Compact Linear Types

John Skaller

November 1, 2017

1 Introduction

Let us observe that the number of pennies in 3 pounds, 10 shillings, and 8
pennies, is given by:
8+ 10x 2043 x 20 x 12

because there are 12 pennies in a shilling, and 20 shillings in a pound. Gener-
alising this idea we have:

n—1 1—1
a=wo+ Y (z:[[e)
i=1

Jj=0

which is a general finite positional number system, with j ranging from 0 to n—2
representing an n position system, and c; representing the number of digits in
the j’th position.

Decoding is given by

n—2 i—1
x; = (armd H ¢;) div H ¢;
j=i =0

2 Application to types

Let the symbol decimal integer n represent the sum of n units, where the unit
type is the type of an empty tuple. Call the type void, the sum of no units, and
observe

typedef void = 0;
typedef unit ilg
typedef bool = 2;

Call any such type a unitsum. Now observe that the positional number system
described in section 1 may be used to encode and decode values of a finite



product of unit sums by adding a limit on the number of digits in the higest
term.

The formula for the z; are then projections of the product which is formed by
the formula for the a. The set of integers calculated by the constructor then

has size
n—1
N = H Cj
=0

and the set is compact and consists of the values 0 through N —1 and is therefore
also linear.

The system is also familiar as the decomposition of cyclic groups and exhibits
the isomorphism
ZNngo XZJ1Z

Jn—1

3 Application to arrays

A fundamental problem in computing is that a loop through an array of arrays
requires two loops:

var a = ((1,2,3),(4,5,6));
var sum = 0;
for i in 0..<2
for j in 0..<3 perform
sum += (a.i).j;
println$ sum;

and for an array of rank k we need k loops. There is a two step solution to this
problem. We desire to make the transformation of types

3 3x2

int 2 — int
This has the effect of changing the data functor to a single array, indexed by a
tuple:

var a = ((1,2,3),(4,5,6));
var b = a :>> (int" (2 * 3));
var sum = 0;
for i in 0..<2
for j in 0..<3 perform
sum += b.(i:>>2,§:>>3);
println$ sum;

Although we still need two indices and two loops, we have formed a new data
functor by composition of two array functors.



A second isomorphism solves our problem:

int?*% — intf

with

var a = ((1,2,3),(4,5,6));

var b = a :>> int~(2%3);

var ¢ = b :>> int~6;

var sum = 0;

for i in 0..<6 perform
sum += c.i;

println$ sum;

performing a compact linear encoding.

4 Extension to Arrays

If the base type of an array is itself compact linear, then the whole array is also
compact linear. For example

var x : bool = 4 = true, false, true, true;
println$ x :>> int;

Bit arrays drop out of compact linear types as a special case.

5 Extension to sums

We consider first the case of two arrays of the same base type. If the first has
length n and the second length m then an index of type n 4+ m is interpreted as
follows: first chose which array to index, then use the argument of the selected
case as the index. By concatenating the arrays, we see the index is isomorphic
to an array of length n + m.

This suggests a sum of compact linear types is also compact linear.
The size of a compact linear type is given inductively by the rule:
e the size of a unitsum n is n
e the size of a product of compact linear types is the product of the sizes

e the size of an exponential of compact linear types is the exponential of the
sizes

the size of a sum of compact linear types is the sum of the sizes



The encoding formula is:
a =1Y; Z Zj
§=0

where z; is the size of the j'th case. The y; are readily identified as the charac-
teristic injections of the sum type.

The decoding formula is in two parts: we must first calculate the correct case
index, it is the unique j such that

Zj >CLZZ]‘,1

Then the argument is given by

j—1
Yy =a— E Zi
i=0



	Introduction
	Application to types
	Application to arrays
	Extension to Arrays
	Extension to sums

