8000 GitHub - marcnunez/CabinMonitoringV1
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

marcnunez/CabinMonitoringV1

Repository files navigation

Cabin Monitoring

Project forked from:

Alpha Pose YoloV3 SPPE

Installation

Windows Version please check out doc/win_install.md

  1. Get the code.
git clone -b pytorch https://github.com/marcnunez/CabinMonitoringV1.git
  1. Install pytorch 0.4.0 and other dependencies.
pip install -r requirements.txt
  1. Download the models manually: (Google Drive). Place them into `./models

Quick Start

  • Input dir: Run AlphaPose for all images in a folder with:
python3 demo.py --indir ${img_directory} --outdir examples/res 
  • Video: Run AlphaPose for a video and save the rendered video with:
python3 video_demo.py --video ${path to video} --outdir examples/res --save_video
  • Webcam: Run AlphaPose using webcam and visualize the results with:
python3 webcam_demo.py --webcam 0 --posebatch 40 --nThreads 5 --sp --vis --nms 0.25 --pdf True --nClasses 33 --pathModel ./models/sppe/coco_cabin.pth
  • Input list: Run AlphaPose for images in a list and save the rendered images with:
python3 demo.py --list examples/list-coco-demo.txt --indir ${img_directory} --outdir examples/res --save_img
  • Note: If you meet OOM(out of memory) problem, decreasing the pose estimation batch until the program can run on your computer:
python3 demo.py --indir ${img_directory} --outdir examples/res --posebatch 30
  • Getting more accurate: You can enable flip testing to get more accurate results by disable fast_inference, e.g.:
python3 demo.py --indir ${img_directory} --outdir examples/res --fast_inference False
  • Speeding up: Checkout the speed_up.md for more details.
  • Output format: Checkout the output.md for more details.
  • For more: Checkout the run.md for more options

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6

0