[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Loi d'Erlang

loi de probabilité
(Redirigé depuis Distribution d'Erlang)

La distribution d'Erlang est une loi de probabilité continue, dont l'intérêt est dû à sa relation avec les distributions exponentielle et Gamma. Cette distribution a été développée par Agner Krarup Erlang afin de modéliser le nombre d'appels téléphoniques simultanés.

Erlang
Image illustrative de l’article Loi d'Erlang
Densité de probabilité
Graphes de densités pour la distribution d'Erlang.

Image illustrative de l’article Loi d'Erlang
Fonction de répartition
Graphes de fonctions de répartition pour la distribution d'Erlang.

Paramètres Paramètre de forme (entier)
intensité (réel)
alt.: paramètre d'échelle (réel)
Support
Densité de probabilité
Fonction de répartition
Espérance
Médiane pas de forme simple
Mode pour
Variance
Asymétrie
Kurtosis normalisé
Entropie
Fonction génératrice des moments pour
Fonction caractéristique

Généralités

modifier

La distribution est continue et possède deux paramètres : le paramètre de forme  , un entier, et le paramètre d'intensité  , un réel. On utilise parfois une paramétrisation alternative, où on considère plutôt le paramètre d'échelle  .

Lorsque le paramètre de forme   vaut 1, la distribution se simplifie en la loi exponentielle.

La distribution d'Erlang est un cas spécial de la loi Gamma, où le paramètre de forme   est un entier. Dans la loi Gamma, ce paramètre est réel positif supérieur ou égal à 1.

Caractérisation

modifier

Densité de probabilité

modifier

La densité de probabilité de la distribution d'Erlang est

 

Le paramètre   est le paramètre de forme, et   le paramètre d'intensité. Une paramétrisation équivalente met en jeu le paramètre d'échelle  , défini comme l'inverse de l'intensité (c'est-à-dire  ) :

 

La présence de la factorielle implique que k doit être un entier naturel supérieur ou égal à 1. Mais la loi Gamma généralise la distribution d'Erlang où ce paramètre k est un réel quelconque positif supérieur ou égal à 1. L'expression de la fonction de densité de probabilité est obtenue en remplaçant   par  , qui la valeur prise par la fonction gamma en k.

Fonction de répartition

modifier

La fonction de répartition de la distribution d'Erlang est

 

  est la fonction gamma incomplète. Cette fonction peut aussi s'écrire :

 

Occurrences

modifier

Processus de renouvellement

modifier

La distribution d'Erlang est la distribution de la somme de k variables aléatoires indépendantes et identiquement distribuées selon une loi exponentielle de paramètre  . Si chacune de ces variables aléatoires   représente le temps au bout duquel un événement donné se produit (par exemple, une intervention à la suite d'une panne sur un appareil sans usure et sans mémoire), alors la variable aléatoire   au bout duquel le k-ème événement a lieu suit une loi d'Erlang de forme k et de paramètre  .

Processus de Poisson

modifier

Si l'on se donne un instant t, on montre que la variable aléatoire   égale au nombre d'entiers k tels que   suit une loi de Poisson de paramètre  [1]. Dans l'interprétation ci-dessus,   est le nombre d'interventions effectuées avant l'instant t.

Voir aussi

modifier

Liens externes

modifier

Références

modifier
  1. Didier Dacunha-Castelle, Marie Duflo, Probabilités et statistiques, T.1, problèmes à temps fixe, Masson (1982)