8000 How to get better results · Issue #13 · YiyanXu/DiffRec · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

How to get better results #13

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign 8000 up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
kavanalp opened this issue Aug 7, 2023 · 2 comments
Open

How to get better results #13

kavanalp opened this issue Aug 7, 2023 · 2 comments

Comments

@kavanalp
Copy link
kavanalp commented Aug 7, 2023

I used the default hyper parameters "!python main.py --cuda --dataset=ml-1m_clean --data_path=../datasets/ml-1m_clean/"
the results are less than 0.1 and the loss is about 180

@kavanalp kavanalp changed the title How to predict How to get better results Aug 7, 2023
@YiyanXu
Copy link
Owner
YiyanXu commented Oct 23, 2023

To reproduce the results and perform fine-tuning of the hyperparameters, please refer to lines 138-139 in the inference.py file. Here, you will find the specific hyperparameter settings.

@kavanalp
Copy link
Author
kavanalp commented Dec 29, 2023

@YiyanXu Thank you for you answer!
I have tried Diifrec and L_Diffrec with the hyperparameters you provided in lines 138-139 of the inference.py file, but the results are still not satisfactory.
!python main.py --cuda --dataset=ml-1m_clean --data_path=../datasets/ml-1m_clean/ --emb_path=../datasets/ --lr1=0.001 --lr2=0.0005 --wd1=0.0 --wd2=0.0 --batch_size=400 --n_cate=2 --in_dims=[300] --out_dims=[] --lamda=0.03 --mlp_dims=[300] --emb_size=10 --mean_type='x0' --steps=100 --noise_scale=0.005 --noise_min=0.005 --noise_max=0.02 --sampling_steps=0 --reweight=1 --log_name=_AE.pth --gpu='1'

Best Epoch 075
[Valid]: Precision: 0.0648-0.0606-0.0536-0.0465 Recall: 0.061-0.1098-0.2234-0.3567 NDCG: 0.0786-0.0931-0.132-0.1789 MRR: 0.1533-0.1653-0.1726-0.1742
[Test]: Precision: 0.0546-0.0506-0.0419-0.0344 Recall: 0.0981-0.173-0.3187-0.4756 NDCG: 0.0825-0.1085-0.1573-0.2052 MRR: 0.1368-0.1494-0.1567-0.1585
End time: 2023-12-29 08:41:05

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants
0