8000 GitHub - TomTomTommi/stereoanyvideo: Stereo Any Video: Temporally Consistent Stereo Matching
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

TomTomTommi/stereoanyvideo

Repository files navigation

Stereo Any Video: Temporally Consistent Stereo Matching

Paper [Project]

Demo

Installation

Installation with cuda 12.2

Setup the root for all source files

    git clone https://github.com/tomtomtommi/stereoanyvideo
    cd stereoanyvideo
    export PYTHONPATH=`(cd ../ && pwd)`:`pwd`:$PYTHONPATH
  
Create a conda env

    conda create -n sav python=3.10
    conda activate sav
  
Install requirements

    conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia
    pip install pip==24.0
    pip install pytorch_lightning==1.6.0
    pip install iopath
    conda install -c bottler nvidiacub
    pip install scikit-image matplotlib imageio plotly opencv-python
    conda install -c fvcore -c conda-forge fvcore
    pip install black usort flake8 flake8-bugbear flake8-comprehensions
    conda install pytorch3d -c pytorch3d
    pip install -r requirements.txt
    pip install timm
  
Download VDA checkpoints

    cd models/Video-Depth-Anything
    sh get_weights.sh
  

Inference a stereo video

sh demo.sh

Before running, download the checkpoints on google drive . Copy the checkpoints to ./checkpoints/

In default, left and right camera videos are supposed to be structured like this:

./demo_video/
        ├── left
            ├── left000000.png
            ├── left000001.png
            ├── left000002.png
            ...
        ├── right
            ├── right000000.png
            ├── right000001.png
            ├── right000002.png
            ...

A simple way to run the demo is using SouthKensingtonSV.

To test on your own data, modify --path ./demo_video/. More arguments can be found and modified in demo.py

Dataset

Download the following datasets and put in ./data/datasets/:

Evaluation

sh evaluate_stereoanyvideo.sh

Training

sh train_stereoanyvideo.sh

Citation

If you use our method in your research, please consider citing:

@misc{jing2025stereovideotemporallyconsistent,
        title={Stereo Any Video: Temporally Consistent Stereo Matching}, 
        author={Junpeng Jing and Weixun Luo and Ye Mao and Krystian Mikolajczyk},
        year={2025},
        eprint={2503.05549},
        archivePrefix={arXiv},
        primaryClass={cs.CV},
        url={https://arxiv.org/abs/2503.05549}, 
      }

About

Stereo Any Video: Temporally Consistent Stereo Matching

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0