguments
	5.4.1 Location

	5.5 Required Server Response Header Fields
	5.6 Optional Server Response Header Fields
	5.6.1 Location
	5.6.2 Description

	5.7 Required Response Arguments
	5.8 Optional Response Arguments
	5.9 Metadata
	5.10 Resources
	5.11 Multipart Responses
	5.11.1 General Construction
	5.11.2 Error Handling

	5.12 Reply Codes
	Table 5-1 GetObject Reply Codes

	Logout Transaction
	6.1 Required Request Arguments
	6.2 Optional Request Arguments
	6.3 Required Response Arguments
	6.4 Optional Response Arguments
	6.5 Logout Response Body Format
	6.6 Reply Codes
	Table 6-1 Logout Reply Codes

	Search Transaction
	7.1 Search Types
	7.2 Search Terminology
	7.2.1 Field Delimiter
	7.2.2 Field Name
	7.2.3 Record Count
	7.2.4 Other terms

	7.3 Required Request Arguments
	7.3.1 Search Type and Class
	7.3.2 Query Specification

	7.4 Optional Request Arguments
	7.4.1 Count
	7.4.2 Format
	7.4.3 Limit
	7.4.4 Offset
	7.4.5 Select
	7.4.6 Restricted Indicator
	7.4.7 StandardNames

	7.5 Required Response Arguments
	7.6 Search Response Body Format
	7.7 Query language
	7.7.1 Query language BNF
	7.7.2 Query parameter interpretation
	7.7.3 Sub-queries

	7.8 Reply Codes
	Table 7-1 Search Transaction Reply Codes

	Get Transaction
	8.1 Required Request Arguments
	8.2 Optional Request Arguments
	8.3 Required Response Arguments
	8.4 Optional Response Arguments
	8.5 Status Conditions

	Change Password Transaction
	9.1 Required Request Arguments
	9.2 Optional Request Arguments
	9.3 Required Response Arguments
	9.4 Optional Response Arguments
	9.5 Reply Codes
	Table 9-1 Change Password Reply Codes

	9.6 Encryption Key Construction
	9.7 ECB Padding
	9.8 Effect of change

	Update Transaction
	10.1 Required Request Arguments
	10.2 Optional Request Arguments
	10.3 Required Response Arguments
	10.4 Optional Response Arguments
	10.5 Update Response Body Format
	10.5.1 Error block
	10.5.2 Warning block

	10.6 Validation
	10.6.1 Lookup
	10.6.2 MultiSelect Lookup
	10.6.3 Range
	10.6.4 Test Expression
	10.6.5 External

	10.7 Reply Codes
	Table 10-1 Update Transaction Reply Codes

	Metadata Format
	11.1 Organization and Retrieval
	11.1.1 Metadata Organization
	11.1.2 General Rules for Interpretation
	11.1.3 Metadata Retrieval Hierarchy
	11.1.4 Metadata Format

	11.2 System-Level Metadata
	11.2.1 System
	Table 11-1 MetadataSystem Compact Header Attributes
	Table 11-2 System Compact Header Attributes
	Table 11-3 Metadata: System Field

	11.2.2 Resources
	Table 11-4 Well-Known Resource Names
	Resource Metadata Content
	Table 11-5 Resource Metadata Compact Header Attributes
	Table 11-6 Metadata: Resource Description Fields (Sheet 1 of 3)

	11.2.3 Foreign Keys
	ForeignKeys Metadata Content
	Table 11-7 ForeignKeys Metadata Compact Header Attributes
	Table 11-8 Metadata Content: Foreign Keys (Sheet 1 of 2)

	11.3 Metadata Format for Class Elements
	11.3.1 Class
	Table 11-9 Class Metadata Compact Header Attributes
	Table 11-10 Metadata Content: Resource Class

	11.3.2 Table
	Table 11-11 Table Metadata Compact Header Attributes
	Table 11-12 Metadata Content - Tables (Sheet 1 of 4)

	11.3.3 Update
	Table 11-13 Update Metadata Compact Header Attributes
	Table 11-14 Metadata Content – Update

	11.3.4 Update Type
	Table 11-15 UpdateType Metadata Compact Header Attributes
	Table 11-16 Metadata Content – Update Type

	11.4 Metadata Format for Shared Elements
	11.4.1 Object
	Table 11-17 Well-known Object Types
	Table 11-18 Object Metadata Compact Header Attributes
	Table 11-19 Metadata Content: Resource Object (Sheet 1 of 2)

	11.4.2 Lookup
	Table 11-20 Lookup Metadata Compact Header Attributes
	Table 11-21 Metadata Content: Lookup

	11.4.3 Lookup Type
	Table 11-22 Lookup Type Metadata Compact Header Attributes
	Table 11-23 Metadata Content: Lookup Type

	11.4.4 Search Help
	Table 11-24 Search Help Metadata Compact Header Attributes
	Table 11-25 Metadata Content: Search Help

	11.4.5 Edit Mask
	Table 11-26 EditMask Metadata Compact Header Attributes
	Table 11-27 Metadata Content: Edit Mask
	RETS Regular Expression Specification
	Table 11-28 RETS Regular Expression Metacharacters

	11.4.6 Update Help
	Table 11-29 Update Help Metadata Compact Header Attributes
	Table 11-30 Metadata Content: Update Help

	11.4.7 Validation Lookup
	Table 11-31 ValidationLookup Metadata Compact Header Attributes
	Table 11-32 Metadata Content: Validation Lookup (Sheet 1 of 2)

	11.4.8 Validation Lookup Type
	Table 11-33 Validation Lookup Type Metadata Compact Header Attributes
	Table 11-34 Metadata Content: Validation Lookup Type

	11.4.9 Validation Expression
	Table 11-35 Validation Expression Types
	Table 11-36 Validation Expression Operators
	Table 11-37 Validation Expression Special Operand Tokens (Sheet 1 of 2)
	Table 11-38 Validation Expression Metadata Compact Header Attributes
	Table 11-39 Metadata Content: Validation Expression

	11.4.10 Validation External
	Table 11-40 Validation External Metadata Compact Header Attributes
	Table 11-41 Metadata Content: Validation External

	11.4.11 Validation External Type
	Table 11-42 Validation External Type Metadata Compact Header Attributes
	Table 11-43 Metadata Content: Validation External Type

	GetMetadata Transaction
	12.1 Required Client Request Header Fields
	12.2 Required Request Arguments
	12.3 Optional Request Arguments
	12.4 Required Server Response Header Fields
	12.5 Required Response Arguments
	12.6 Optional Response Arguments
	12.7 Metadata Response Body Format
	12.8 Reply Codes
	Table 12-1 GetMetadata Reply Codes (Sheet 1 of 2)

	Compact Data Format
	13.1 Overall format
	13.2 Decoded Format
	13.3 Multivalued Fields
	13.4 Transmission standards
	Table 13-1 Compact Data Field Format Representation

	Session Protocol
	14.1 Connection Establishment
	14.2 Authorization
	14.3 Session
	14.4 Termination

	[deprecated] ServerInformation Transaction
	15.1 Required Request Arguments
	15.2 Optional Request Arguments
	15.3 Response Format
	15.4 Well-known names
	Table 15-1 Well-Known Parameter Names

	15.5 Reply Codes
	Table 15-2 ServerInformation Reply Codes

	Acknowledgments
	Authors
	References
	Table A-1 DTD References
	B.1 System
	B.2 Resource
	B.3 Foreign Keys
	B.4 Class
	B.5 Table
	B.6 Update
	B.7 Update Type
	B.8 Object
	B.9 Lookup
	B.10 Lookup Type
	B.11 Search Help
	B.12 Edit Mask
	B.13 Update Help
	B.14 Validation Lookup
	B.15 Validation Lookup Type
	B.16 Validation Expression
	B.17 Validation External
	B.18 Validation External Type
	Table C-1 Consolidated list of RETS reply codes (Sheet 1 of 4)

	D.1 Datatype Boolean
	D.2 Datatype Character
	D.3 Datatype Decimal
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

