
Coroutines

John Skaller

November 1, 2017

1 Objects

A coroutine system consists of the following types of objects:

Scheduler A device to hold a set of active fibres and select one to be current.

Channels An object to support synchronisation and data transfer.

Fibres A thread of control which can be suspended and resumed.

Continuations An object representing the future of a coroutine.

1.1 Scheduler States

A scheduler is in one of two states:

Current The currently running scheduler

Suspended A scheduler for which the Running fibre is executing another sched-
uler.

1.2 Fibre States

Each fibre is in one of these states:

Running Exactly one fibre per scheduler is always running.

Active Fibes which are ready to run but not running on a particular scheduler.

Hungry Fibres suspended waiting for input on a channel.

Blocked Fibres suspended waiting to perform output on a channel.

1

1.3 Channel States

Each channel is in one of these states:

Empty There are no fibres associated with the channel.

Hungry A set of hungry fibres are waiting for input on the channel.

Blocked A set of blocked fibres are waiting to perform output on the channel.

2 Abstract State

2.1 State Data by Sets

A fibration system consists of

1. A set of fibres F

2. A set of channels C

3. An integer k

4. An indexed set of schedulers S = {si} for i = 1 to k

and the following relations:

1. for each i = 1 to k a pair (Ri,Ai) where Ri is a fibre and Ai is a set of
fibres, these fibres being associated with scheduler si, Ri is the currently
Running fibre of the scheduler, and Ai is the set of Active fibres;

2. for each channel c a set Hc of Hungry fibres and a set Bc of Blocked fibres,
such that one of these sets is empty, if both sets are empty, the channel is
said to be Empty, otherwise it is said to be Hungry or Blocked depending
on whether the Hungry or Blocked set is nonempty;

3. A reachability relation to be described below

with the requirement that each fibre is in precisely one of the sets {Ri}, Ai, Hc

or Bc.

We define the relation

H = {(f, c) | f ∈Hc} Hunger (1)

B = {(f, c) | f ∈Bc} Blockage (2)

FH = {f | ∃c.(f, c) ∈ H} Hungry Fibres (3)

FB = {f | ∃c.(f, c) ∈ B} Blocked Fibres (4)

CH = {c | ∃f.(f, c) ∈ H} Hungry Channels (5)

CB = {c | ∃f.(f, c) ∈ B} Blocked Channels (6)

E = {c | |Hc = Bc = ∅} Empty Channels (7)

2

2.2 State Data by ML

Using an ML like description may make the state data easier to visualise.

scheduler =

Run: fibre | NULL,

Active: Set[fibre]

channel =

| Empty

| Hungry: NonemptySet[fibre]

| Blocked: NonemptySet[fibre]

fibre = (current: continuation)

continuation =

caller: continuation | NULL,

PC: codeaddress,

local: data

3 Operations

3.1 Spawn

The spawn operation takes as an argument a unit procedure and makes a closure
thereof the initial continuation of a new fibre. Of the pair consisting of the
currently running fibre (the spawner) and the new fibre (the spawnee) one will
have Active state and the other will be Running. It is not specified which of
the pair is Running.

F ← F ∪ {f} (8)

where f is a fresh fibre and

Rk,Ak ←

{
Rk,Ak ∪ {f}
f,Ak ∪ {Rs}

(9)

where the choice between the two cases is indeterminate.

3.2 Run

The run operation is a subroutine. It increments k and creates a new scheduler
sk. The scheduler sk−1 is Suspended.

3

k ← k + 1 (10)

It then takes as an argument a unit procedure and makes a closure thereof the
initial continuation of a new fibre f and makes that the running fibre Rk of the
new current scheduler. The set of active fibres Ak is set to ∅.

F ← F ∪ {f} (11)

where f is a fresh fibre and

Rk,Ak ← f, ∅ (12)

The scheduler is then run as a subroutine. It returns when there is no running
fibre, which implies also there are no active fibres left. k is then decremented,
scheduler sk again becomes Current, and the the current continuation of its
running fibre resumes.

k ← k − 1 (13)

3.3 Create channel

A function which creates a channel.

C ← C ∪ {c} (14)

E ← E ∪ {c} (15)

where c is a fresh channel.

3.4 Read

The read operation from fibre r takes as an argument a channel c.

1. If the channel is Empty, the Running fibre performing the read changes
state to Hungry, the channel changes state to Hungry, and the fibre is
associated with the channel.

H ← H∪ {(r, c)} (16)

E ← E \ {c} (17)

If there are no active fibres, the program terminates, otherwise the sched-
uler selects an Active fibre and changes its state to Running. It is not
specified which active fibre is chosen.

4

Rk,Ak ←

{
ε,Ak if Ak = ∅
a,Ak \ {a} some a ∈ A

(18)

2. If the channel is Hungry, the Running fibre changes state to Hungry, and
the fibre is associated with the channel.

H ← H∪ {(r, c)} (19)

(20)

If there are no active fibres, the program terminates, otherwise the sched-
uler selects an Active fibre and changes its state to Running. It is not
specified which active fibre is chosen.

Rk,Ak ←

{
ε,Ak ifAk = ∅
a,Ak \ {a} some a ∈ Ak

(21)

3. If the channel is Blocked, one of the associated Blocked fibres w is selected,
and dissociated from the channel.

B ← B \ (w, c) (22)

Of these two fibres, one is changed to state Active and the other to Run-
ning. It is not specified which fibre is chosen to be Running.

Rk,Ak ←

{
Rk,Ak ∪ {w}
w,Ak ∪ {R}

(23)

The value supplied to the write operation of the Blocked fibre will be pass
to the Hungry fibre when it transitions to Running state.

3.5 Write

The write operation performed by fibre w takes two arguments, a channel and
a value to be written.

1. If the channel is Empty, the Running fibre performing the write changes
state to Blocked, the channel changes state to Blocked, and the fibre is
associated with the channel.

B ← B ∪ {(w, c)} (24)

E ← E \ {c} (25)

5

If there are no active fibres, the program terminates, otherwise the sched-
uler selects an Active fibre and changes its state to Running. It is not
specified which active fibre is chosen.

Rk,Ak ←

{
ε,Ak if Ak = ∅
a,Ak \ {a} some a ∈ A

(26)

2. If the channel is Blocked, the Running fibre changes state to Blocked, and
the fibre is associated with the channel.

B ← B ∪ {(w, c)} (27)

(28)

If there are no active fibres, the program terminates, otherwise the sched-
uler selects an Active fibre and changes its state to Running. It is not
specified which active fibre is chosen.

Rk,Ak ←

{
ε,Ak if Ak = ∅
a,Ak \ {a} some a ∈ A

(29)

3. If the channel is Hungry, one of the associated Hungry fibres r is selected,
and dissociated from the channel.

H ← H \ (r, c) (30)

Of these two fibres, one is changed to state Active and the other to Run-
ning. It is not specified which fibre is chosen to be Running.

Rk,Ak ←

{
Rk,Ak ∪ {r}
r,Ak ∪ {R}

(31)

The value supplied by the write operation of the Blocked fibre will be pass
to the Hungry fibre when it transitions to Running state.

3.6 Reachability

The Running, and, each Active fibre and its associated call chain of continua-
tions are deemed to be Reachable.

If a channel is known to reachable fibre, it is also reachable. A channel may
be known because its address is stored in the local data of a continuation of a

6

fibre, or, it is reachable via some object which can be reached from local data.
The exact rules are programming language dependent.

Each fibre associated with a reachable channel is reachable.

The transitive closure of the reachability relation consists of a closed, finite,
collection or channels and fibres which are reachable.

Unreachable fibres and channels are automtically garbage collected.

3.7 Elimination

Fibres and channels are eliminated when they are no longer reachable.

A fibre may become unreachable in three ways.

3.7.1 Suicide

A fibre for which the initial continuation returns is said to be dead, and becomes
unreachable. If there are no longer any Active fibres, the program returns,
otherwise the scheduler picks one Active fibre and changes its state to Running.

3.7.2 Starvation

A fibre in the Hungry state becomes unreachable when the channel on which it
is waiting becomes unreachable.

3.7.3 Blockage

A fibre in the Blocked state becomes unreachable when the channel on which it
is waiting becomes unreachable.

4 LiveLock

If a fibre is Hungry (or Blocked) on a reachable channel but no future Running
fibre will write (or read) that channel, the fibre is said to be livelocked. The
fibre will never proceed but it cannot be removed from the system because it is
reachable via the channel.

A livelock is considered to transition to a deadlock if the channel becomes un-
reachable, in which case the fibre will becomes unreachable and is said to die
through Starvation (or Blockage), disolving the deadlock. In other words, fibres
cannot deadlock.

7

5 Fibre Structure

Each fibre consists of a single current continuation. Each continuation may
have an associated continuation known as its caller. The initial continuation of
a freshly spawned fibre has no caller.

The closure of the caller relation leads to a linear sequence of continuations
starting with the current continuation and ending with the initial continuation
of a freshly spawned fibre.

The main program consists of an initially Running fibre with a specified initial
continuation.

Continuations have the usual operations of a procedure. They may return,
call another procedure, spawn new fibres, create channels, and read and write
channels, as well as the other usual operations of a procedure in a general
purpose programming language.

A continuation is reachable if it is the current continuation of a reachable fibre,
or the caller of a reachable continuation.

A continuation is formed by calling a procedure, which causes a data frame to
be constructed which contains the return address of the caller, parameters and
local variables of the procedure, and a program counter containing the current
locus of control (code address) within the procedure. The program counter is
initially set to the specified entry point of the procedure.

A coroutine is a procedure which directly or indirectly performs channel I/O.
Coroutines may be called by other coroutines, but not by procedures or func-
tions. Instead, a coroutine may be spawned by a procedure, or run by a proce-
dure or function. This creates a fibre which hosts the created continuation.

Note: the set of fibres and channels created directly or indirectly by a run
subroutine called inside a function should be isolated from all other fibres and
channels to ensure the function has no side-effects.

6 Continuation Structure

6.1 Continuation Data

A continuation has associated with it the following data:

caller Another continuation of the same fibre which is suspended until this
continuation returns.

data frame Sometimes called the stack frame, contains local variables the con-
tinuation may access.

8

program counter A location in the program code representing the current
point of this continuations execution or suspension

6.2 Continuation operations

The current continuation of a fibre executes a wide range of operations including
channel I/O, spawning new fibres, calling a procedure, and returning.

call Calling a procedure creates a new continuation with its program counter set
at the procedure entry point, and a fresh data frame. The new continua-
tion becomes the current continuation, the current continuation suspends.
The new continuations caller field is set to the caller. The current contin-
uation program counter is set to the pointer after the call instruction.

The effect is push an entry onto the fibres continuation chain.

return Returning from the current continuation causes the owning fibres cur-
rent continuation to be set to the current continuations caller, if one exists,
or the fibre to be marked Dead if there is no caller. Execution of the sus-
pended caller continues at its program counter.

The effect is to pop an entry off the fibre’s continuation chain.

read/write Channel I/O suspends the current continuation of a fibre until a
matching operation from another fibre synchronises with it. A read is
matched by a write, and a write is matched by a read.

By the rules of state change, channel I/O should be viewed as performing a
peer to peer neutral exchange of control: the current fibre becomes suspended
without losing its position and hands control to another fibre. Later, control is
handed back and the fibre continues.

Coroutine based systems, therefore, operate by repeated exchanges of control
accompanied by data transfers in a direction independent of the control flow,
which sets coroutines aside from functions.

7 Events

Each state transfer of the fibration system may be considered an event. However
the key events are

• spawning

• suicide

• entry to a read operation

• return from a read operation

9

• entry to a write operation

• return from a write operation

I/O synchronisation consists of suspension on entry to a read or write operation,
and simultaneously release of suspension, or resumption, on matching write or
read.

I/O suspension occurs when a fibre becomes Hungry or Blocked, and resumption
when it becomes Running or Active.

Fibrated systems are characterised by a simple rule: events are totally ordered.
The order may not be determinate.

8 Control Type

The control type of a coroutine is defined as follows. We assume the coroutine
is spawned as a fibre, and each and every read request is satisfied by a random
value of the legal input type. Write requests are also satisfied. We cojoin entry
and return from read into a single read event, and entry and return from write
into a single write event, since we are only interested in the behaviour of the
fibre.

The sequence of all possible events which the fibre may exhibit is the coroutines
control type. Note, the control type is a property of the coroutine (procedure).

9 Encoding Control Types

In general, the control type of a coroutine can be quite complex. However for
special cases, a simple encoding can be given.

9.1 One shots

A one-shot coutine is one that exhibits a bounded number of events before
suiciding. The three most common one shots are:

Value: type W A coroutine which writes a single value to a channel and then
exits.

Result: type R A coroutine which reads a single value to from channel and
then exits.

Function: type RW A couroutine which reads one value from a channel, cal-
culates an answer, writes that down a channel and then exits.

10

9.2 Continuous devices

A continuous coroutine is one which does not exit. It can therefore terminate
only by starvation or blockage. The three most common kinds of such devices
are

Source: type W+ Writes a continuous stream of values to a channel.

Sink: type R+ Reads a continuous stream of values from a channel.

Transducer Reads and writes.

Because the sequence of events is a stream, we may use convenient notations to
describe control types. If possible, a regular expression will be used. Sometimes,
a grammar will be required. In other cases there is no simple notation for the
behaviour of a coroutine.

We will use postfix + for repetition.

9.3 Transducer Types

A transducer which read a value, write a value, then loops back and repeats is
called a functional transducer, it may be given the type (RW)+.

In a functional language, a partial function has no natural encoding. There are
two common solutions. The first is to return an option type, say Some v, if
there is a result, or None if there is not. This solution involves modifying the
codomain. The other solution is to restrict the domain so that the subroutine
is a function.

Coroutines, however, represent partial functions naturally. If a value is read
for which there is no result, none is written! The type of a partial function
transducer is therefore given by ((R+)W)+, in other words multiple reads may
occur for each write. Note that two writes may not occur in succession.

This type may also be applied to many other coroutines, for example the list
filter higher order function.

9.4 Duality

Coroutines are dual to functions. The core difference is that they operate in time
not space. Thus, in the dual space a spatial product type becomes a temporal
sequence.

Coroutines are ideal for processing streams. Whereas function code cannot con-
struct streams without laziness, and cannot deconstruct them without eagerness,
coroutines are neither eager nor lazy.

11

One may view an eager functional application as driving a value into a function
to get a result, and a lazy application as pulling a value into a function. Pushing
value implies eagerly evaluating it, pulling implies the value is calculated on
demand.

Coroutine simultaneously push and pull values across channels and so eliminate
the evaluation model dichotomy that plagues functional programming. This
coherence does not come for free: it is replaced by indeterminate event ordering.

10 Composition

By far the biggest advantage of coroutine modelling is the ultimate flexibility
of composition. Coroutines provide far better modularity and reusability than
functions, but this comes at the price of complexity. You will observe consider-
ably more housekeeping is required to compose coroutines than procedures or
functions, because, simply, there are more way to compose them.

A collection of coroutines can be regarded as black boxes resembling chips on a
circuit board, with the wires connecting pins representing channels. So instead
of using variables and binding constructions, we can construct more or less
arbitrary networks.

10.1 Pipelines

The simplest kind of composition is the pipeline. It is a sequence of transduces
wired together with the output of one transducer connected by a channel to the
input of the next.

If the pipeline consists entirely of transducers is is an open pipeline. If there
is a source at one end and a sink at the other it is a closed pipeline. Partially
open pipelines can also exist.

The composition of two transducers has a type dependent on the left and right
transducer types.

With a functional transducer, you would expect the composition of (R1W1)+
with (R2W2)+ to be (R1W2)+ but this is not the case!

Consider, the left transducer performs R1, then W1, then right performs R2. At
this point it is not determinate whether left or right proceeds. If left proceeds,
we have R1 again, then W1. then right proceeds and performs W2 before coming
back to read R2, and what happens next is again indeterminate. The sequence
is therefore R1, W1/R2, R1, W1/R2 which shows R1 can be read twice before
W2 is observed. We have written w/r here to indicate synchronised events which
are abstracted away when describing the observable behaviour of the composite.

12

Clearly, (R1?R1W2?W2)+ contains the set of possible event sequences, but
then (R1+R2+)+ contains it, and therefore the set of possible event sequences
as well. So we should seek the most precise, or principal type of the composite.

We can calculate the type from the operational semantics. At any point in
time, the system must be in one of a finite number of states. Where we have
indeterminacy, the transitions out of a given state are not fully specified. The
result is clearly a non-deterministic finite state automaton.

We must observe, such an automaton corresponds to (one or more) larger de-
terministic finite state automata. This is an important result because it has
practical implications: it means we can pick a DFA and use it to optimise away
abstracted synchronisation points. In other words, we build a fast model of
the system by inlining and using shared variables instead of channels, and then
eliminate the variables by functional composition.

This is the primary reason we insist on indeterminate behaviour: it allows com-
position to be subject to a reduction calculus.

11 Felix Implementation

The following functions and procedures are provided in Felix:

spawn_fthread: (1 -> 0) -> 0;

run: (1 -> 0) -> 0;

mk_ioschannel_pair[T]: 1 -> ischannel[T] * oschannel[T];

read[T]: ischannel[T] -> T

write[T]: oschannel[T] * T -> 0

In the abstract, channels are bidirectional and untyped. However we will restrict
our attention to channels typed to support either read (ischannel) or write
(oschannel) of a value of a fixed data type.

The following shorthand types are available:

%<T ischannel[T]

%>T oschannel[T]

More advanced typing exploiting channel capabilities are discussed later.

Simple example program:

13

proc demo () {

var inp, out = mk_ioschannel_pair[int]();

proc source () {

for i in 1..10 perform write (out,i);

}

proc sink () {

while true do

var j = read inp;

println$ j;

done

}

spawn_fthread source;

spawn_fthread sink;

}

demo();

In this program, we create a channel with an input and output end typed to
transfer an int. The source coroutine writes the integers from 1 through to 10
inclusive to the write end of the channel, the sink coroutine reads integers from
the channel and prints them.

The main fibre calls the demo procedure which launches two fibres with initial
continuations the closures of the source and sink procedures.

When demo returns, the main fibre’s current continuation no longer knows the
channel, so the channel is not reachable from the main fibre.

The source coroutine returns after sending 10 integers to the sink via the chan-
nel. When a fibre no longer has a current continuation, returning to the non-
existent caller causes the fibre to no longer have a legal state. This is known as
suicide.

After the sink has read the last value, it becomes permanently Hungry. The
sink procedure dies by starvation.

All fibres which die do so either by suicide, starvation, or blockage. Dead fibres
will be reaped by the garbage collector provided they’re unreachable. It is
important for the creator of fibres and their connecting channels to forget the
channels to ensure this occurs.

Unlike typical pre-emptive threading systems, deadlock is not an error. However
a lock up which should lead to reaping of fibres but which fails to do so because
they remain reachable is univerally an error. This is known as a livelock: it
leads to zombie fibres.

This usually occurs because some other fibre is statically capable of resolving

14

the lockup, but does not do so dynamically. To prevent livelocks, variables
holding channel values to which no I/O will occur dynamically should also go
out of scope.

15

	Objects
	Scheduler States
	Fibre States
	Channel States

	Abstract State
	State Data by Sets
	State Data by ML

	Operations
	Spawn
	Run
	Create channel
	Read
	Write
	Reachability
	Elimination
	Suicide
	Starvation
	Blockage

	LiveLock
	Fibre Structure
	Continuation Structure
	Continuation Data
	Continuation operations

	Events
	Control Type
	Encoding Control Types
	One shots
	Continuous devices
	Transducer Types
	Duality

	Composition
	Pipelines

	Felix Implementation

