8000 Can Talos Work with Unsupervised Learning on LSTM/Autoencoder Model · Issue #533 · autonomio/talos · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Can Talos Work with Unsupervised Learning on LSTM/Autoencoder Model #533
Open
@krwiegold

Description

@krwiegold

Hi, I am trying to use Talos to optimize the hyperparameters on an unsupervised LSTM/Autoencoder model. The model works without Talos. Since I do not have y data (no known labels / dependent variables), so I created my model as follows below. And the data input is called "scaled_data".

set parameters for Talos

p = {'optimizer': ['Nadam', 'Adam', 'sgd'],
'losses': ['binary_crossentropy', 'mse'],
'activation':['relu', 'elu']}

create autoencoder model

def create_model(X_input, y_input, params):
autoencoder = Sequential()
autoencoder.add(LSTM(12, input_shape=(scaled_data.shape[1], scaled_data.shape[2]), activation=params['activation'],
return_sequences=True, kernel_regularizer=tf.keras.regularizers.l2(0.01)))
autoencoder.add(LSTM(4, activation=params['activation']))
autoencoder.add(RepeatVector(scaled_data.shape[1]))
autoencoder.add(LSTM(4, activation=params['activation'], return_sequences=True))
autoencoder.add(LSTM(12, activation=params['activation'], return_sequences=True))
autoencoder.add(TimeDistributed(Dense(scaled_data.shape[2])))
autoencoder.compile(optimizer=params['optimizer'], loss=params['losses'], metrics=['acc'])

history = autoencoder.fit(X_input, y_input, epochs=10, batch_size=1, validation_split=0.0,
                          callbacks=[EarlyStopping(monitor='acc', patience=3)]).history

return autoencoder, history

scan_object = talos.Scan(x=scaled_data, y=scaled_data, params=p, model=create_model, experiment_name='LSTM')

My error says: TypeError: create_model() takes 3 positional arguments but 5 were given.

How am I passing 5 arguments? Any ideas how to fix this issue? I looked through the documents and other questions, but don't see anything with an unsupervised model. Thank you!

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions

    0