10000 'MPNNPOMModel' object is not callable · Issue #30 · ARY2260/openpom · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

'MPNNPOMModel' object is not callable #30

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
Abhishek-Sood opened this issue May 2, 2025 · 0 comments
Open

'MPNNPOMModel' object is not callable #30

Abhishek-Sood opened this issue May 2, 2025 · 0 comments

Comments

@Abhishek-Sood
Copy link

So i was using gnn explainer in this GNN based model using OPENPOM model and pytorch's GNNExplainer algorithm. But i was encountering error while generating explanation using the below code. Any help would be beneficial.


input_file = 'curated_GS_LF_merged_4983.csv' # or new downloaded file path

featurizer = GraphFeaturizer()
smiles_field = 'nonStereoSMILES' # column that contains SMILES
loader = dc.data.CSVLoader(tasks=TASKS,
feature_field=smiles_field,
featurizer=featurizer)
dataset = loader.create_dataset(inputs=[input_file])
n_tasks = len(dataset.tasks)
len(dataset)

randomstratifiedsplitter = dc.splits.RandomStratifiedSplitter()
train_dataset, test_dataset, valid_dataset = randomstratifiedsplitter.train_valid_test_split(dataset, frac_train = 0.8, frac_valid = 0.1, frac_test = 0.1, seed = 1)

print("train_dataset: ", len(train_dataset))
print("valid_dataset: ", len(valid_dataset))
print("test_dataset: ", len(test_dataset))
train_ratios = get_class_imbalance_ratio(train_dataset)
assert len(train_ratios) == n_tasks
learning_rate = dc.models.optimizers.ExponentialDecay(initial_rate=0.001, decay_rate=0.5, decay_steps=32*20, staircase=True)


model = MPNNPOMModel(n_tasks = n_tasks, # general configuration
                     batch_size = 128,
                     learning_rate = learning_rate,
                     
                     class_imbalance_ratio = train_ratios, # loss calculation
                     loss_aggr_type = 'sum',
                     
                     node_out_feats = 100, # for node and edge feature representation
                     edge_hidden_feats = 75,
                     edge_out_feats = 100,
                     
                     num_step_message_passing = 5,  # for message passing and aggregation
                     mpnn_residual = True,
                     message_aggregator_type = 'sum',
                     
                     
                     mode = 'classification',
                     
                     number_atom_features = GraphConvConstants.ATOM_FDIM, #number of input features per atom
                     number_bond_features = GraphConvConstants.BOND_FDIM, #number of input features per bond
                     
                     n_classes = 1,  #suggest its a binary classification problem as per the dataset where 0 is no odor and 1 is odor
                     readout_type = 'global_sum_pooling',
                     num_step_set2set = 3,
                     num_layer_set2set = 2,
                     ffn_hidden_list = [392, 392],
                     ffn_embeddings = 256,
                     ffn_activation = 'relu',
                     ffn_dropout_p = 0.12,
                     ffn_dropout_at_input_no_act = False,
                     weight_decay = 1e-5,
                     self_loop = False,
                     optimizer_name = 'adam',
                     log_frequency = 32,
                     model_dir = './experiments',
                     device_name ='cpu')
explainer = Explainer(
    model=model,
    algorithm=GNNExplainer(epochs=200),
    explanation_type='model',
    node_mask_type='attributes',
    edge_mask_type='object',
    model_config=dict(
        mode='multiclass_classification',
        task_level='graph',
        return_type='log_probs',
    ),
)

batch = torch.zeros(data.x.size(0), dtype=torch.long)

with torch.no_grad():
    output = model(data.x, data.edge_index, batch)
print(f"Model output shape: {output.shape}")
print("Forward pass successful!")
print("Running explainer...")
exp = explainer(
    x=data.x,
    edge_index=data.edge_index,
    target=label_id,
    batch=batch
)
print(f"Explanation for '{TASKS[label_id]}' odor:")
print(f"Node importance: max={exp.node_mask.max().item():.3f}, min={exp.node_mask.min().item():.3f}")
print(f"Edge importance: max={exp.edge_mask.max().item():.3f}, min={exp.edge_mask.min().item():.3f}")
   
    # Optionally, if you need to visualize the results
print("Explanation generated successfully!")

while the explainer uses mode='multiclass_classification', and is set as multiclass, and the problem that openpom solves is multi label, i was handling it already from extracting 571 smile strings that have only single label as their discriptor, so it sorts of represent multi class so considering that the dataset is already converted to PyG format . So please help how to resolve this error.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant
0