[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

bitwyre/chebyshev_primality_testing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chebyshev polynomials of the first kind and primality testing

Conjecture 41

Let n be a natural number greater than two . Let r be the smallest odd prime number such that r \nmid n and n^2 \not\equiv 1 \pmod r . Let T_n(x) be Chebyshev polynomial of the first kind , then n is a prime number if and only if T_n(x) \equiv x^n \pmod {x^r-1,n} .

See Chebyshev polynomials of the first kind and primality testing and Conjecture 41 of Peđa Terzić.

Author

Copyright

2021, Olexa Bilaniuk & Dendi Suhubdy