The Cryptoworkshop Guide to Java Cryptography and the
Bouncy Castle APIs

Acknowledgements

While it may seem a little premature to include an acknowledgements section in a preliminary draft, the truth is there have already been a number of

contributions to this work.

The idea behind this project was to be able to generate documentation which included validated source code for the examples, so you'll see some source
code in the book itself, which perhaps suprisingly is the same source code that appears in the example files. As you will appreciate this is not something
currently possible with a conventional publishing system (TeX aside), so doing this has required writing some software on our part as well as finding a clean
way of generating the output PDF. To this end we would like to acknowledge the contribution of iText Software Corp (http://www.itextpdf.com) in making an

iText license available to us. Without that we doubt this idea would have made it off the table napkin.

Also to the reviewers of this document so far, thanks!

1. The Bouncy Castle Provider
1.1. Installing the Provider

The Bouncy Castle Provider can be installed either at run time, or by using static registration via the java.security file.

To install the provider at run time just add:

Security. addProvi der (new BouncyCast | eProvi der());

To install the provider using static registration you need to add an entry to the java.security properties file (found in
$JAVA_HOME/jrellib/security/java.security, where $JAVA_HOME is the location of your JDK/JRE distribution). You'll find detailed instructions in the file but

basically it comes down to adding a line:
security. provi der. <n>=or g. bouncycast| e. j ce. provi der. BouncyCast | eProvi der

Where <n> is the preference you want the provider at (1 being the most preferred).

Where you put the jar is up to mostly up to you, although with jdk1.3 and jdk1.4 the best (and in some cases only) place to have itis in
$JAVA_HOME/jre/lib/ext. Note: under Windows there will normally be a JRE and a JDK install of Java if you think you have installed it correctly and it still

doesn't work chances are you have added the provider to the installation not being used.

Note: with JDK 1.4 and later you will need to have installed the unrestricted policy files to take full advantage of the provider. If you do not install the policy

files you are likely to get something like the following:

java.l ang. SecurityException: Unsupported keysize or algorithm paraneters
at javax.crypto. G pher.init(DashoA6275)

The policy files can be found at the same place you downloaded the JDK.

1.2. Bouncy Castle Provider Configuration

The Bouncy Castle provider has a number of parameters which can be used to set default parameters. The configuration parameters help cover issues like
Elliptic Curve's implicitly CA, and the setting of default parameters for algorithms such as Diffie-Hellman. These can be set using the setParameter() method

on the ConfiguarbleProvider interface which the Bouncy Castle provider class implements.

The parameter set is defined in the ConfigurableProvider interface. The current parameter set includes THREAD _LOCAL_EC_IMPLICITLY_CA,
EC_IMPLICITLY_CA, THREAD_LOCAL_DH_DEFAULT_PARAMS, and DH_DEFAULT_PARAMS. As the names suggest the thread local versions will allow

the setting of specific parameter values to specfic threads where thread local storage is available, otherwise the parameter sets a VM wide default.

The following example shows the setting of some standard Diffie-Hellman parameter values for the Bouncy Castle provider.

Confi gur abl eProvi der prov = (Confi gurabl eProvi der) Security.getProvider("BC');

DHPar anet er Spec dhSpec512 = new DHPar anet er Spec(

new
Bi gl nt eger ("fca682ce8el2caba26ef ccf 7110e526db078b05edechcdleb4a208f 3ael1617ae01f 35b91a47e6df
63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17", 16),

new
Bi gl nt eger (" 678471b27a9cf 44ee91a49c5147dbla9aaf 244f 05a434d6486931d2d14271b9e35030b71f d73dal
79069b32e2935630e1c2062354d0da20a6c416e50be794cad”, 16),

384);

DHPar anet er Spec dhSpec768 = new DHPar anet er Spec(

new
Bi gl nt eger (" e9e642599d355f 37¢97f f d3567120b8e25c9cd43e927b3a9670f bec5d890141922d2c3b3ad24800
93799869d1e846aab49f ab0ad26d2ce6a22219d470bce7d777d4a21f be9c270b57f 607002f 3cef 8393694cf 45ee
3688clla8c56abl27a3daf", 16),

new
Bi gl nt eger (" 30470ad5a005f b14ce2d9dcd87e38bc7d1blc5f acbhaeche95f 190aa7a31d23c4dbbcbe061745444
01a5b2c020965d8c2bd2171d3668445771f 74ba084d2029d83c1c158547f 3a9f 1a2715be23d51ae4d3e5alf 6a70
64f316933a346d3f?29252", 16),

384

DHPar anet er Spec dhSpec1024 = new DHPar anet er Spec(
new
Bi gl nt eger ("f 7e1a085d69b3ddecbbcab5c36b857b97994af bbf a3aea82f 9574c0b3d0782675159578ebad4594

fe67107108180b449167123e84c281613b7cf 09328cc8abel3cl67a8b547c8d28e0a3aele2bb3a675916ea37f Ob
fa213562f 1f b627a01243bccadf 1bea8519089a883df el5ae59f 06928b665e807b552564014c3bf ecf 492a"

16)
new

Bi gl nt eger ("fd7f53811d75122952df 4a9c2eecede7f 611b7523cef 4400c31e3f 80b6512669455d402251f b593
d8d58f abf c5f 5ba30f 6cb9b556cd7813b801d346f f 26660b76b9950a5a49f 9f e8047b1022c24f bba9d7f eb7c61b
f 83b57e7c6a8a6150f 04f b83f 6d3c51ec3023554135a169132f 675f 3ae2b61d72aef f 22203199dd14801c7",
16),

512);

prov. set Par anet er (Conf i gur abl eProvi der . DH DEFAULT_PARAMS, new DHPar anet er Spec[] {
dhSpec512, dhSpec768, dhSpec1024 });

In the above example, future calls to key generators doing Diffie-Hellman key pair generation will use the provider parameter values, rather than generating

new parameter values as required (which, while it is a one off cost per key size, is rather expensive).

An alternative way to prevent long parameter generation cycles is configure the KeyPairGenerator up front via the initialize() method.

1.3. Things to Watch Out For

Problems can arise if you change the order of providers in the java.security file, rather than just adding the Bouncy Castle provider to the end. This especially
applies to the provider sitting in position 1. If you do change the order of providers make sure you test thoroughly with the JVMs you need to deploy on as

you may find what will work on one JVM will not work on another.

The JCE is normally always picked up by the sytem class loader, the same is not necessarily true if the provider jar is not in the system class path (i.e.
lib/ext). In some container based environments, such as Tomcat, you may find you get apparently impossible class cast exceptions as the provider classes
may end up being picked up by a class loader the system class loader does not trust. If this does happen there are only two options, the provider jar either
needs to be in the container's most trusted class path (so any war file always gets the class from the same class loader) or the provider jar needs to be in the

lib/ext area for the JVM that the container is running on.

If a strange performance issue, where your application suddenly pauses for 30 seconds on startup appears, it is likely that the culprit is the generation of
DSA or Diffie-Hellman key parameters. In this case you can configure the provider to have default parameter values or pre-configure the KeyPairGenerator

you are using. If this sounds like you, see the section in this chapter on Bouncy Castle provider configuration.

2. Basic Operators and API Organisation

The Bouncy Castle API for generating and processing certificates, certification requests, and CMS, SMIME and CRMF messages are based around

abstracting out the cryptographic operations from the classes that generate or acts as containers for the actual certificates and messages.

The cryptographic operators are defined by a series of interfaces and implementations of these interfaces can then be plugged into message handlers and
generators as required. This allows the Bouncy Castle APIs to be used on a range of virtual machines and makes it possible to create operators not only
using the JCA/JCE, but also the Bouncy Castle lightweight APIs as well as custom APIs that a particular environment might present. Understanding these

operators and how they are used is the quickest way of learning how to deal with the Bouncy Castle APIs.

Another useful rule to follow comes from the use of "bc" and “jcajce" in final pakcage names. The use of jcajce signifies that the classes in the package are
designed to be used with the Java Cryptography Architecture (JCA) and the Java Cryptography Extension (JCE). Other packages have a final name of bc.
When you see this you are looking at a package that is specifically designed to be used with the Bouncy Castle lightweight APIs. So if you are looking for
something designed to specifically handle a JCA/JCE object in a given package hierarchy you will probably find what you are looking for in the jcajce
package under that hierarchy, on the other hand if you are looking for something specific to the lightweight API look in the bc packages for the hierarchy. If
you are looking to develop a custom operator of your own the bc package is also the best place to look for examples as it has to deal with direct

implementations.

2.1. Digest Calculators

The DigestCalculator interface is one of the simplest to implement and it is typical of the operator interfaces. A method, getAlgorithmldentifier(), is
implemented to provide an ASN.1 description of the algorithm the calculator implements. Another method, getOutputStream(), returns an OutputStream

which can be written to to feed data into the calculator, and a third method, getDigest() is used to return the calculated result.

For example, a simple implementation of a calculator to create a SHA-1 digests might look as follows:

package cwgui de;

i nport java.io.ByteArrayQut put St ream

i mport java.io. Qutput Stream

i nport org. bouncycast| e. asnl. oi w. O WObj ect | dentifi ers;
i mport org. bouncycastl| e. asnl. x509. Al gorithm dentifier;
i nport org. bouncycast| e. crypto. Di gest;

i nport org. bouncycast| e. crypto. di gests. SHALDi gest ;

i mport org. bouncycast| e. operator. D gest Cal cul at or;

public class SHA1D gest Cal cul at or
i npl enent s Di gest Cal cul at or
{

private ByteArrayQut put Stream bQut = new Byt eArrayQut put St rean() ;
public Algorithmdentifier getAlgorithmdentifier()
return new Al gorithmdentifier(O Wbjectldentifiers.idSHAL);

}

publ i ¢ Qut put St ream get Qut put Strean()

i return bQut;

}

public byte[] getDigest()

! byte[] bytes = bQut.toByteArray();
bQut . reset ();
Di gest shal = new SHA1Di gest ();
shal. updat e(bytes, 0, bytes.|ength);
byte[] digest = new byte[shal. getDi gestSize()];
shal. doFi nal (di gest, 0);

) return digest;

Probably the only "mystery" in trying to implement one of these is the body of the getAlgorithmldentifier() method. With a little bit of background it is actually
quite straightforward. An algorithm identifier consists of an object identifier which uniquely identifies the algorithm being used and it includes an optional
parameters field which is used to carry any public parameters required to configure the implementation of the algorithm. While this values in some way

appear to be magic, you will find them in them defined in whatever standard it might be you are trying to conform to.

As it happens Bouncy Castle has providers and builders for DigestCalculators that conform to the standards we have actually had to deal with. These exist
both for the JCA and the lightwieght API. The general provider for the lightweight API is the BcDigestCalculatorProvider, and a JCA based one can be

created using the JcaDigestCalculatorProviderBuilder class.

2.2. Content Signers
The ContentSigner interface is directly comparable to the DigestCalculator interface, and similar rules apply.

Here is the interface:

package org. bouncycast | e. oper at or;
i mport java.io.QutputStream
i nport org. bouncycast| e. asnl. x509. Al gorithm dentifier;
public interface ContentSigner
Al gorithm dentifier getA gorithmdentifier();
/

*

Returns a streamthat will accept data for the purpose of calcul ating
a signature. Use org.bouncycastle.util.io.TeeQutputStreamif you want to accunul ate
the data on the fly as well.

R I I

@eturn an CQut put Stream
Qut put St ream get Qut put St rean() ;

/**

* Returns a signature based on the current data witten to the stream since the
* start or the last call to getSignature().

*

* @eturn bytes representing the signature.
@

byte[] getSignature();

Construction of ContentSigner implementations is slightly more complex than the situation with DigestSigner, the reason being that unlike a message digest

a signature algorithm always requires the use of a private key as well as a message digest.

For the general case Bouncy Castle provides builder objects. In a situation where you're using the JCA a builder is provided for creating ContentSigner
implementations which make use of the JCA. The class that does this is the JcaContentSignerBuilder and in the case where we wanted to create a

SHA1withRSA signer, we might create s signer sigGen as follows:
si gGen = new JcaCont ent Si gner Bui | der (" SHA1w t hRSA") . set Provi der ("BC") . bui | d(pri vKey) ;

In the above case privKey is simply the PrivateKey object representing the private key we are signing with.

Of course we may actually be wanting to do this using the Bouncy Castle lightweight API. This is slightly more involved as it requires providing algorithm
identifiers for the signature encryption algorithm and the signature digest algorithm. For an RSA based algorithm we can use the

BcRSAContentSignerBuilder. In this case the code for creating a SHA1withRSA signature might look as follows:

Al gorithm dentifier sigAlgld = new
Def aul t Si gnat ur eAl gorithm dentifierFinder().find("SHALIw t hRSA");
Al gorithm dentifier digA gld = new

where IwPrivKey is an RSA private key as described in the lightweight API.

2.3. Content Verifiers

Signatures generated by ContentSigner classes are verified using objects implementing the ContentVerifier interface. The ContentVerifier interface is defined

along the same lines as the ContentSigner interface.

Generally you will not pass in a ContentVerifier directly as normally you will construct a general message parser which will generate a specific
ContentVerifier when the time is right. The reason for this is that, unlike the situation you are in when generating a signature where you are able to determine
the signature algorithm used, if you are dealing with having to verify other peoples' signatures you may not be certain which variants of a group of related
signature algorithms people send you messages may have chosen to use. To deal with this, in the Bouncy Castle APIs we generally talk in terms of objects

implementing ContentVerifierProvider.

The ContentVerifierProvider is also a simple interface:

*

Return a ContentVerifier that matches the passed in algorithmidentifier,

@aram verifierAl gorithmdentifier the algorithm and paraneters required.
@eturn a matchi ng Content Verifier
@ hrows OperatorCreati onException if the required ContentVerifier cannot be created.

R I I

Content Verifier get(Al gorithmdentifier verifierAl gorithmdentifier)
t hrows Oper at or Cr eat i onExcepti on;

As you can see the get() method is the one returning the actual ContentVerifier that is required. The get() method is passed the Algorithmldentifier that is
associated with the signature a ContentVerifier is required for. The other two

methods defined allow the implementor to tell a user of the provider if there is an underlying certificate associated with the provider, and if necessary, enable
the user to fetch a copy of the underlying certificate so the user check other attributes that might be associated with the public key being used by the

ContentVerifier.

In most cases you will probably not have to worry about the intrinsics of implementing one of these. In the case of the JCA, the BC APIs provide the
JcaContentVerifierProviderBuilder, which will allow you to build a ContentVerifierProvider bound to a specific provider. In the case where you need to use the
BC lightweight APIs and are not worried about dragging in unncessary classes you can use the BcContentVerifierProviderBuilder. If do need to create your

own custom implementation, the source of the BcContentVerifierProviderBuilder is most likely the best place to look for ideas.

2.4. Things to Watch Out For

Some care has to be taken with Algorithmldentifier objects as there are two areas of potential error to be aware of. The first is that while an object identifier is
unique, algorithms do sometimes have more than one object identifier associated with them depending on which body or company developed the standard
the algorithm is being used with. The second is that you will often see NULL for the parameters definition, if you do, this means the parameters need to be

explicitly set to ASN.1 NULL (DERNull.INSTANCE in Bouncy Castle) rather than being empty.

Another potential trap is that for the most part objects implementing cryptographic algorithms are not thread safe. It is not safe to assume that operator

objects are thread safe either.

3. X.509 Certificates and Certification Requests

3.1. Certificate Representation in Bouncy Castle

The Bouncy Castle APIs generate X509CertificateHolder objects which can then be converted into Java X509Certificate objects if required. The reason this
is done is to allow the provision and manipulation of certificates in a JVM independent manner. The holder class allows for the generation of the DER
encoding of certificates, provides a uniform way of getting access to the SubjectPublicKey via its ASN.1 encoding, and also provides methods to use Bouncy
Castle ContentVerifier operators to check the certificate's signature.

A JcaX509CertificateConverter class is provided to allow conversion of X509CertificateHolder objects into actual java.security.X509Certificate objects. If you

wish to convert an X509Certificate object into an X509CertificateHolder object a JcaX509CertificateHolder class is provided as well.

3.2. Basic Certificate Generation

X.509 Certificates come in two forms, Version 1 certificates which generally only appear as trust anchors, and Version 3 certificates which are used as
intermediate certificates and for what are referred to as end-entity certificates. An end-entity in this context is usual an organisation or individual that is using

the certificate for some purpose, either to publish their public encryption key or to provide others with a way of verifying signatures.

3.2.1. Distinguished Names

An X.509 certificate is basically a signed blob that ties a public key to some other form of identity (the subject) as well as providing some key to who it was
that assserts it is so (the issuer). The core of this was initially provided by X.500 which is a naming structure built around the idea of a directory. The main

ASN.1 structure in X.500 is the Name.

Nane ::= CHO CE {
RDNSequence }
RDNSequence ::= SEQUENCE OF Rel ati veDi sti ngui shedNanme
Rel ati veDi sti ngui shedNane ::= SET SIZE (1..MAX) OF Attri buteTypeAndVal ue
Attribut eTypeAndVal ue :: = SEQUENCE {
type OBJECT | DENTI FI ER,
val ue ANY }

The JCA relies on X500Principal for supporting X.500 Name structures. In Bouncy Castle the support for X.500 names is provided under the package
hierarchy org.bouncycastle.asn1.x500 with the Name structure been represented by the X500Name class. The packages provide for defining a style for an
X.500 name, as well as methods for associating that style with X.500 names that have been read in. Styles are used to determine how X500Name objects
are built from strings, how they generate strings, and how they are compared for equality. You can convert an X500Principal to an X500Name by using

X500Name.getinstance(x500Principal.getEncoded()).
If you want to construct a X500Name from scratch with using a string representation of the distinguished name you can use the X500NameBuilder class.
The default style is defined in the class BCStyle. As far as we can tell this is the most generally "correct” one, however depending on the requirements and

restrictions of the profile, or standard, you are implementing against, you may want to implement your own style to enable uniform and compliant processing

of X.500 names in your application.

3.2.2. Things to Watch Out For

There are a two major sources of trouble with X.500 name processing.

There are two ways of converting an X.500 name to a string, depending on which direction you think it is more important to traverse the sequence. The ISO

order converts the X.500 name in the order that it finds the elements of the name, the IETF format converts the name by traversing the sequence in reverse

order.

There are also multiple ways of comparing X.500 names for equality, the most general one compares RDNs for equality regardless of their position in the
sequence only checking that the RDN is present rather than in the same spot in both cases. The elements of the RDN containing text may also be compared

case insensitive, or case sensitive.

In Bouncy Castle's case the default toString() presents the X.500 name in ISO order, and uses the most general equality comparison. What you want to do
will depend on what profile you have to use. In the face of this you can normally simplify your life a lot by avoiding using string representations of X.500

names for anything other than debugging, relying on the actual ASN.1 structure for anything else.
Two other things to watch out for.

If you have to add multiple ATVs is that X500 names are normally always DER encoded. In this case the set containing the ATVs will always be encoded
sorted based on the values of the encodings of each ATV so that any two sets of the same group of ATVs will always generate the same encodings (and
thus the same input for any signature created). This does mean that if you build a set of ATVs it may encode in a different order to how you added them. The
important thing to remember here is that only an ASN.1 sequence can be used to specify element in a particular order, if you make assumptions about the

order of elements in a set you do so at your own peril.

It is also worth noting that the Name structure's ASN.1 definition means it is a CHOICE item. For this reason X.500 names cannot be implicitly tagged, they

must always be tagged explicitly, even in a situation where an ASN.1 module may appear to suggest otherwise.

3.3. Version 1 Certificate Generation

The first version of X.509 primarily solved the problem of how to say who issued a certificate, whose public key the certificate contained, and how to do it in

a fashion that meant that, all things being equal, the certificate that contains the information cannot be tampered with.
Consider the following code that generates a root certificate:

/**

* Build a sanple V1 certificate to use as a CA root certificate

*/

public static X509Certificate buil dRoot Cert (KeyPair keyPair)
throws Exception

X509viCertificateBuilder certBldr = new JcaX509viCerti fi cateBuil der(
new X500Nane(" CN=Test Root Certificate"),
Bi gl nt eger . val ueXf (1),
new Dat e(SystemcurrentTineM | lis())
new Dat e(SystemcurrentTimeM | ||
new X500Nane(" CN=Test Root Certi
keyPai r. get Public());

s() + VALIDI TY_PER OD),
ficate"),

i
Cont ent Si gner signer = new JcaCont ent Si gner Bui | der (" SHA1w t hRSA")
.setProvider("BC"). buil d(keyPair.getPrivate());

return new JcaX509CertificateConverter().setProvider("BC")
.getCertificate(certBldr.build(signer));

The certBldr is first constructed using the mandatory fields required for the TBSCertificate block. Next, a ContentSigner is created to generate the signature
required for final certificate building. Finally, the JcaX509CertificateConverter is used to convert the X509CertificateHolder class into an actual

java.security.X509Certificate object for the specified provider.

3.4. Version 3 Certificate Generation

The principal innovation with the release of X.509 version 3 was the introduction of certificate extensions. The type of a particular extension is identified by
the object identifier, or OID, associated with it.

Object identifiers for commonly used extensions are defined in the class org.bouncycastle.asn1.x509.Extension.

Some extensions require calculations that are defined in RFC 5280. If you are using JCA keys, the JcaX509ExtensionUltils class can be used to do these

calculations for you and create the appropriate extension.

Consider the two methods following, one of which creates an intermediate certificate which can be used to sign other certificates, and one of which creates
an end entity certificate which might be used to verify one of the subject's signatures or to encrypt data to be sent to the entity represented by the certificate's
subject. Both methods make use of the JcaX509ExtensionUtils class and create a number of extensions, with some small differences reflecting the

differences in the roles the two certificates would be used for.

/**
* Build a sanple V3 certificate to use as an internediate CA certificate
*/
public static X509Certificate buildlnternediateCert(
Publ i cKey intKey, PrivateKey caKey, X509Certificate caCert)
t hrows Exception

X509v3CertificateBuil der certBldr = new JcaX509v3CertificateBuil der(
caCert. get Subj ect X500Pri nci pal (),
Bi gl nt eger. val ue (1),
new Dat e(SystemcurrentTimeM | 1is()),
new Dat e(System current TimeM I lis() + VALID TY_PERI OD),
new X500Pri nci pal ("CN=Test CA Cert ificate"),
i nt Key) ;

JcaX509Ext ensionUtils extUils = new JcaX509Ext ensi onUtil s();

cert Bl dr . addExt ensi on(Ext ensi on. aut hori t yKeyl denti fi er,
false, extUils.createAuthorityKeyldentifier(caCert))
. addExt ensi on(Ext ensi on. subj ect Keyl denti fi er,
fal se, extUils.createSubjectKeyldentifier(intKey))
. addExt ensi on(Ext ensi on. basi cConstrai nt s,
true, new Basi cConstraints(0))
. addExt ensi on(Ext ensi on. keyUsage,
true, new KeyUsage(KeyUsage. di gi tal Si gnature
| KeyUsage. keyCert Si gn
| KeyUsage. cRLSi gn));

Cont ent Si gner si gner = new JcaCont ent Si gner Bui | der (" SHALw t hRSA")
.set Provi der ("BC") . bui | d(caKey) ;

return new JcaX509CertificateConverter().setProvider("BC")
.getCertificate(certBldr.build(signer));

}
/**

* Build a sanple V3 certificate to use as an end entity certificate
*

/
public static X509Certificate buil dEndEntityCert (

Publ i cKey entityKey, PrivateKey caKey, X509Certificate caCert)
throws Exception

X509v3CertificateBuil der certBldr = new JcaX509v3CertificateBuil der(
caCert . get Subj ect X500Pri nci pal (),
Bi gl nt eger. val ued (1),

new Dat e(SystemcurrentTimeM | lis()),

new Dat e(System currentTimneM | Iis() + VALIDI TY_PER OD),
new X500Pri nci pal ("CN=Test End Entity Certificate"),
entityKey);

JcaX509Ext ensionUtils extUtils = new JcaX509Ext ensi onUtil s();

cert Bl dr. addExt ensi on(Ext ensi on. aut hori t yKeyl denti fi er,
fal se, extUils.createAuthorityKeyldentifier(caCert))
. addExt ensi on(Ext ensi on. subj ect Keyl denti fi er,
fal se, extUils.createSubjectKeyldentifier(entityKey))
. addExt ensi on(Ext ensi on. basi cConstrai nt s,
true, new Basi cConstraints(false))
. addExt ensi on(Ext ensi on. keyUsage,
true, new KeyUsage(KeyUsage. di gi tal Si gnature
| KeyUsage. keyEnci phernent));

Cont ent Si gner signer = new JcaCont ent Si gner Bui | der (" SHA1w t hRSA")
.set Provi der ("BC") . bui | d(caKey) ;

return new JcaX509CertificateConverter().setProvider("BC")
.getCertificate(certBldr.build(signer));

3.5. Certificate Extensions

Having seen extensions getting added, it is worth devoting a bit of time to understanding what the common ones actually mean.

3.5.1. Basic Constraints

The basicConstraints extension is identified by the constant Extension.basicConstraints which has OID value "2.5.29.19" (id-ce-basicConstraints). Its ASN.1

definition looks like this:

Basi cConstraints ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pat hLenConstr ai nt I NTEGER (0..MAX) OPTI ONAL }

The basicConstraints extension helps you to determine if the certificate containing it is allowed to sign other certificates, and if so what depth this can go to.
So, for example, if cA is TRUE and the pathLenConstraint is 0, then the certificate, as far as this extension is concerned, is allowed to sign other certificates,

but none of the certificates so signed can be used to sign other certificates.

To recover a BasicConstraints using a X509CertificateHolder class you can use:

Basi cConstrai nts basi cConstrai nts = Basi cConstrai nts. fronExt ensi ons(
cert H dr. get Ext ensi ons());

to recover the object. In the case of Java's X509Certificate class, a method getBasicConstraints() is provided which returns an int. The int value represents

the pathLenConstraint unless cA is FALSE in which case the return value of getBasicConstraints() is -1.

3.5.2. Authority Key Identifier

The authorityKeyldentifier extension is identified by the constant Extension.keyUsage which has OID value "2.5.29.35" (id-ce-authorityKeyldentifier). Its

ASN.1 definition looks like this:

Aut hori tyKeyl denti fier ::= SEQUENCE {
keyl denti fier [0] Keyldentifier CPTI ONAL,
aut horityCert | ssuer [1] General Nanes OPTI ONAL,

aut horityCertSerial Nunber [2] CertificateSerial Nunber OPTI ONAL }
Keyldentifier ::= OCTET STRI NG

The object of this extension is to identify the public key that can be used to verify the signature on the certificate, or put another way, to verify the signature
on the certificate which ties the public key on the certificate to the subject of the certificate and any associated extensions. Because of this if you are willing
to accept the public key identified by this extension as been authoritive, it makes sense for you to accept the public key at its associated attributes stored in
the certificate as been valid as well. On the other hand, if you can't make sense of this extension or verify the signer of the certificate, accepting anything in

the certificate is more of an act of blind faith, rather than an act based on the validity of the signing algorthim used.

To recover a AuthorityKeyldentifier using a X509CertificateHolder class you can use:

Aut hori tyKeyl dentifier authorityKeyldentifier = AuthorityKeyldentifier.fronExtensions(
cert H dr. get Ext ensi ons());

to recover the object.

3.5.3. Subject Key Identifier

The subjectKeyldentifier extension is identified by the constant Extension.keyUsage which has OID value "2.5.29.14" (id-ce-subjectKeyldentifier). Its ASN.1

definition looks like this:

Subj ect Keyl dentifier ::= Keyldentifier

The subjectKeyldentifier is simply a string of octets which is used to provide an identifier for the public key the certificate contains. For example if you were
looking for the issuing certificate for a particular certificate and the AuthorityKeyldentifier for the particular certificate had the keyldentifier field set you would
expect to find the value stored in keyldentifier in the SubjectKeyldentifier extension of the issuing certificate. RFC 5280, section 4.2.1.2, gives 2 common

methods for calculating the key identifier value.

To recover a SubjectKeyldentifier using a X509CertificateHolder class you can use:

Subj ect Keyl denti fi er subjectKeyldentifier = SubjectKeyldentifier.fromExtensions(
cert Hl dr. get Ext ensi ons());

to recover the object.

3.5.4. Subject Alternative Name

The subjectAltName extension is identified by the constant Extension.keyUsage which has OID value "2.5.29.17" (id-ce-subjectAltName). Its ASN.1

definition looks like this:

Subj ect Al t Nanme :: = Gener al Nanmes
Gener al Nanes ::= SEQUENCE SI ZE (1..MAX) OF General Nane

The subjectAltName is used to store alternate, or alias, subject names to associate with a certificate. If you want to associate an email address with a
certificate, strictly speaking, this is the best place to put it. It is worth noting that the PKIX profile allows for certificates where the subject name field in the

TBSCertificate is an empty sequence with the actual subject details stored in the subjectAltName extension.

To recover the GeneralNames object for a subjectAltName extension using a X509CertificateHolder class you can use:

Gener al Nanes subj ect Al t Nanme = Gener al Nanes. f r omExt ensi ons(
cert H dr. get Ext ensi ons(),
Ext ensi on. subj ect Al t er nat i veNane) ;

to recover the object.

3.5.5. Issuer Alternative Name

The issuerAltName extension is identified by the constant Extension.keyUsage which has OID value "2.5.29.18" (id-ce-issuerAltName). Its ASN.1 definition

looks like this:

| ssuer Al t Name ::= Ceneral Nanes

Like the subjectAltName the issuerAltName is used to store alternate names that can be associated with the certificate issuer. Unlike the subjectAltName

extension this extension cannot act as a substitute for the contents of the issuer filed in the TBSCertificate structure.

To recover the GeneralNames object for a issuerAltName extension using a X509CertificateHolder class you can use:

Gener al Nanmes i ssuer Al t Name = Gener al Nanes. f r onExt ensi ons(
cert H dr. get Ext ensi ons(),
Ext ensi on. i ssuer Al ternati veNane) ;

to recover the object.

3.5.6. Key Usage

The keyUsage extension is identified by the constant Extension.keyUsage which has OID value "2.5.29.15" (id-ce-keyUsage). Its ASN.1 definition looks like

this:

KeyUsage ::= BI T STRI NG {
digital Signature (0),
nonRepudi ati on (1),
keyEnci pher ment (2),
dat aEnci pher nent (3),
keyAgr eenent (4),
keyCert Si gn (5),
cRLSi gn (6),
enci pherOnly (7),
deci pherOnl y (8) }

The keyUsage extension is the most general way of restricting the uses of the key contained in the certificate. Which bits must, or must not be set, depends
largely on the profile the certificate is been used with and what purpose it has. RFC 5280, section 4.2.1.3 discusses the range of possibilities as well as

providing some pointers to other RFCs that place specific interpretations on keyUsage.

To recover a KeyUsage using a X509CertificateHolder class you can use:

KeyUsage keyUsage = KeyUsage. f r onExt ensi ons(cert H dr. get Ext ensi ons());

to recover the object.

3.5.7. Extended Key Usage

The extKeyUsage extension is identified by the constant Extension.extendedKeyUsage which has OID value "2.5.29.37" (id-ce-extKeyUsage). Its ASN.1

definition looks like this:

Ext KeyUsageSynt ax ::= SEQUENCE SI ZE (1.. MAX) OF KeyPurposeld
KeyPur posel d ::= OBJECT | DENTI Fl ER

If this extension is present the certificate is meant to be used for only one of the purposes listed in it, unless the special KeyPurposeld
anyExtendedKeyUsage is included in the ExtKeyUsageSyntax sequence. Commmonly this extension is used to lock a certificate down to a specific purpose

in a more rigid way than allowed by the key usage extension.

3.5.8. Things to Watch Out For

People often get confused about the AuthorityKeyldentifier and what it should contain. The important thing to remember about this one is that it is supposed
to identify the issuer certificate, i.e. the certificate which can be used to verify the certificate containing the extension. This is the reason why if the
authorityCertlssuer and authorityCertSerialNumber fields are set they are taken from the issuer field of the issuer certificate, and the serial number of the

issuer certificate, as it is those two things together which will always uniquely identify the issuer certificate.

3.6. Lightweight Certificate Generation

In some cases the JVM you will be using will not have any of the JCA related classes in it, or you may be dealing with a hardware crypto adaptor that is not
compliant with the JCA. In this case you can use Bouncy Castle's lightwieght API, your own implementation of ContentSigner, or a combination of both. As
you would expect, doing this does require some more in-depth knowledge of what you are doing as you will need to understand what is required in

Algorithmldentifier strcutures associated with the content, however the use of the Bouncy Castle APl is largely the same.

3.6.1. Version 1 Certificate Generation
For version 1 certificates, it takes a few minor tweaks, and we can avoid using JCA classes altogether.
Consider the following code for creating a self-signed certificate:

/**
* Build a sanple V1 certificate to use as a CA root certificate
*
/
public static X509CertificateHol der buil dRoot Cert (Asynmetri cCi pher KeyPair keyPair)
t hrows Exception

{
X509viCertificateBuil der certBldr = new X509vi1CertificateBuil der(
new X500Nane(" CN=Test Root Certificate"),
Bi gl nt eger. val ueOr (1),
new Dat e(System currentTimeM | |i s())
new Date(S\/stem currentTineM | | i
rti

s() + VALIDI TY_PER OD),
new X500Nane(" CN=Test Root Certific

ate"),

Subj ect Publ i cKeyl nf oFact ory. cr eat eSubj ect Publ i cKeyl nf o(keyPai r. get Public()));
Al gorithm dentifier sigAlg = aI gFi nder. fi nd(" SHA1w t hRSA") ;
Al gorithmdentifier digAlg =

Def aul t Di gest Al gorithm dentifierFi nder() find(sigAl g);

Cont ent Si gner si gner = new BcRSACont ent Si gner Bui | der (si gAl g,
di gAl g) . bui | d(keyPair.getPrivate());

return certBl dr. buil d(signer);

Like the earlier example this method generates a self-signed trust anchor. In this case though, it uses the raw building blocks to put the certificate together as

well as some helper methods designed to make it easier to convert lightweight keys into their ASN.1 encoded equivalents.

The differences with the JCA example tell the story. The X500Name class replaces any use of X500Principal and an actual SubjectPublicKeylInfo structure is
passed to the constructor to provide the encoding of the subject's public key. After that a ContentSigner is built up using lightweight primitives. Finally we just

return a X509CertificateHolder object rather than converting the result into a certificate bound to a particular provider.

3.6.2. Version 3 Certificate Generation

The Version 3 certificate generation follows a similar pattern. The difference in this case is more due to the need to pass a DigestCalculator to the
X509ExtensionUtils constructor. The DigestCalculator is required to generate values like the keyldentifier referred to in the authorityKeyldentifier extension. If
we're following the standard PKIX profile this will always be a calculator based on SHA-1. Other than that, you can see from the following two methods that

after making allowances for the differences seen in the Version 1 example, the lightweight pattern is the same as that used with the JCA based method.

/**
* Build a sanple V3 certificate to use as an internediate CA certificate
*/
public static X509CertificateHol der buil dlnternedi ateCert (Asymmetri cKeyPar anet er
i nt Key, Asymmetri cKeyPar aneter caKey, X509CertificateHol der caCert)
throws Exception

Subj ect Publ i cKeyl nfo intKeylnfo =
Subj ect Publ i cKeyl nf oFact ory. cr eat eSubj ect Publ i cKeyl nf o(i nt Key) ;

X509v3CertificateBuilder certBldr = new X509v3CertificateBuil der(
caCert. get Subj ect (),
Bi gl nt eger. val ueOr (1),
new Dat e(System current Ti neM | |
new Dat e(System current Ti reM |
new X500Nanme(" CN=Test CA Certi
i nt Keyl nf o) ;

223 "+ VALI DI TY_PER OD),
cat

S
|
icate"),

i
|
f

X509Ext ensi onUtils extUtils = new X509Ext ensi onUti | s(new SHAL1Di gest Cal cul ator());

cert Bl dr. addExt ensi on(Ext ensi on. aut hori t yKeyl denti fi er,
false, extUils.createAuthorityKeyldentifier(caCert))
. addExt ensi on(Ext ensi on. subj ect Keyl denti fi er,
fal se, extUtils.createSubjectKeyldentifier(intKeylnfo))
. addExt ensi on(Ext ensi on. basi cConstrai nt s,
true, new Basi cConstraints(0))
. addExt ensi on(Ext ensi on. keyUsage,
true, new KeyUsage(KeyUsage. di gi tal Si gnature
| KeyUsage. keyCert Si gn
| KeyUsage.cRLSi gn));

Al gorithm dentifier sigA g = al gFinder.find("SHA1w t hRSA") ;
Al gorithm dentifier digAlg = new
Def aul t Di gest Al gorithm dentifierFinder().find(sigAlQg);

Cont ent Si gner si gner = new BcRSACont ent Si gner Bui | der (si gAl g, di gAl g). buil d(caKey);

return certBl dr. buil d(signer);

/**

* Build a sanple V3 certificate to use as an end entity certificate

*/

public static X509CertificateHol der buil dEndEntityCert (Asynmmetri cKeyParaneter

entityKey, AsymmetricKeyParaneter caKey, X509CertificateHol der caCert)
t hrows Exception

{
Subj ect Publ i cKeyl nfo entityKeylnfo =
Subj ect Publ i cKeyl nf oFact ory. cr eat eSubj ect Publ i cKeyl nfo(entityKey);

X509v3CertificateBuil der certBl dr = new X509v3CertificateBuil der(
caCert. get Subj ect (),
Bi gl nt eger. val ue (1),
new Dat e(System current Ti reM |
new Dat e(System current Ti meM |
new X500Nane(" CN=Test End Enti
entityKeyl nfo);

lis()),
lis() + VALID TY_PERI OD),
ty Certificate"),
X509Ext ensi onUtils extUtils = new X509Ext ensi onUti | s(new SHALDi gest Cal cul ator());
cert Bl dr . addExt ensi on(Ext ensi on. aut hori t yKeyl denti fi er,
false, extUils.createAuthorityKeyldentifier(caCert))
. addExt ensi on(Ext ensi on. subj ect Keyl denti fi er,
fal se, extUils.createSubjectKeyldentifier(entityKeylnfo))
. addExt ensi on(Ext ensi on. basi cConstrai nt s,
true, new Basi cConstraints(false))
. addExt ensi on(Ext ensi on. keyUsage,
true, new KeyUsage(KeyUsage. di gi tal Si gnature
| KeyUsage. keyEnci phernent));
Al gorithm dentifier sigA g = al gFinder.find("SHALIw t hRSA") ;
Al gorithm dentifier digAlg = new
Def aul t Di gest Al gorithm dentifierFinder().find(sigAl Qg);
Cont ent Si gner si gner = new BcRSACont ent Si gner Bui | der (si gAl g, di gAl g). bui | d(caKey);

return certBl dr. buil d(signer);

3.7. Certificate Processing
3.7.1. The X509CertificateHolder

The Bouncy Castle APIs provide two approaches to processing X.509 certificates. One is the provider independent X509CertificateHolder class, the other is
using JCA where certificates are constructed bound to a specific provider. As you will notice, if you have not already, most of the BC APIs, such as the
certificate builder APIs we have just looked at, are written to produce and process the provider independent certificate objects, with converters and extension

classes made available to produce and process the provider dependent JCA class java.cert.X509Certificate.

The X509CertificateHolder class is the JCA provider-independent holder for a X.509 certificate. The class allows you to use the operator based methods for
verifying the enclosed certificate's signature and also provides methods for accessing certificate extensions which return actual extension objects, rather

than the encoded octet strings the JCA X509Certificate object does.

3.7.2. Converting to a JCA Certificate

The org.bouncycastle.cert.jcajce.JcaX509CertificateConverter class is provided to convert X509CertificateHolder objects into regular JCA X509Certificate

objects.

3.8. Certification Requests

As the term suggests Certification Requests are used to send public keys and other details to a certification authority (CA) so that the CA can issue a

certificate containing the public key linked with the other details.

The Bouncy Castle APIs offer two methods for generating Certification Requests.

The first of these is using PKCS#10 and is probably the most common method in use today. The second is using Certificate Request Message Format
(CRMF) which is documented in RFC 4211. While less common, one of the benefits of CRMF is that it does not require that the key used in the certification
request can be used for verifying a signature. CRMF can be used for encryption only keys, such as EIGamal and other Diffie-Hellman variants and can deal
with the problem of confirming that the sender of the request has the request's corresponding private key by returning the certificate encrypted and delaying

actual issue of the certificate until the certificate's recipient has confirmed they could decrypt certificate they were sent.

3.8.1. Using PKCS#10

PKCS#10 certification requests are constructed using the PKCS10CertificationRequestBuilder class. The constructor for the builder takes the subject
information and the public key (as a SubjectPublicKeylInfo object) that should be contained in the certificate the request is for and the request itself is build

using an appropriate ContentSigner which is passed into the build method.

PKCS#10 also allows for other attributes to be included in the certification request, such as certificate extensions. These can be added to the builder using

the addAttribute() method.

As with most things in Bouncy Castle, extension classes exist to take advantage of JCA classes where you wish to make use of them. You can see how this

can be done in the example that follows:

package cwgui de;

i mport java.security. KeyPair;
i mport java.security. KeyPair Generat or;
i nport java.security. Security;

i mport org. bouncycast
i nport org. bouncycast
i mport org. bouncycast
i nport org. bouncycast
i nport org. bouncycast
i mport org. bouncycast asnl. x509. Ext ensi onsGener at or ;
i nport org. bouncycast asnl. x509. Gener al Nane;

: e. asnl. pkcs. PKCSObj ect I denti fi ers;
e.
le.
| e.
| e.
le.
| e.
i nport org. bouncycast| e. asnl. x509. Gener al Nanes;
le.
| e.
| e.
le.
| e.
| e.
le.

asnl. x500. X500Nane;

asnl. x500. X500NaneBui | der ;
asnl. x500. styl e. BCStyl e;
asnl. x509. Ext ensi on;

i mport org. bouncycast j ce. provi der. BouncyCast | eProvi der ;

i nport org. bouncycast operator. jcaj ce. JcaCont ent Si gner Bui | der;

i nport org. bouncycast operator.jcajce.JcaContent VerifierProvi derBuil der;
i mport org. bouncycast pkcs. PKCS10Certi fi cati onRequest ;

i nport org. bouncycast pkcs. PKCS10Certi fi cati onRequest Bui | der ;

i nport org. bouncycast pkcs. j caj ce. JcaPKCS10Certi fi cati onRequest;

i mport org. bouncycast pkcs. j caj ce. JcaPKCS10Certi fi cati onRequest Bui | der ;

| **

* A sinple exanpl e showi ng generation and verification of a PKCS#10 request.
*/
public class JcaPKCS10Exanpl e

public static void main(String[] args)
throws Exception
{

Security. addProvi der (new BouncyCast | eProvi der ());

String sigNane = "SHAlw t hRSA";

KeyPai r Gener at or kpg = KeyPai r Gener at or. get | nst ance("RSA", "BC');
kpg.initialize(1024);

KeyPair kp = kpg. genKeyPair ();

X500NaneBui | der x500NanmeBl d = new X500NaneBui | der (BCSt yl e. | NSTANCE) ;

x500NaneB| d. addRDN(BCStyl e. C, "AU");

x500NaneBl d. addRDN(BCSt yl e. ST, "Victoria");
yle
yle

x500NaneBl d. addRDN(BCSt . L, "Mel bourne");
x500NaneBl d. addRDN(BCSt .0 "The Legion of the Bouncy Castle");

X500Nare subj ect = x500NaneBl d. bui | d() ;

PKCS10Certificati onRequest Bui | der requestBuil der =
new JcaPKCS10Certi fi cati onRequest Bui | der (subj ect, kp.getPublic());

Ext ensi onsGener at or ext Gen = new Ext ensi onsGenerat or () ;

ext Gen. addExt ensi on(Ext ensi on. subj ect Al t er nat i veNane,
fal se, new General Nanes(
new Gener al Nanme(
Gener al Nane. r f c822Nane,
"f eedback- crypt o@ouncycastle.org")));

request Bui | der. addAttri but e(
PKCSObj ect | denti fi ers. pkcs_9_at _ext ensi onRequest
ext Gen. generate());
PKCS10Certi fi cati onRequest reql = requestBuil der. buil d(
new JcaCont ent Si gner Bui | der (si gNane) . set Provi der ("BC")
.buil d(kp. getPrivate()));

if (!reqgl.isSignatureValid(new JcaContent VerifierProvi derBuil der ()
.setProvi der ("BC"). bui |l d(kp. get Public())))

Systemout. println(sigNane + ": Failed verify check.");

el se

{
}

System out . println(sigName + ": PKCS#10 request verified.");

Hopefully by now the example does not contain anything that looks too suprising.

In brief, it is constructing a certification request for the subject "c=AU,st=Victoria,|I=Melbourne,0=The Legion of the Bouncy Castle", with an attribute attached
to the request to add the email address "feedback-crypto@bouncycastle.org" to the certificate the CA will generate. As with the X509CertificateHolder object
earlier, the signature on the built request can be verified by passing in a ContentVerifierProvider which will be used to provide the ContentVerifier required to

verify the particular signature algorithm used when the request was generated.

3.8.2. Using CRMF

CRMF, like PKCS#10, deals only with the formatting and encoding of certificate requests. This can be problematic as some messages it defines are clearly
initiators for a multi-phase protocol. Keeping this in mind it is useful to be aware that there is another RFC, RFC 4210, entitled Certificate Management

Protocol (CMP), which provides the remaining protocol required to fill in the gaps.

There are two things central to the CRMF protocol. The first is the use of a template structure to tell the CA what should be present in the issued certificate.
The second is the setting out of the criteria that the CA can expect to meet to verify that the certificate requestor actually has possession of the private key

which corresponds to the public key they are requesting a certificate for.

3.8.2.1. CRMF with Signature Proof-of-Possession

The most basic form of proof-of-possession is the same as the one outlined in PKCS#10 - if | can generate a signature that will verify with a given public key,

| must have possesion of the corresponding private key.

package cwgui de;

i mport java. math. Bi gl nt eger;

i mport java.security. KeyPair;

i nport java.security. KeyPai r Gener at or;
import java.security. Security;

i nport javax.security. auth.x500. X500Pri nci pal ;

i mport org. bouncycastle.cert.crnf.jcajce.JcaCertificateRequest Message;

i nport org. bouncycastle.cert.crnf.jcajce.JcaCertificateRequest MessageBui | der;
i mport org. bouncycastl e.jce. provi der. BouncyCast | eProvi der;

i mport org. bouncycast| e. operator.jcajce.JcaCont ent Si gner Bui | der;

i nport org. bouncycast| e. operator.jcajce.JcaContent VerifierProviderBuil der;

/**
* Basic exanple of CRMF using a signature for proof-of-possession
*/

public class JcaBasi cCRMFExanpl e

public static void main(String[] args)

Other than the use of the JcaCertificateRequestMessageBuilder rather than the use of the equivalent PKCS#10 builder, you can see that this example

follows the same pattern. The public key and the subject name are added, a ContentSigner is set and the result is used to generate the request.

The CRMF template also allows us to request serial numbers, extensions, and even the issuer name (at this point it should be pointed out that the issuer is
free to reject, ignore, or even modify such requests) and the CertificateRequestMessageBuilder reflects this. For example in the PKCS#10 example we

requested that an extension be added to the issued certificate. In CRMF we would add the same extension using:

3.8.2.2. CRMF with Two Phase Proof of Possession

The two phase approach is designed to deal with the situation where the algorithm that is represented by the public key on the certificate is one such as El
Gamal for example and cannot be used for signing. CRMF deals with this by requesting that the CA send an encrypted copy of the certificate back with the
encryption based on the public key sent in the original request. The response in this situation will normally contain some additional information which will

allow the the certificate requester to prove to the CA that it was able to decrypt the response thus proving that it has posession of the private key.

A basic initial CRMF request for this approach looks as follows:

In this example we have used setProofOfPossessionSubsequentMessage() which signals to the CA that there will be another phase required to show proof-

of-possession. As you can see from the request point of view there is not much to it, other than the use of SubsequentMessage.encrCert.

CRMF leaves how this second phase is conducted as an exercise to the reader, generally though you can fill in the gaps on this one using CMP (RFC 4210).

4. Key and Personal Credential Storage

This chapter looks at private key and certificate storage for situations where you are using keys living in X.509 and PKCS worlds. We'll look at the

manipulation of keys and certifications for OpenPGP in a different chapter.

What format you use depends a lot on what you're trying to store and where you are trying to access it from. For a lot of purposes the JKS format, which is
usually accessed via the java.security.KeyStore class, is fine, but there are also a few other formats that can be used under the KeyStore API which in some
cases offer better security or cross-plaform convenience. Bouncy Castle offers two alternatives itself, but if you are looking for cross platform compatibility
and a higher level of security you should probably use PKCS#12. PKCS#12 has become the standard for personal credential interchange and it offers a lot

of flexibilty, so much so that Bouncy Castle now has API specifically for handling it.

4.1. The PKCS#12 API

The PKCS#12 API lives in the org.bouncycastle.pkcs package. With JCA/JCE operators and light weight operators living the jcajce and bc sub-packages.

The important thing to remember with a PKCS#12 file is that it is designed to have a very lose file structure but that the ASN.1 structures that are stored in
the file need to have enough information, in this case attributes, attached to them to allow a reader to re-establish the relationships between private keys and

certificates, as well as the names used to identify any important certificates that might be stored in the PKCS#12 file as well.

PKCS#12 files are made up of nested sequences of Protocol Data Units (PDUs). The key structure used to hold data in a PKCS#12 file is called the
SafeBag. SafeBag structures are the containers for individual certificates, private keys, CRLs and whatever else you might want to store. SafeBags are then
accumulated into an AuthenticatedSafe structure, and then the AuthenticatedSafe has a MAC calculated on it and the AthenticatedSafe and the MAC are
then used to construct an object referred to as the PFX (which is the name given to the top-level PDU). The contents of a SafeBag may be encrypted by
default, or one or more SafeBags might be added to an AuthenticatedSafe by wrapping them in a CMS EnvelopedData object (itself a PDU for the purposes

of PKCS#12).
4.1.1. Creating a PKCS#12 File - JCE Style

Other than the number of acronyms, it does not sound that bad does it? Well, while no doubt well intentioned, the flexibility of the PFX and its underlying
structures has led programmers on many adventures, not all of which ended well. That being said, some standard patterns have evolved for storing

private/public key infromation in PFX files, so it would now be worth spending some time looking at one example.

private static void creat ePKCS12Fi | e(Qut put St ream pf xQut, PrivateKey key, Certificate[]
chai n)
throws Exception

Qut put Encrypt or encQut = new
JcePKCSPBECut put Encr ypt or Bui | der (NI STCbj ect I dentifiers.id_aes256_CBC) . set Provi der ("BC") . bui
I d(Jcaltils. KEY_PASSWD) ;

PKCS12Saf eBagBui | der taCert BagBui |l der = new
JcaPKCS12Saf eBagBui | der ((X509Certi ficate)chain[2]);

taCer t BagBui | der . addBagAt t ri but e(PKCS12Saf eBag. fri endl yNaneAttri bute, new
DERBMPSt ri ng(" Bouncy Primary Certificate"));

PKCS12Saf eBagBui | der caCert BagBui | der = new
JcaPKCS12Saf eBagBui | der ((X509Certi ficate)chain[1]);

caCert BagBui | der. addBagAt tri but e(PKCS12Saf eBag. fri endl yNaneAttri bute, new
DERBMPSt ri ng(" Bouncy | nternediate Certificate"));

JcaxX509Ext ensionUtils extUtils = new JcaX509Ext ensi onUtil s();
PKCS12Saf eBagBui | der eeCert BagBui | der = new
JcaPKCS12Saf eBagBui | der ((X509Certificate)chain[0]);

eeCer t BagBui | der. addBagAt t ri but e(PKCS12Saf eBag. fri endl yNaneAttri bute, new
DERBMPSt ri ng("Eric's Key"));

Subj ect Keyl denti fi er pubKeyld =
ext Utils. createSubject Keyl dentifier(chain[0].getPublicKey());

eeCert BagBui | der. addBagAttri but e(PKCS12Saf eBag. | ocal Keyl dAttri bute, pubKeyld);

PKCS12Saf eBagBui | der keyBagBui | der = new JcaPKCS12Saf eBagBui | der (key, encQut);

keyBang | der. addBagAttn but e(PKCS12Saf eBag. fri endl yNaneAttri bute, new
DERBMPSt ri ng("Eric's Key"));

keyBagBui | der . addBagAt t ri but e(PKCS12Saf eBag. | ocal Keyl dAttri bute, pubKeyld);

PKCS12Pf xPduBui | der bui | der = new PKCS12Pf xPduBui | der () ;

bui | der . addDat a(keyBagBui | der . bui 1 d()) ;

bui | der . addEncr ypt edDat a(new
JcePKCSPBEQut put Encr ypt or Bui | der (PKCSOhj ect | denti fi ers. pbeW t hSHAANd128Bi t RC2_CBC) . set Pr ovi
der ("BC") . build(Jcalti|s. KEY_PASSWD), new PKCS12Saf eBag[]{eeCert BagBuil der. buil d(),
caCertBagBui | der. buil d(), taCertBagBuilder.build()});

PKCS12Pf xPdu pfx = buil der. bui | d(new
JcePKCS12MacCal cul at or Bui | der (NI STCbj ect I denti fiers.id_sha256), JcalUtils. KEY_PASSWD) ;

/1 make sure we don't include indefinite | ength encoding
pfxQut. write(pfx.get Encoded(ASN1Encodi ng. DL)) ;

pf xQut . cl ose();

The example shows all the basic building blocks for what would now be regarded as a typical PKCS#12 file containing a private key, and a set of associated
certificates. Constructing it requires setting up a number of PKCS12SafeBagBuilder objects and then a final PKCS12PfxPduBuilder which is used to create
the actual key and certificate store. In the case of the example, another tradition has been followed of encrypting the certificates seperately from the private
key (and using 128 bit RC2 for the certificates with 256 bit AES for the key), and finally it should be noted that everything has been encrypted using the same
password. This might seem a little odd at first (indeed it is not required by the standard), however these files are specifically for personal credential storage
and consequently most implementations assume a common password for each item. If you really want to store two things under different passwords in the

PKCS#12 format, the best thing to do is to create two files rather than one.

As you have probably guessed, the PKCS12SafeBag.friendlyNameAttribute is used to associated a string alias with the object enclosed in the SafeBag. The
PKCS12SafeBag.localKeyldAttribute is normally used by the reader of the PKCS#12 PFX file to work out which certificate has the public key associated with

the private key.

4.1.2. PBE Encryption in PKCS#12 Files

Tradtionally PKCS#12 files have been created with 40 bit RC2 protecting the certificates and 3 key DES-EDE protecting the private key. These are both

algorithms that specify PKCS#12 password conversion and are available, along with other PKCS#12 algorithms, in Bouncy Castle using the OIDs below:

PKCSObj ect | dent i fi ers. pbeW t hSHAANd128Bi t RC4

PKCSObj ect I denti fi ers. ppbeW t hSHAANd40Bi t RC4

PKCSOhj ect | denti fi ers. pbeW t hSHAANd3_KeyTri pl eDES_CBC
PKCSObj ect I denti fi ers. ppeW t hSHAANd2_KeyTri pl eDES_CBC
PKCSObj ect I denti fi ers. ppbeWt hSHAANd128Bi t RC2_CBC
PKCSOhj ect | denti fi ers. pbeW t hSHAANd40Bi t RC2_CBC

Traditionally the MAC algorithm is SHA-1. This is the default for JcePKCS12MacCalculatorBuilder if nothing explicit is specified.

Things have moved on a bit since then and in our example we are also using NISTObjectldentifiers.id_aes256_CBC to encrypt the private key and we are
using NISTObjectldentifiers.id_sha256 to calculate the MAC protecting the PFX from tampering. One thing that you need to be aware of here is that the
approach at the moment is to use PKCS#5 for algorithm like AES as while the PKCS#12 MAC calcuation is defined in an algorithm independent fashion, the
RSA OIDs defined do not include AES. The Bouncy Castle project has allocated same OIDs off its branch for this purpose but if you are in a situation where
you are dealing with other applicaitons using your PFX files, the most general way of handling an algorithm not listed in the RSA set is to apply PKCS#5

scheme 2 to the PBE generation.

It should be pointed out here, that as PKCS#5 predates the days when UTF-8 was in common use and that it did not define a process for converting a string
to bytes. For this reason most PKCS#5 implementations think the world is 8 bit ascii, so multi-byte characters either have the top byte ignored or get treated
as two bytes. PKCS#12 did not make the same mistake, but unfortunately this means that if you are mixing PKCS#5 and PKCS#12 algorithms in the same
PFX and you are using a character set that requires unicode, the quality of the PBE key derived to generate the MAC will probably be of higher quality than
the PBE key derived to generate any encryption keys used, or you may find yourself with a PKCS#12 file you can read, but that no-one else can, even
though they can verify the MAC! If you are not sure where your files are likely to end up, what systems they need to work on, or even you are just not sure

what your PKCS#5 implementation does, it is better to Base64 encode the UTF-8 representation of the password first and then use that as the PFX key.

char[] asciiPass = Strings.asCharArray(Base64. encode(Strings.toUTF8Byt eArray(passwd)));

4.1.3. Creating a PKCS#12 File - Lightweight Style

4.1.4. Reading a PKCS#12 File

Depending on what you need to do, reading a PKCS#12 file can be more complicated than creating one. The simplest way to read one using Bouncy Castle
is to use the KeyStore class. After that, whether you are using BC's lightweight primitives or JCA/JCE based classes it is about the same level of difficulty.
We will have a look at an example using the PKCS#12 API from BC first, even if you never expect to try it that way it is useful to know how you would. As
you can imagine, the BC PKCS#12 KeyStore class hides most of the complexity that will appear in the next example, however it does have to make
assumptions to do this, and occasionally you will run into someone producing PKCS#12 files for which those assumptions are not correct. In a situation like
that having some understanding of what is required to interpret a PKCS#12 file will help you recognise the problem early and some knowledge of the

PKCS#12 API in Bouncy Castle may also turn out to be the only way you can solve the problem.

4.1.4.1. Reading PKCS#12 Files Using the BC API

As the PKCS#12 file is loosely structured, if you want to rebuild associations between certificates and keys it is something you have to do yourself, likewise
the presence of encrypted data changes the way things get handled. As further consideration it is also necessary to bare in mind that what presents as

encrypted data may contain other PKCS#12 structures that require further interpretation.

The example below shows a general reader for a PKCS#12 file which builds a Map of certificates and keys and attemtps to identifies which certificates are
the end-entity certificates containing the public key which corresponds to the private key. A basic dump of the data recovered is done at the end of the

method.

private static PKCS12PfxPdu readPKCS12Fi | e(| nput St ream pf x| n)
t hrows Exception

PKCS12Pf xPdu pfx = new PKCS12Pf xPdu(Streans. readAl | (pfxln));

if (!pfx.isMacValid(new
BcPKCS12MacCal cul at or Bui | der Provi der (BcDef aul t Di gest Provi der. | NSTANCE) ,
Jcaltil s. KEY_PASSWD))

Systemerr.println("PKCS#12 MAC test failed!");
}

Contentlnfo[] infos = pfx.getContentlnfos();

Map certMap = new HashMap();

Map certKeylds = new HashMap();
Map pri vKeyMvap new HashMap();
Map pri vKeyl ds new HashMap() ;

I nput Decr ypt or Provi der i nput Decrypt or Provi der = new
JcePKCSPBEI nput Decr ypt or Provi der Bui | der ()

.setProvider("BC").build(Jcaltil s. KEY_PASSWD) ;
JcaX509CertificateConverter jcaConverter = new
JcaxX509Certifi cateConverter().setProvider("BC');
for (int i =0; i !=infos.length; i++)
if (infos[i].getContentType().equal s(PKCSOhjectldentifiers.encryptedData))

PKCS12Saf eBagFact ory dataFact = new PKCS12Saf eBagFactory(infos[i],
i nput Decr ypt or Provi der) ;

PKCS12Saf eBag[] bags = dat aFact . get Saf eBags() ;
for (int b =0; b != bags.length; b++)
PKCS12Saf eBag bag = bags[b] ;
X509CertificateHol der certH dr =
(X509Certificat eHol der) bag. get BagVal ue() ;
X509Certificate cert = jcaConverter.getCertificate(certH dr);

Attribute[] attributes = bag.getAttributes();
for (int a =0; al= attributes.length; a++)

Attribute attr = attributes[a];

if (attr.getAttrType().equal s(PKCS12Saf eBag. friendl yNaneAttribute))

4.1.4.2. Reading PKCS#12 Files Using the KeyStore Class

The following code fragment does something similar to the code in the previous section - it generates a basic dump of the data stored in the PKCS#12 file. In
this case it is based on the KeyStore class, so the parsing section is obviously substantially simpler, and for the most part you will get back a correct

certificate chain as the KeyStore implementation does most of the work for you.

el se if (pkcsl2Store.isKeyEntry(alias))

Systemout.println("Key Entry: " + alias + ", Subject: " +
(((X509Certificate)pkcsl2Store.getCertificate(alias)).getSubjectDN()));
}

}
System out. println();

The one occasional downfall of this approach, other than the implementation of KeyStore running into a totally unexpected structure in the PKCS#12 file, is
that you lose the PKCS#12 attributes. The BC KeyStore implementation does attempt to preserve friendlyName and uses the localKeyld to rebuild
associations between certificates and private keys, however these and other attributes can appear in PKCS#12 files and may sometimes be meaningful. If

you need to be able to interpret attributes yourself the best thing to do is to use the Bouncy Castle PKCS#12 API instead.

4.1.5. Things to Watch Out For

Apart from been aware that the use of more than one password on any given component is a risk, and the UTF-8 issue, the other thing to watch with
PKCS#12 is that traditionally the data was written out in BER format. The BC APIs reflect this tradition, however it is often the case now that a PFX needs to
be saved in definite-length encoding. This is partly due to concerns that a BER parser may indavertently run an application out of memory without warning,
and also because it appears BER is not often implemented in do-it-yourslef ASN.1 parsing libraries. In order to make sure you produce definite-length output

when dumping the PFX, you need to call the getEncoded() method passing it ASN1Encoding.DL as in:

Fi | eQut put Stream f Qut = new Fi |l eQut put Strean("id. p12");
fQut.wite(pfx.get Encoded(ASN1Encodi ng. DL));
fQut.close();

This will give you a nice definite-length friendly encoded file.

5. Cryptographic Message Syntax (CMS)

This chapter looks at the secure messaging standard that was originally defined in PKCS#7 and is now defined by RFC 5652. A lot of thought has been put
into CMS. As it uses BER encoding, it supports both streaming and packet style protocols, consequently it is possible to use it to create very large
messages. As it follows the practice of separating the encryption of the data from the sharing of the key used it can also be comfortably used with standard

public key algorithms, including those using key agreement, as well as shared keys such as passwords or specified symmetric keys.

CMS allows you to sign, encrypt, and compress messages. It is used to support a number of other standards as well, the most notable of these being

S/MIME.

5.1. Getting Started

The Bouncy Castle CMS API is included under the org.bouncycastle.cms package tree. This is distributed in the distribution jars starting with bcpkix for the
major JDKs and is also included in the J2ME distribution. Currently the J2ME version supports all of the functionality that can be dealt with using the

lightweight API, pretty well everything other than the handling of compressed data.

The RFC defines that for a minimal CMS implemtation you need to be able to support at forms of signing and encryption.

5.2. The Basic Structures

The basic structure of CMS is the Contentinfo type

Content|nfo ::= SEQUENCE {
cont ent Type Cont ent Type,
content [0] EXPLICI T ANY DEFI NED BY content Type }

Cont ent Type ::= OBJECT | DENTI FI ER

The contentType field is used to tell a reader of the Contentinfo sequence how to interpret the explicitly tagged object contained in the content field. As we
go through the API you will see that ContentType identifiers are defined for the core CMS structures used to contain signed, enveloped, and compressed
data. The Bouncy Castle classes such as CMSSignedData and CMSEnvelopedData actually take ContentInfo objects on construction, likewise the

generators for typical CMS messages also produce Contentinfo objects when they complete.

The catch-all ContentType in CMS is id-data. This is defined as:

i d-data OBJECT | DENTIFIER ::= { iso(1l) menber-body(2)
us(840) rsadsi (113549) pkcs(1l) pkes7(7) 11}

When you see one of these in a ContentInfo object it is telling you that the content field contains an arbitrary octet string. You need to be forewarned if you
wish to assign any interpretation to the octets, there is nothing to prevent this octet string from being the product of an ASN.1 encoding itself, likewise it might

just be a stream of bits such as an image.

In Bouncy Castle speak the classes that capture the need to represent arbitrary Contentinfo structures are the CMSTypedData and the CMSTypedStream
classes which are used to return data read from the packet and stream based parsers respectively, and to pass in data where detached messages that do
not encapsulate the data, such as some signatures, are used. Whether you wish to choose the packet or sream based classes for processing CMS is largely
up to you, the main things to note are that while the stream based classes for both generation and parsing allow you to handle arbitrarily large messages, as

you are using a streaming model the order in which operations are done in either parsing or generating becomes significant.

5.3. Message Signing

CMS provides for signatures on messages to either encapsulate, or contain, the message or to be detached from the message. The decision to use either is
largely a matter of convenience - for example S/IMIME makes use of detached signatures so that a message is always readable even if the recipient does not
have the facilities required to process the signature. Where the decision is made to use detached signatures care must be taken to ensure that the message

being signed will not be modified during transport in a manner that will cause verification of its associated detached signature to fail.

Section 5 of RFC 5652 covers signing of data. If you are really curious about the internal workings of the protocol we would reading it. We will have a look at
the basic structures here as well as the Bouncy Castle API reflects how the messages are structured, so having some knowledge of the internals of the

protocol does make it easier to understand what the Bouncy Castle APIs are trying to do and how to use them.

5.3.1. Basic Concepts

The core structure for supporting message signing is the SignedData structure, which is then placed in a ContentInfo structure labeled with the content type

id-signedData. The ASN.1 definition for the structure and its identifier is:

i d-si gnedData OBJECT | DENTIFIER ::= { iso(1l) menber-body(2)
us(840) rsadsi (113549) pkcs(1) pkcs7(7) 2}

Si gnedDat a :: = SEQUENCE {
ver si on CMSVer si on,
di gest Al gorithnms DigestAl gorithmdentifiers,
encapCont ent | nf o Encapsul at edCont ent | nf o,
certificates [0] IMPLICIT CertificateSet OPTI ONAL,
crls [1] IMPLICIT Revocati onl nf oChoi ces OPTI ONAL,
si gnerlnfos Signerlnfos }

Di gest Al gorithmdentifiers ::= SET OF DigestAlgorithmdentifier
Di gestAlgorithm dentifier ::= Algorithmdentifier
CertificateSet ::= SET OF CertificateChoi ces

Revocat i onl nf oChoi ces ::= SET OF Revocat i onl nf oChoi ce
Signerlnfos ::= SET OF Signerlnfo

It is the SignedData structure that the CMSSignedData and CMSSignedDataParser classes are designed to take. In the event the data that was signed is

encapsulated in the SignedData it lives in the encapContentinfo field. The RFC defines EncapsulatedConentinfo as:

Encapsul at edCont ent | nfo :: = SEQUENCE {
eCont ent Type Cont ent Type,
eContent [0] EXPLICIT OCTET STRI NG OPTI ONAL }

If the data is encapsulated, it will be in the eContent field, annotated with the appropriate type in eContentType (usually id-data). If the data is not
encapsulated eContentType will give the expected type of the data, and eContent will be missing. Where eContent is missing you will need to explicitly pass
the data to be associated with the SignedData using one of the constructors for CMSSignedData or CMSSignedDataParser that takes a signedContent

argument.

You can get access to the signed content using the getSignedContent() method on the CMSSignedData, or CMSSignedDataParser, classes. Note that in the

event the data in the SignedData structure is not encapsulated, getSignedContent() will just return what was passed to the objects constructor.
The Signerinfos set is where the actual signatures to be verified live, one signature for each Signerinfo structure. In Bouncy Castle the SignerInfo structure is
captured in the Signerinformation object. You can get access to Signerlnformation objects by calling the getSignerinfos() method on the CMSSignedData, or

CMSSignedParser class. The getSignerinfos() method returns a SignerinformationStore which can be used to retrieve one, all, or a subset of the

Signerinformation objects associated with the signed data depending on what is passed to the get() or getSigners() method.

5.3.2. Creating and Validating a Detached Signature

Generating a signature is based around the use of the CMSSignedDataGenerator, or CMSSignedDataStreamGenerator, class depending on what suits your

purpose. We will look at the simplest case first, which is using the CMSSignedDataGenerator, as in the case of the DataStreamGenerator some operations

can only be done in a particular order.

As with certificate generation, the CMS SignedData generation is based around operators, so a general set of operators are available if you have access to

the JCA, and a more specific set of operators are available if you are using the BC lightweight API.

5.3.2.1. Detached Signature - JCA Style

The first step to being able to construct a detached signature is setting up a generator to create the Signerinfo structure you wish to include. If you are using
the JCA the Bouncy Castle APIs provide two ways of creating signer info generator: the JcaSimpleSignerinfoGeneratorBuilder class, which assumes the
both the signature algorithm and any associated digests can be sourced from a single provider, and the JcaSignerinfoGeneratorBuilder which allows for

configuring the DigestCalculator used and the ContentSigner used seperately.

The second consideration is whether you wish to include the signing certificate in the message. This will not remove the requirement that the recipient should
verify that the certificate is legitimate, but it will mean that the recipient does not need to have the certificate on hand when the message is verified. To pass
this information into the message we construct a Store object containing the certificates and pass it to the CMSSignedDataGenerator.setCertificates()

method.

Once a CMS SignedData message has been generated, verifying it follows a similar pattern to what we saw with certificates, the difference being that rather
than using a ContentVerifierProvider to verify the signature we use a SignerinfoVerifier which has a ContentVerifierProvider contained in it. As we are using
the JCA we can use the JcaSimpleSignerinfoVerifierBuilder to make one of these, although if more flexibility was required we could also use a

JcaSignerinfoVerifierBuilder.

An example of creating a CMS SignedData message for a detached signature follows. The main body of the class shows how the message is constructed
and the isValid() method shows how the message is verified. Note that as the message is detached, creating a CMSSignedData object for verification

purposes requires passing the message data into the constructor.

package cwgui de;

i mport java.security. KeyStore;

i mport java.security. PrivateKey;

i nport java.security. Security;

import java.security.cert.CertStore;

i mport java.security.cert.Certificate;

i nport java.security.cert.PKl XCert Pat hBui | der Resul t;
i mport java.security.cert.X509Cert Sel ect or;

i mport java.security.cert.X509Certificate;

import java.util.Arrays;

inmport java.util.lterator;
i nport org. bouncycast| e. asnl. x509. KeyUsage;
i nport org. bouncycastle.cert.jcajce.JcaCertStore;
i mport org. bouncycastle.cert.jcajce.JcaCert St or eBui | der;
i nport org. bouncycast| e. cns. CMSPr ocessabl eByt eArr ay;
i mport org. bouncycast!| e. cns. CMSSi gnedDat a;
i mport org. bouncycast| e. cns. CMSSi gnedDat aGener at or ;
i nport org. bouncycast| e. cns. CMSTypedDat a;
i mport org. bouncycast!| e. cns. Si gner | nf or mati on;
i mport org. bouncycastl| e. cns. Si gner | nf or mati onSt or e;
i nport org. bouncycastl e. cns. j caj ce. JcaSi npl eSi gner | nf oGener at or Bui | der;
i nport org. bouncycast| e.cns. | caj ce. JcaSi npl eSi gner | nf oVeri fi erBui | der;
i mport org. bouncycastl e.cns.]cajce. JcaX509Cert Sel ect or Converter;
i nport org. bouncycastl e.jce. provi der. BouncyCast | eProvi der;
i mport org.bouncycastle.util.Store;
/**

* JCA exanpl e of generating a detached signature.

*

/

public class JcaSi gnedDat aExanpl e

/**
* Take a CMS SignedData nessage and a trust anchor and determine if
* the message is signed with a valid signature froma end entity
*/entity certificate recogni zed by the trust anchor rootCert.
*
public static bool ean isValid(

CMBSi gnedData si gnedDat a,

X509Certificate rootCert)

t hrows Exception

CertStore certsAndCRLs = new
JcaCert St oreBui |l der (). setProvider("BC').addCertificates(signedData.getCertificates()).build

()

If you run this example you should see the output

The JcaSimpleSignerinfoGeneratorBuilder class the example uses assumes that the same provider can be used to source all the algorithms required to add

the Signerinfo structure to the CMS message. This is not always the case, so a more long winded way of doing this would have been to say:

instead. In general you should only need to use the more verbose approach if you need to make use of different providers for digest calculation and

signature creation.

5.3.2.2. Detached Signature - Lightweight Style

Writing a lightweight version for generating and verifying a detached signature requires a bit more plumbing. In the JCA case it is easy to create finders for
the appropriate Algorithmldentifier structures on the fly, although the price you pay is that the support code to do this is a lot bigger. In the lightweight case
some useful default classes are provided for looking up Algorithmldentifier structures and generating DigestCalculator objects depending on the signature

algorithm requested, these could easily be slimmed down though as at the end of the day the only requirement for creating a SignerInfo structure is being

able to create a SignerinfoGeneratorBuilder object. Likewise verifying a SignedData message only requires creating a SignerlnformationVerifier which

matches one of the SignerInfo structures attached to the message.

An example of creating a CMS SignedData message for a detached signature using the lightweight API follows. The example has been constructed along
the same lines as the JCA example. The differences between the two are largely due to the need to use more fundamental classes to build the operators

required for the creation and verification of Signerinfo objects.

package cwgui de;

import java.util.Arrays;
inmport java.util.lterator;

i mport org. bouncycast
i nport org. bouncycast
i mport org. bouncycast
i nport org. bouncycast
i nport org. bouncycast
i mport org. bouncycast
i nport org. bouncycast

| e. asnl. x509. Al gorithm dentifier;
|l e.cert.X509CertificateHol der;
| e. cns. CMSPr ocessabl eByt eArray;
| e. cns. CVSSi gnedDat a;
| e. cns. CMSSi gnedDat aGener at or ;
| e. cns. CMSTypedDat a;
| e. cns. Def aul t CMSSi gnat ur eAl gori t hmNaneGener at or ;
i nport org. bouncycast| e. cns. Si gner | nf oGener at or Bui | der;
i mport org. bouncycast!| e. cns. Si gner | nf or mati on;
i mport org. bouncycastl| e.cns. Si gner| nf or mati onSt or e;
i nport org. bouncycast| e. cns. Si gner | nformati onVerifier;
i mport org. bouncycast!| e. cns. bc. BcRSASI gner | nfoVeri fi erBui | der;
i mport org. bouncycastl e. crypto. parans. Asymet ri cKeyPar anet er ;
i nport org. bouncycast| e. operator. Def aul t Di gest Al gorithm dentifierFi nder;
i mport org. bouncycast| e. operat or. Def aul t Si gnat ur eAl gorithm denti fi er Fi nder;
i mport org. bouncycast| e. operator. bc. BcDi gest Cal cul at or Provi der;
i nport org. bouncycast | e. oper at or. bc. BcRSACont ent Si gner Bui | der ;
i mport org. bouncycastle.util.CollectionStore;
i mport org. bouncycastle.util.Store;

/**

* Li ghtwei ght exanpl e of generating a detached signature.
@

publ i c cl ass BcSi gnedDat aExanpl e
{ /**
* Take a CM5 SignedData message and a trust anchor and determine if
* the nmessage is signed with a valid signature froma end entity
* entity certificate recognized by the trust anchor rootCert.
*/
public static bool ean isValid(
CMVSSi gnedDat a si gnedDat a)
t hrows Exception

Store certs = signedData.getCertificates();
Si gner | nf ormati onSt ore signers = signedDat a. get Si gner | nfos();
Iterator it = signers.getSigners().iterator();

i{f (it.hasNext())

Si gnerlnformation signer = (Signerlnformation)it.next();
X509Certi ficateHol der cert =
(X509CertificateHol der)certs. get Mat ches(signer.getSID()).iterator().next();

Si gnerInformationVerifier verifier = new BcRSASI gner | nfoVerifierBuil der(
new Def aul t CMSSi gnat ur eAl gori t hniNameGener at or (),
new Def aul t Si gnat ur eAl gorithm dentifierFinder(),
new Def aul t Di gest Al gori thm denti fi er Fi nder (),
new BcDi gest Cal cul at or Provi der()). build(cert);

return signer.verify(verifier);
return fal se;
public static void main(String[] args)
t hrows Exception
{
BcCredenti al credentials = BcUtils.createCredentials();

Asymretri cKeyParanmeter key = credential s. getPrivateKey();
X509CertificateHol der[] chain = credentials.getCertificateChain();

Running this example should also produce the output

5.3.3. Things to Watch Out For

It should be noted the EncapsulatedContentinfo is not identical to what it is in PKCS#7 (eContent is defined as ANY rather than OCTET STRING). In the

event you are working with a legacy application, you may find it necessary to use the work around described in Section 5.2.1 in RFC 5652.

	1. The Bouncy Castle Provider
	1.1. Installing the Provider
	1.2. Bouncy Castle Provider Configuration
	1.3. Things to Watch Out For

	2. Basic Operators and API Organisation
	2.1. Digest Calculators
	2.2. Content Signers
	2.3. Content Verifiers
	2.4. Things to Watch Out For

	3. X.509 Certificates and Certification Requests
	3.1. Certificate Representation in Bouncy Castle
	3.2. Basic Certificate Generation
	3.2.1. Distinguished Names
	3.2.2. Things to Watch Out For

	3.3. Version 1 Certificate Generation
	3.4. Version 3 Certificate Generation
	3.5. Certificate Extensions
	3.5.1. Basic Constraints
	3.5.2. Authority Key Identifier
	3.5.3. Subject Key Identifier
	3.5.4. Subject Alternative Name
	3.5.5. Issuer Alternative Name
	3.5.6. Key Usage
	3.5.7. Extended Key Usage
	3.5.8. Things to Watch Out For

	3.6. Lightweight Certificate Generation
	3.6.1. Version 1 Certificate Generation
	3.6.2. Version 3 Certificate Generation

	3.7. Certificate Processing
	3.7.1. The X509CertificateHolder
	3.7.2. Converting to a JCA Certificate

	3.8. Certification Requests
	3.8.1. Using PKCS#10
	3.8.2. Using CRMF
	3.8.2.1. CRMF with Signature Proof-of-Possession
	3.8.2.2. CRMF with Two Phase Proof of Possession

	4. Key and Personal Credential Storage
	4.1. The PKCS#12 API
	4.1.1. Creating a PKCS#12 File - JCE Style
	4.1.2. PBE Encryption in PKCS#12 Files
	4.1.3. Creating a PKCS#12 File - Lightweight Style
	4.1.4. Reading a PKCS#12 File
	4.1.4.1. Reading PKCS#12 Files Using the BC API
	4.1.4.2. Reading PKCS#12 Files Using the KeyStore Class

	4.1.5. Things to Watch Out For

	5. Cryptographic Message Syntax (CMS)
	5.1. Getting Started
	5.2. The Basic Structures
	5.3. Message Signing
	5.3.1. Basic Concepts
	5.3.2. Creating and Validating a Detached Signature
	5.3.2.1. Detached Signature - JCA Style
	5.3.2.2. Detached Signature - Lightweight Style

	5.3.3. Things to Watch Out For

		2014-11-25T17:43:48+0000
	SD-DSS Signature id-86786B3BC5A50DF8974E56AF0131907D

		2014-11-25T17:43:49+0000
	SD-DSS Signature id-2D05FAB73E11102BAE45499BDA51EEDB

		2014-11-25T17:43:49+0000
	SD-DSS Signature id-2D05FAB73E11102BAE45499BDA51EEDB

