the key value index
optimized for size and speed

Hendrik Muhs

@HendrikMuhs
hendrik. muhs@gmail.com

alue ' ndex

based on finite state (FST)
Opensource (Apache 2.0)
C++(core), Python(binding)

http://www.keyvi.org

Browser integrated Search Engine
keyvi powers important parts in the backend

> 14bn data points (key value pairs)

> 2.7TB index size
> 900tsd daily active users (> 10k requests per minute)

< 60ms average latency

uses finite state
scales through shared memory

very space efficient

Please pick:
B-Trees & Co (*SQL, *DB, MongoDB)

Hash Tables (Redis, Cassandra)

Please pick:
B-Trees & Co (*SQL, *DB, MongoDB)

Hash Tables (Redis, Cassandra)

heap fragmentation
or garbage collector runs

IncCreasing memory usage

degrading performance

finite state algorithm e== bucket(x]

byte array al|b e q |

Sparse array persistence pointer array 245 64 | 0 | 0 [257] 0 |33 | 0 | 0 | 0 | 0 |23

\ pointer to next state

startOffset OffsetX

openfst, nltk, NLP toolkits

Lucene (Elasticsearch, Solr)
termdictionary, suggesters

replacement of Redis
single -> multi core
reduced size 5TB -> 2TB
serialized -> direct access

Redis Servers: 3 * 22
Servers: 3 * 10, later 3

Scaling with Redis

machine 1
machine 2

worker1 =
worker 1

worker 2
worker 2

worker n
worker n

machine x

machine 1
machine 2

Redis Server 1 2
Heap Server 1

Redis Server 2 »
Heap Server 2

Redis Server m

Heap Server m

machine x

keyvi

Scaling with Redis 1 Machine

Redis Server 1

Heap

Redis Server 2

Heap

Redis Server m

Heap

every Redis process has its own heap
data belongs to the process

If Redis dies, reload takes a significant
amount of time

keyvi

Scaling with keyvi

keyvi Server 1

shared memory:
several processes/threads can read

Shared Memory

keyvi Server 2 o
resilient

persistence = in-memory

keyvi Server m

keyvi www.keyvi.org 1

k/v pairs in million Redis keyvi
1 456 385

10 4538 3742

100 45303 36327

* Size in MB

Compression Ratio per Type

terms

ngrams

content

filter

scores

i

O 05 1 15 2 25 3 35 4

Uncompressed Size

Compression Ratio =
P Compressed Size

keyvi www.keyvi.org

Lookup Benchmark

% = M Redis
5 50 keyvi (RPC, 1 thread)
© ® keyvi (RPC, 30 threads) \
F m keyvi (no IPC, 30 threads) 0“(:’
10
F | T | T T 1 00“&
0 100000 200000 300000 400000 500000 600000 v@
Requests per second Q‘“
. . (o)
client/server on the same machine \)(
chunksize == size of (redis) pipeline \‘O
host type: r3.8xlarge(AWS) 60

keyvi www.keyvi.org

keyvi on SSD
10 machine cluster, all in memory, chunksize 50 _

-

10 machine cluster, all in memory, chunksize 10 [

—

1 machine, SSD hot run [

—

1 machine, SSD cold run -

| | | | |

0 100000 200000 300000 400000 500000
" Requests per second

Index size 2 TB
SSD tests: 1 * i2.8xlarge
cluster tests: 10 * r3.8xlarge

keyvi www.keyvi.org 1

iIn-memory but also disk based

a server but also embedded

A keyvi key value store

Released soon

readers — Seament

= TI1]

keyvi

extremly good locality
no heap fragmentation

compact due to de-duplication built-in

GIVE
A
LITTLE
LOVE
TO KEYVI

hendrik : bash — Konsole

File Edit View Bookmarks Settings Help

hendrik@hendrik-tp:~$ pip install pykeyvi
Collecting pykeyvi
Downloading keyvi-0.2.2-cp27-cp27mu-manylinuxl_x86_64.whl (4.3MB)
100% | | 4.4MB 312kB/s
Collecting msgpack-python (from pykeyvi)
Installing collected packages: msgpack-python, pykeyvi
Successfully installed msgpack-python-0.4.8 pykeyvi-0.2.2

hendrik@hendrik-tp:~$ |

Enriching Data with keyvi and pySpark

enrich (more than once)
free text extraction

filtering

Spark setup

In [1: from pyspark import SparkFiles
from pyspark import SparkContext
sc.addFile("s3n://my bucket/my file.kv")
In [1: import pykeyvi

def my mapper(key value):
key, value = key value

todo: you do not want to do this on every call, to be replaced with some loader:
see https://qgithub.com/cliqz-oss/keyvi/blob/master/doc/usage/Using%20pykeyvi%20in%20EMR . md
d = pykeyvi.Dictionary(SparkFiles.get("my file.kv")

simple filter
matched = value['feature'] in d

simple exact match
match = d[value['feature']]

Free text (space-tokenized) lookup (leftmost longest, multi token)
match = d.LookupText[value['feature']]

what did we found?
matched_string = match.GetMatchedString() I

where did it match?
start = match.GetStart()
end = match.GetEnd()

get metadata attached to it
matched value = match.GetValue()

keyvi

www.keyvi.org

Spark keyvi explained

Executor

keyvi data on
Shared Memory

keyvi

Almost there!

It's different
it's simple

It's versatile

It's different
it's simple

It's versatile

More infos/material/code at http://keyvi.org

Q&A

hendrik.muhs@gmail.com

