Felix Language Elements

John Skaller
November 27, 2015

Contents
1 Functions 1
1.1 Purity 1
1.2 Totality 1
1.3 Strictness o e e e e e 2
1.4 Lifting from C L 2
1.5 Evaluation Strategies 0L 2
1.5.1 Eager Evaluation, ... 3
1.5.2 Lazy Evaluation 3
1.5.3 Elimination 3
1.5.4 Indeterminate Evaluation 4
1.5.5 Semantics and Evaluation 4
1.6 Contracts o e e e 6
1.6.1 Preconditions 6
1.6.2 Postconditons 6
1.6.3 Contracts 7
2 Procedures 7
3 Generators 8
3.1 Generator lifting oo 8
3.2 Yielding Generatorso 9
4 TFibres 10
5 Restrictions on Service Calls 11
6 Low level Control exchange 12

1 Functions

In Felix functions are a group of constructions used to perform calculations.
The term function is a historical abuse, taken from C. There is a relation to
mathematical functions which we explore here.

An fun binder is used to introduce a calculation which returns a value but
has no side effects.

1.1 Purity

A function which depends only on its parameters is said to be a pure function.
Here is a simple example:

pure fun f (x:uint) => x + x;

They adjective pure may be used to assert a function is pure.
Here is a function which is not pure:

var x = 1;
impure fun g() => x;

The adjective impure is optional and may be used to assert a function is not
pure.

The value returned by this function like construction depends on a variable.
If the variable is changed, the function will return a different value. This function
is impure and is sometimes called an observer or accessor.

1.2 Totality

A function which returns a proper value for each element of the domain type,
provided it terminates, is said to be total. Here is a total function:

total fun f (x:uint) => x + x;

They adjective total may be used to assert a function is total.

In Felix, not all functions are total. A function which is not total is said to
be partial.

For example:

partial fun h(x:int) => x + x;

This is only a partial function, because if the argument is more than half the
maximum int or less than half the minimum, the result is unspecified.

They adjective partial may be used to assert a function is not total. A partial
function may be total on a suitable subdomain. In this case the behaviour of
the function outside this domain is unspecified.

In the case of our partial function above, an exception may be thrown, an
incorrect answer returned, or the system may delete your hard disk.

1.3 Strictness

A function is said to be strict if and only if the application of the function to an
argument which fails to properly evaluate also fails to properly evaluate. For
example:

strict fun h(var x:uint) => x + x;

Here, the var forces the argument to be evaluated before the body of the func-
tion, therefore if the argument evaluation fails, so does the function application.
On the other hand since we know the function is total, if the argument does
evaluate correctly, the function cannot fail.

1.4 Lifting from C

As well as writing functions in Felix, you can also lift functions from C. For
example this encoding;:

fun addl : int -> int = "$1+1";

specified the Felix function add1 is defined in C++. The notation $1 means the
first argument. In the example:

fun sum : int * int -> int = "$1+$2";

the first and second components of the single tuple argument are used. Felix
is a C++ code generator and calculates this function by emitting the defining
C++ code with the $1 and $2 strings replaced by the code evaluating the first
and second components of the argument tuple.

Adjectives for lifted functions are particularly important because the com-
piler is unable to derive any properties by analysis.

1.5 Evaluation Strategies

Felix uses several different strategies for evaluating function applications.

1.5.1 Eager Evaluation

In this strategy, the argument of a function is evaluated before the function is
applied to it: the result of the evaluation is assigned to the function parameter
and then the body of the function executed. Therefore, if the argument eval-
uation fails, so too does the function application. Therefore, if this strategy is
used, then if the function is total, it must also be strict.

Eager evaluation is usually used for big functions and for closures. It may
also be used if the compiler determines the parameter is used many times in the
body of the function.

Using a var parameter forces eager evaluation, provided the parameter is
actually used.

Another related technique is to use the noinline adjective. This ensures the
function is not inlined and the resulting code will be a separately generated C
function or C++ applicative object, which therefore always use eager evaluation.
For example:

noinline fun h(x:uint) => x + Xx;

prevents the function being inlined, and therefore it will be eagerly evaluated.

1.5.2 Lazy Evaluation

In this strategy, the argument of the function replaces the parameter and is
evaluated on demand inside the function. If control does not flow through an
expression requiring the parameter, the argument is not evaluated.

Lazy evaluation is typically effected by inlining the function and replacing
the parameter with the argument expression. However a specialised version of
the function might be created in which the substitution is done, but the function
itself is not inlined.

Lazy evaluation cannot be forced, however it can be simulated by passing
a closure. It can be encouraged by specifying the adjective inline. This forces
inlining of the function, except in two cases: the function is recursive, or, a
closure of the function is formed.

inline fun h(x:1 -> double) =>
if x() > 1.0 then 1.0 / x() else 0.0 endif

1.5.3 Elimination

Elimination is an evaluation strategy that deletes computations that are not
required. Felix uses elimination is two contexts.

First, Felix does constant folding, which is compile time evaluation. In
particular conditionals with constant conditions can result in elimination of
branches which are never taken, that is, conditional compilation. This happens
very early and can eliminate expressions which would not pass type checking or
bind correctly.

if PLAT_WIN32 do
LoadLibrary();
else
dlopenQ);
done

Felix also elides unused variables. Except for parameters this is guaranteed.
For example:

gen £ {
var £ = open_in ("filename");
return 42;

}

will not actually open the file because the variable £ is never used.

1.5.4 Indeterminate Evaluation

Felix actually uses indeterminate evaluation strategy which means that the se-
mantics do not dictate by default whether eager or lazy evaluation is used,
however the elimination rules are determinate.

Whilst we provide ways to enforce a particular strategy, the core idea is that
the compiler chooses the most performant strategy. Typically direct function
calls are inlined, and therefore lazy, because this is most efficient. In particu-
lar, calls to C function bindings are lazily evaluated so that a Felix expression
reduces to a C/C++ expression, allowing the target C/C++ compiler its own
optimisation opportunities. Enforcing eager evaluation would require unravel-
ling all expressions into a sequence of assignments to variables and applications
to variables, just to fix the evaluation order. It’s not clear the target C/C++
compilers could reravel these assignments and eliminate the explicit temporaries.

On the other hand, it is quite hard to do lazy evaluation if the function is
represented as a C function, or C++ class object. Since closures are modelled
by C++ class objects, arguments are arguments to C++4 methods and these
are eagerly evaluated by C/C++ rules. Although we could pass arguments in
closure wrappers as Haskell might, this is horribly expensive.

1.5.5 Semantics and Evaluation

So now, we must ask, does the evaluation strategy matter? Most languages
enforce a particular strategy. Almost all programming languages use lazy eval-
uation for almost everything. In particular procedural languages like C are
necessarily lazy, because lazy evaluation is just another name for control flow.
Function calls and operators are a special case in C, which specifies eager eval-
uation except for a short cut operators and macros which are lazy.

On the other hand strangely, Haskell is eager, contrary to popular belief!
This is because functional programming in general does not make control flow
or order of evaluation determinate. When the order is based on dependencies,
and evaluated by need, the needs must be propagated by an eager seed. For
example a variant in Haskell is not a proper sum type because the case tag
is evaluated eagerly, in order to avoid eagerly evaluation the wrong branch.
Additionally, Haskell must do strictness analysis to evaluation basic functions
and their derivates, otherwise nothing would happen at all.

This leads to the observation that in a lazy language, it is not only safe to
evaluate strict function applications eagerly, but in fact it is necessary (other-
wise the whole program just returns a big fat closure without actually doing
anything!) FEager evaluation is what triggers execution in lazy languages.

So, if we have a strict total terminating function it is safe to evaluate it by
either eager or lazy method. Because it terminates, lazy evaluation can be pro-
moted to eager evaluation due to strictness, and all lazily evaluated terminating
functions are total. If it is eagerly evaluated, then since all eager evaluation is
strict, termination ensures that it can be dropped to lazy evaluation.

So we come to the observation that if a function is applied to an argument
in its actual domain of correct operation, it is logically total, so if the argument
itself also evaluates correctly, the application is as if the function were also strict.

In other words, in practice, indeterminate evaluation is the best strategy
because for most functions the evaluation strategy is irrelevant, and the perfor-
mance is best.

So we now come to the semantic effect of the adjectival descriptors. For
C bindings, these descriptor are taken at face value by the compiler since it is
unable to do any analysis, C code is generally regarded as opaque.

If conflicting adjectives are used the compiler may reject the program with
a diagnostic message but is not required to.

The compiler may analyse the code of any function and determine its proper-
ties, but is not required to. If these properties conflict with a specified adjective,
it may reject the program with a diagnostic message, but is not required to. It
may issue a warning and continue, in which case it is required to discard the
incorrect description.

The compiler may also add descriptive attributes based on analysis.

It is vital to understand how the compiler is allowed to use the descriptors for
optimisation. If a function is pure total and strict, it is referentially transparent,
and can be evaluated at any point for which the arguments can be transparently
computed.

On the other hand, most of the adjectives can be ignored by the compiler,
due to the indeterminate evaluation strategy. It may not be safe to eagerly
evaluate the argument of a nonstrict function, but the compiler is entitled to do
so anyhow.

Except in special circumstances, the descriptors may be used to aid optimi-
sation, in which case a fault is the programmers if the descriptor is incorrect,
but they do not enforce a particular evaluation technique.

The special circumstances are currently: if a function is marked inline, a
direct call to the function will be inlined if it is not recursive. A closure, however,
might not be inlined.

If a function is marked noinline, it will never be inlined.

If a function has a var parameter, it will act as if eagerly evaluated, unless
it is statically determined the result of the evaluation is unused, in which case
it may be eliminated.

If the argument type is a function, it will act as if the argument closure is
evaluated only on demand, that is, lazily evaluated.

For a fun binder, side-effects are not allowed, and the compiler may reject
a program in which a fun-bound function has side-effects. However there is a
special caveat, debugging side-effects are allowed. Since it is hard to determine
exactly what a debugging side effect actually is, and whether in fact a func-
tion has side-effects or not, the compiler is generally conservative are accepts
functions with side effects without protest. However it may assume for optimisa-
tion purpose that there are no side-effects, reordering or eliminating debugging
side-effects. Indeed, this is part of the reason for using such debugging, to deter-
minate what the compiler actually did to evaluate the function. Unfortunately
such side effects may be detectable and change the evaluation strategy. Writing
to standard error is a designated debugging side-effect. Felix also contains some
built-in and library supplied monitoring.

1.6 Contracts
1.6.1 Preconditions

Some partial function can be made total by restricting the domain to a suitable
subset. However often there is no suitable type available and we may use a
precondition instead. For example:

fun h (x:int where x< MAXINT / 2 and x > MININT /2) => x + x;

Preconditions may serve as documentation or be tested dynamically either at
the function call site or in the body of the function.

A precondition may be thought of as a run time typing constraint. For
example the actual type of the domain of the function above is not int, but a
subrange of int with bounds halved. A type error therefore consists of both
static and dynamic checking.

Static typing can be tricked by use of casts. Dynamic type checks may be
elided by the compiler because it is lazy about implementing them, because the
compiler can prove that they will never fail, or because the programmer told
the compiler to elide them.

1.6.2 Postconditons
Sometimes semantic constraints may be specified like this:

fun f (x:double) : double expect result <= 1.0 => sin x;

The expect expression introduces a postcondition which serves as a constraint
on the implementation. The postcondition may be checked before returning the
result or serve as documentation.

1.6.3 Contracts

When both a pre and post condition are given, together they consititue a con-
tract. For example

fun h (
x:int
where x< MAXINT / 2 and x > MININT /2)
int
expect if x < O then result < 0 else result >= 0 endif
=>
X + X

The contract says if you provide a suitably small argument then the result will be
the same sign as the argument. A contract is a constraint on the implementation
of the function, but not usually a complete specification.

A contract has two interpretations: first, as a checkable precondtion and
postcondition, this is the interpretation used by Felix.

But second, it may be viewed as merely saying that if the precondition is met
then the postcondition will be, and in particular not implying that an argument
not satifying the precondition is a wrong value to give to the function. That is,
the contract can be checked but if a value outside the specified precondition is
supplied to the function, the contract is satisfied. Felix allows you to say this
by writing the contract as an implication in the postcondition:

fun h (

x:int : int

expect

x< MAXINT / 2 and x > MININT /2)
implies
if x < 0 then result < 0 else result >= 0 endif

=>
X + X

2 Procedures

If a function return type is specified as void or the proc binder is used, that
designates a special kind of function which normally returns control but no
value called a procedure. Unlike other kinds of functions, procedures are not
only allowed to have side-effects but should have them, since they have no
impact on a program if they do not. Useless procedures, however, are allowed
because they may result from commenting out the body of a procedure during
development.

Calls to procedures are statements, and are executed deterministically when
control flows through the procedure call.

Procedures with limited side effects may be used in functions, provided the
side effects do not escape the function, for example if they only modify a local
variable.

We will say a bit more about procedures later, however we will note that the
inline and noinline adjectives apply to procedures. Evaluation strategy issues
also apply to procedures.

3 Generators

There is a kind of function which is allowed to have side-effects called a gener-
ator. The prototypical generator is the rand() function. See below for more
information on generators. Generators may be defined using the gen binder. A
simple example of a generator:

var counter = 1;
gen fresh() : int= {
++counter;

return counter;

}

Each call to this function will return a different value since the function modifies
the variable it depends on. A generator may still depend only on its arguments:

gen fresh(counter: &int) : int= {
++*kcounter;
return *counter;

}

Although this generator has side effects, and depends on an external variable,
the address of the variable is passed to the generator.

3.1 Generator lifting

When Felix sees a direct call to a generator in an expression, the call is lifted
out and replaced by a fresh variable. The variable is declared and assigned to
the application in a statement preceeding the statement containing the original
application. Just how far back this is depends on the context and it may result
in access to uninitialised variables.

If the lifted expression itself contains a direct generator application, the
process is repeated.

If a call has an argument which is an explicit tuple expression, and both
subexpressions contain a generator application, the first written application will
be evaluated before the second one.

These rules are therefore equivalent to a depth first left to right tree visi-
tation. The resulting order of evaluation is therefore determinstic module re-
ordering in the parser and front end desugaring, with the following caveat: if a
generator result is not used, it will be elided and the side-effects lost.

Note carefully these rules only apply to direct applications. Generator clo-
sures have the same type as a similar function, so closure evaluations cannot be
reordered.

3.2 Yielding Generators

A special kind of generator is available in Felix called a yielding generator. Such
a generator does not use any external storage explicitly for its state.

gen fresh() : int= {
var counter = 10;
while counter > 0 do
—-—-counter;
yield counter;
done
return counter;

}

var fresher = fresh;
println$ fresher(), fresher();

The yield statement causes a value to be returned but preserves the cur-
rent program location so a subsequent invocation resumes execution where it
previously left off. In the case of a return statement, execution resumes by
re-evaluating the return statement. The above generator, therefore, will count
down from 9 through to 1 and then return an infinite stream of 0.

This kind of generator does not really hold its state internally. Instead, it
must be explicitly assigned to a variable which holds a closure of the generator
function. Calls are then made through the variable which contains the local
variables of the generators stack frame as subobjects.

Generators differ from functions operationally in that calls through variables
do not cause the clone of the value to be spawned, and therefore are deliberately
not reentrant. Functions on the other hand clone the closure on every invocation
to ensure they commence with clean local variables. Although normally this
does not matter, the program counter for a function closure is stored inside
the function closure and if the function is called again, it would restart like a
generator, where it last left off: at the end. This is especially vital for recursive
functions which have to be re-entrant.

With yielding generators, the programmer is responsible for creating the
state object, so real recursion can be implemented by suitably managing the
state variables.

The run time behaviour of a generator or procedure is determined by the
original definition, that is, when a closure is passed to a higher order function,
if it was a function closure the closure will be cloned before execution, if it was
a generator closure, it will not be. The higher order function does not know or
need to know. However a higher order function which is expected to be purely
functional may not be if it is passed a generator closure.

4 Fibres

A fibre or fthread is an object participating in a synchronous interleaved sharing
of a physical thread of control. The context switching is constrained but not
determinate.

Fibres use synchronous channels or schannels to mediate exchange of control.

begin
var ins, outs = mk_ioschannel_pair();
proc reader () {
var k = read ins;
while true do

println$ k;
k = read ins;
done

3

10

proc writer () {
for i in 1..20 do
write (outs, i);
done
}
spawn_fthread reader;
spawn_fthread writer;
end

Here, we create two bindings of the same schannel, one resticted to reading and
one to writing. These act as the two ends of the data pipeline.

The reader will read a value from the channel and print it, the writer writes
a finite number of values and gives up.

The use of begin and end pair to create a block here is critical. When the
block has finished spawning the two fibres it will exit. However the program
will not terminate yet. The program itself is just an fthread, and althougth that
fthread is now finished, the spawned fthreads have not.

When the writer is finished writing it will terminate, leaving the reader
hanging on the schannel for input which will never come. However, the reader is
only reachable through the schannel, and the schannel is only reachable through
the block, and the block is not reachable at all, so the garbage collector will
remove the block and the schannel and the program will terminate.

More precisely, programs terminate when the current fibre has complete and
there are no other fibres waiting to be scheduled. When a read or write on an
schannel is performed, the executing fibre is moved to the schannel’s wait queue.
Then, if the request was for a read and there is a waiting writer, or a write and
there is a waiting reader, both the requestor and requestee are moved off the
schannel’s wait queue back onto the master scheduler queue. Because of this
an unsatisfied read or write allows any fibre scheduled on the master queue to
become active and it may perform the required read or write if the schannel is
reachable.

It is technically not determined which fibre runs first at a control exchange
point. However for pragmatic reasons the reader is always allowed to proceed
first in the current implementation so it may fetch a value from the writers stack
frame as it is at the time of the synchronisation without the writer having a
chance to modify its state.

Similarly, when an fthread is spawned it is technically not determined whether
the spawnee or spawner will proceed first, but for pragmatic reasons the spawnee
proceeds first. This makes a spawn operation identical to a subroutine call and
allows the spawneed to fetch data from the spawner before it has a chance to
modify it.

This enables more controlled shared memory data access.

Note carefully fthreads are coroutines which do not have a master/slave or
push/pull relationship: they are peers. The main routine is in fact just another
such fibre with no special privileges.

Note again that fibres interleave control within a single pthread, and in

11

particular a single CPU. There is no pre-emption here, and no concept of con-
currency or parallelism. Control exchanges are entirely synchronous.

5 Restrictions on Service Calls

Although Felix procedures may be nested in functions, certain operations called
service calls may not be. Spawning an fthread and reading and writing on
schannels is performed by a service call. A service call is basically an entry into
the abstract operating system.

Unfortunately, Felix performs service calls by the simple expedient of setting
a flag in the procedure making the call and returning to the scheduler. In order
for a return to actually return to the scheduler, the machine stack must have
the schedulers return address at the top. That is, when the scheduler calls the
procedure, the procedure must pop the machine stack back to where it was on
entry before returning.

On the other hand, in order to resume after a service call, the scheduler just
calls the same method again. So the procedure is responsible for saving the code
address of point after the service call, knowns as the current continuation and
jumping back to it when re-entered.

Felix organises this by placing local variables in C++ class objects instead
of on the machine stack, and avoiding constructions such as for loops and blocks
which may use the machine stack. In this way, it is possible to jump directly to
the current continuation, which is done either by a switch or computed goto.

In other words, Felix procedures may not use the machine stack except
transiently. Instead, procedure stack frames are allocated on the heap and
linked together with pointers. In particular a procedure return address is saved
by the calling procedure, not the callee. This means that procedures are not
reentrant. This is not an issue because the frame contains mutable variables
anyhow, and the current state is associated with the current locus of control.

Unfortunately, whilst functions also may use heap allocated stack frames, the
return address for a function is stored in the usual way on the machine stack.
This is done to ensure C compatibility, in particular C expressions built out of
Felix function closures will work fine in C. Conversely, C functions wrapped as
Felix functions will work fine in Felix.

However the impact is that a function may not, directly or indirectly, perform
a service call. Procedures called by the function will work even if they call
and return, because the function calling the procedure provides its own mini-
scheduler which supports calls and returns. But the mini-scheduler does not
support service calls.

6 Low level Control exchange

Felix also provides a low level control exchange instruction which allows two
procedures to swap control. The instruction is a branch-and-link instruction

12

which jumps to a location stored in a variable and at the same time storing the
current location in another variable.

The fthread mechanism is higher level and is implemented in C++ rather
than using this instruction. The effect is the same however: a peer-to-peer
control exchange. However the direction of control transfer with branch-and-
link is fully determinate.

The branch-and-link instruction involves a service calls and so the same
restrictions apply to it.

13

