8000 Preserving divisions when reading/loading dataframes with structs containing multiple fields · Issue #11021 · dask/dask · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Preserving divisions when reading/loading dataframes with structs containing multiple fields #11021
Open
@PhilippeMoussalli

Description

@PhilippeMoussalli

Hi,

We're facing issue preserving divisions when writing pyarrow structs containing multiple fields, this is better illustrated in the following example:

data = {
    'id': ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10"],
    'A': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],

}
df = pd.DataFrame(data)

# Create a Dask DataFrame
ddf = dd.from_pandas(df, npartitions=3)  # Set the number of partitions

# Sort the index
ddf = ddf.set_index('id', drop=True, sorted=True)


def add_nested_struct_multiple_fields(rows):

    example_dict = {
        "foo": "foo",
        "bar": "bar",
    }

    return [example_dict, example_dict]

def transform_multiple_fields(dataframe):

    dataframe["nested_struct"] = dataframe.apply(add_nested_struct_multiple_fields, axis=1)
    
    return dataframe

nested_struct_multiple_fields_schema = pa.list_(
            pa.struct(
                [
                    pa.field("foo", pa.string()),
                    pa.field("bar", pa.string()),
                ],
        )
)

def create_meta_dict(nested_struct_schema):
    meta_dict = {"id": pd.Series(dtype="object")}
    meta_dict["A"] = pd.Series(dtype=pd.ArrowDtype(pa.int32()))
    meta_dict["nested_struct"] = pd.Series(dtype=pd.ArrowDtype(nested_struct_schema))
    meta_df = pd.DataFrame(meta_dict).set_index("id")

    return<
5D75
/span> meta_df


schema_nested_struct_multiple_fields = {
    "A":pa.int32(),
    "nested_struct":nested_struct_multiple_fields_schema
}

ddf_multiple_fields = ddf.map_partitions(
    transform_multiple_fields,
    meta=nested_struct_multiple_fields_meta,
)

ddf_multiple_fields.known_divisions
-> True # Divisions are still preserved before writing 

dd.to_parquet(ddf_multiple_fields, "multiple_fields", schema=schema_nested_struct_multiple_fields)

dd.read_parquet(path="multiple_fields", index="id", calculate_divisions=True).known_divisions
-> False # Division are not known after reading the saved dataframe again 

Here, we are writing two new fields ("foo", "bar"), when reading the parquet file again, the divisions are not preserved. Oddly enough this does not seem to occur when only one field is added to the struct. See this notebook for more clarity on the issue where we compare both scenarios.

Could you please provide clarity on the issue? Thanks in advance!

Environment:

  • Dask version: 2024.2.1
  • Python version: 3.11
  • Operating System: Linux
  • Install method (conda, pip, source): pip

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0