8000
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
how to describe xgb parameters inlcude booster subparameters using space.py, mycode
{ "min_child_weight": choco.uniform(0, 20), "n_estimators": choco.quantized_uniform(25, 525, 20), "max_depth": choco.quantized_uniform(1, 20, 1), "subsample": choco.uniform(0.7, 1.0), "learning_rate": choco.uniform(0.001, 1.0), "colsample_bytree": choco.uniform(0.1, 1.0), "colsample_bylevel": choco.uniform(0.1, 1.0), "reg_alpha": choco.log(-10, -1, 10), "reg_lambda": choco.log(-10, -1, 10), "booster": { "gbtree": None, "gblinear": { "updater": { "shotgun": None, "coord_descent": None }, "feature_selector": { "cyclic": None, "shuffle": None, "random": None, "greedy": None, "thrifty": None } }, "dart": { "sample_type": { "uniform": None, "weighted": None }, "normalize_type": { "tree": None, "forest": None }, "rate_drop": choco.uniform(0.0, 1.0), "skip_drop": choco.uniform(0.0, 1.0), } }, }
only generate {'booster': 'dart', 'colsample_bylevel': 0.18988467350254096, 'colsample_bytree': 0.14279195511563256, 'learning_rate': 0.5499628359285743, 'max_depth': 12, 'min_child_weight': 11.517182050898144, 'n_estimators': 65, 'reg_alpha': 0.0008107887387917439, 'reg_lambda': 1.995310903080172e-10, 'subsample': 0.8042911086851237},sample_type and normalize_type dose not generated
{'booster': 'dart', 'colsample_bylevel': 0.18988467350254096, 'colsample_bytree': 0.14279195511563256, 'learning_rate': 0.5499628359285743, 'max_depth': 12, 'min_child_weight': 11.517182050898144, 'n_estimators': 65, 'reg_alpha': 0.0008107887387917439, 'reg_lambda': 1.995310903080172e-10, 'subsample': 0.8042911086851237}
sample_type
normalize_type
The text was updated successfully, but these errors were encountered:
In this case, you should use choco.choice(["uniform", "weighted"]) as a distribution instead of a dict containing an empty key.
Sorry, something went wrong.
leconteur
No branches or pull requests
how to describe xgb parameters inlcude booster subparameters using space.py,
mycode
only generate
{'booster': 'dart', 'colsample_bylevel': 0.18988467350254096, 'colsample_bytree': 0.14279195511563256, 'learning_rate': 0.5499628359285743, 'max_depth': 12, 'min_child_weight': 11.517182050898144, 'n_estimators': 65, 'reg_alpha': 0.0008107887387917439, 'reg_lambda': 1.995310903080172e-10, 'subsample': 0.8042911086851237}
,sample_type
andnormalize_type
dose not generatedThe text was updated successfully, but these errors were encountered: