[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Conjectures de Pollock

Les conjectures de Pollock sont un couple de conjectures non démontrées de la théorie additive des nombres formulées pour la première fois en 1850 par Sir Frederick Pollock. Elles constituent une extension possible du théorème Fermat-Cauchy des nombres polygonaux aux nombres figurés à trois dimensions, aussi appelés nombres polyédraux.

  • conjecture de Pollock des nombres tétraédriques : tout entier positif est la somme d'au plus cinq nombres tétraédriques.
  • conjecture de Pollock des nombres octaédriques : tout entier positif est la somme d'au plus sept nombres octaédriques.

Histoire

modifier

Frederick Pollock (1er baronnet) était connu comme avocat et homme politique, mais envoyait des articles de mathématiques à la Royal Society.

Bibliographie

modifier
  • L. E. Dickson, History of the Theory of Numbers, Vol. II : Diophantine Analysis, Dover, (ISBN 0-486-44233-0), p. 22–23
  • Frederick Pollock, « On the extension of the principle of Fermat's theorem on the polygonal numbers to the higher order of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders », Abstracts of the Papers Communicated to the Royal Society of London, vol. 5,‎ , p. 922–924 (JSTOR 111069)

Articles connexes

modifier

Liens externes

modifier

Source de la traduction

modifier