Chapter 12
Proof-based Test Case Generation

Wolfgang Ahrendt, Christoph Gladisch, Mihai Herda

12.1 Introduction

Even though the area of formal verification made tremendous progress, other valida-
tion techniques remain very important. In particular, software testing has been, and
will be, one of the dominating techniques for building up confidence in software. For-
mal verification on the one hand, and testing on the other hand, are complementary
techniques, with different characteristics in terms of the achieved level of confidence,
required user competence, and scalability, among others.

The fundamental complementarity between verification and testing is thus: on
one hand, as Dijkstra famously remarked, it is generally impossible to guarantee the
absence of errors merely by testing, i.e., testing is necessarily incomplete. But formal
verification suffers from a different kind of incompleteness: it applies only to those
aspects of a system that are formally modeled, while testing can exhibit errors in
any part of the system under test. Therefore, testing and verification need to address
different goals. One of the main challenges of testing is the creation of good test
suites, i.e., sets of fest cases. The meaning of ‘good’ is generally fuzzy, but there
exist criteria, some of which we discuss in Section 12.3.

Beyond the complementary nature of formal verification and testing, the former
can even contribute to the latter. The ability of the verification machinery to analyze
programs very thoroughly can be reused for the automated creation of test suites
which enjoy certain quality criteria by construction. This goal is achieved also by
KeYTestGen, the verification based test case generation facility of KeY. To explain
the basic principle, let us first recapitulate the ‘standard’ usage of KeY as a formal
verification tool.

From source code augmented with JML specifications (see Chapter 7), KeY
generates proof obligations (see Chapter 8) in dynamic logic (DL, see Chapter 3).
During verification with the KeY prover, the proof branches over case distinctions,
largely triggered by Boolean decisions in the source code (see below, Section 12.6).
On each proof branch, a certain path through the program is executed symbolically.
It turns out that for test case generation, one can use the same machinery. The idea is

415

© o N o wm R W o —

416 12 Proof-based Test Case Generation

to let the prover construct a (possibly partial) proof tree (with a bounded number of
loop unwindings), to then read off a path condition from each proof branch, i.e., a
constraint on the input parameters and initial state for a certain path to be taken. If we
generate concrete test input data satisfying each of these constraints, we can achieve
strong code coverage criteria by construction, like for instance MC/DC (Modified
Condition/Decision Criterion, see Definition 12.6). KeYTestGen implements these
principles [Engel and Héhnle, 2007, Beckert and Gladisch, 2007, Gladisch, 2011]. It
is integrated into the KeY GUI, and offers the automated generation of test cases in
the popular JUnit [Beck, 2004] format.

In addition to the source code, KeY’s test generation facility employs formal
specifications, for two purposes. First, specifications are needed to complete the test
cases with oracles to check the test’s pass/fail status. The second role of specifications
is to allow symbolic execution of method calls within the code under test. The prover
can use the specification, rather than the implementation, of called methods to
continue symbolic execution.

public class ArrayUtils {
/*@ public normal_behavior
@ ensures (\forall int i; 0<=i && i<a.length; al[il==b[il);
@x/
public void arrCopy(int[] a, int[] b) {
for(int i=0; i<a.length; i++) {
blil=alil;
}

}
Listing 12.1 Method arrCopy violates its contract

As an example, Listing 12.1 shows the method arrCopy which is supposed to
copy the contents of array a to array b. This is clearly not the case since the length
of the array b may be smaller than that of array a, in which case a is only partially
copied and an exception is thrown. We will show in the rest of this chapter how the
user can find errors, like also this one, using KeYTestGen. Throughout the chapter
we will explain what effects different settings and options have on the generated tests
and give advice which of them should be used for different purposes.

12.2 A Quick Tutorial

This section contains instructions for the set-up and basic usage of KeYTestGen.
Naturally, some of the artifacts and concepts that appear in this section will be
clarified only in the latter sections.

12.2. A Quick Tutorial 417

12.2.1 Setup

The minimal software requirement that is needed in order to run KeYTestGen is
the KeY system and the Z3SMT solver. Version 4.3.1 (or higher) of Z3 is required
which can be downloaded from github.com/Z3Prover/z3.! If the Z3 command is
available in the environment in which KeY is running, then KeYTestGen will run out
of the box. The SMT solver is needed for the test data generation. This is the only
requirement necessary for test case generation, the other two libraries mentioned in
this section are merely required for running the test cases when certain options have
been selected during the test case generation phase.

OpenJML is a library which contains various tools for the JML specification
language. Among them there is a runtime assertion checker (RAC) which can be
used to check at runtime whether the code fulfills the JML specification. This library
is needed for compiling and running the generated test cases with OpenJML. Note,
however, that OpenJML as of this moment is not compatible with Java 8, such that it
must be compiled and executed with Java 7. The library can be downloaded from
www.openjml.org. KeYTestGen requires OpenJML version 0.7.2 or higher.

Objenesis is a library which allows the initialization of private class fields and the
instantiation of classes which do not have a default constructor. When the Objenesis
option is selected, then the generated test cases use functions from this library
when initializing object fields of the test data. This library can be downloaded from
objenesis.org. KeYTestGen requires Objenesis version 2.2 or higher.

12.2.2 Usage

Generating test cases for the method arrCopy in Listing 12.1 consists of the follow-
ing steps’:

1. First download the examples for this chapter from this book’s web page,
www.key-project.org/thebook?2.

2. Start KeY. (See also Section 15.2.)

3. We open the file browser by selecting File — Load (or selecting & in the tool
bar), and navigate to the examples directory for this chapter.

4. Preselect the arrCopy folder and press the Open button.

5. The Proof Management window will open. In its Contract Targets pane, we make
sure that ArrayUtils is expanded, and therein select the method arrCopy(). We are
asked to select a contract (in this case, there is only one), and press the Start
Proof button.

6. Press & in the main window which opens the Test Suite Generation window.

! Tn addition, Z3 is offered as a package for various Linux distributions.

2 Here it is assumed that KeY is configured with the default settings and that the environment has
been setup according to Section 12.2.1. Default settings of KeY can be enforced by deleting the .key
directory in the user’s home directory and restarting KeY.

https://github.com/Z3Prover/z3
http://www.openjml.org/
http://objenesis.org/
http://www.key-project.org/thebook2

418 12 Proof-based Test Case Generation

7. Select the settings as shown in Figure 12.1 (adjusting the paths to your environ-
ment) and press the Start button.

8. Browse to the directory where the tests have been generated. The path is dis-
played in the notification panel of the Test Suite Generation window. Compile
and execute the tests.

In the following, we describe these steps in more detail and describe also alternative
steps.

Concerning the Java code under test, two technicalities should be noted. First,
the generation of test inputs is based on symbolic execution of the source code.
This requires either the entire source code under test, or source code stubs (method
signatures) of all called library methods. The imported files can be placed in the
same directory as the file that is loaded: KeY will load all files from that directory.
Second, KeY can load only methods annotated with Java Modeling Language (JML)
contracts (or specifications). This issue can be easily solved by placing the trivial
JML contract

/*@ public normal_behavior requires true; ensures true; 0x/

in the source code line above the method that is called in the code under test (similar
as in Listing 12.1). The keyword normal_behavior specifies that no exception is
thrown, requires specifies the precondition, and ensures specifies the postcondi-
tion of the method. Since the precondition is true, all inputs and initial states of the
method are permitted; since the postcondition is true as well, all outputs and final
states of the method satisfy the postcondition, thus the JML contract is trivial.?

KeYTestGen bases test generation on the analysis of (possibly partial) proofs. Any
partial or completed proof in KeY for a Java program can be used. If no such proof is
available, KeYTestGen will generate one. To open the Test Suite Generation window,
the user needs to press the © button. From the Test Suite Generation window, shown
in Figure 12.1, the user can start the test case generation process by pressing the Start
button. The process can be forcefully stopped by using the Stop button.

The left side of the Test Suite Generation window consists of a notification panel.
It notifies the user about the progress of the test case generation process, about any
errors which may have occurred during the process, and the directory in which the
generated test files are stored. In Figure 12.1, the output reports on the symbolic
execution and test case generation for the arrCopy example shown in Listing 12.1,
after loading the specified program into KeY. After the program is symbolically
executed, path conditions are extracted for the resulting open goals.

Since the option to include postconditions is checked, the postconditions are not
removed from the proof obligation. In this case, KeYTestGen will try to avoid generat-
ing test cases that satisfy the postcondition. To prepare the checking, a preprocessing
step called “Semantic Blasting” is applied to each of the goals, replacing the occur-
rence of certain KeY functions by an axiomatization of their semantics, as explained
in Section 12.7. The resulting goals are then translated to bounded SMT format and

3 While such trivial contracts of called methods satisfy the technical requirement for test generation,
more informative specifications may be needed in some cases to produce good test cases.

12.2. A Quick Tutorial 419

© @ Test Suite Generation

Warning: 23 supported versions are: [version 4.3.1] - . .

App\ymg TestGZ?w Macro (bounded symbolic execution)...] Apply symbolic execution
Finished symbolic execution

Extracting test data constraints (path conditions). Maximal unwinds: [z

Extracted 7 test data constraints.

[Test data generation: appling semantic blasting macro on proofs Require invariant for all objects

Done applying semantic blasting.

[Test data generation: solving 7 SMT problems...
please wait...

Finished salving SMT problems: 7 Parallel SMT solvers: 1
- SMT Solver Results -
solved pathconditions:4 [J use reflection framework
invalid pre-/pathconditions:3
unknown:0

Include postcondition

Location of objenesis.jar:

;t Casa for NodeNr: 906 }u me/mihai/Software,/| jenesis-2.2 jar H choose file |

: Test Case for NodeNr: 865
Generate: Test Case for NodeNr: 575
Generate: Test Case for NodeNr: 286
Writing test file to:/home/mihaittestFiles/home/mihaiiworkspace/Exan

< Generate JUnit and test oracle ® Runtime checking with OpenJML III

Location of openjml:

Compile and run the file with oparjml!
[Ihome/mihaisoitwaraibs/openimi |[choosefolder |
Store test cases to folder:
o 2
“ . o [ihome/mihaittestFiles | | choose folder |

Figure 12.1 The Test Suite Generation window

handed over to an SMT solver, here Z3. In the example, not all path conditions lead to
counterexamples, only four paths can be solved. For the remaining three conditions,
where the postcondition is satisfied, no test data is generated. The four test cases are
then generated and written to a file. The final lines in the notification panel tell the
user into which directory the test cases and supplementary files were stored. The user
may browse this directory, compile and run the tests.

Two possibilities are offered for compiling and executing the generated tests.
When the option Use JUnit and test oracle is enabled, KeY TestGen generates test cases
in JUnit format, featuring test oracles that are translated from the JML specification
of the currently loaded Java program. The generated files are located in the directory
specified in the text area Store test cases to folder and can be compiled using a Java
compiler. OpenJML does not support the JUnit API and uses its own runtime checker
as test oracle. When using OpenJML, the former option must be disabled and the
path of the folder containing the OpenJML library should be specified in the text
field at the bottom. For convenience, KeYTestGen generates in this case the shell
scripts compileWithOpenJML.sh and executeWithOpendML.sh in the test output
directory. These scripts can be used for compiling and running the tests on Linux
systems. The usage of these scripts is explained in Section 12.8.2. (Also, the scripts
contain instructions as comments.) On other systems the user can manually compile
and run the tests as instructed in the OpenJML’s user manual.

12.2.3 Options and Settings

Here we summarize the remaining options and settings of the Test Suite Generation
window. Some of the options and settings are described in more detail throughout
the chapter where the respective techniques are explained.

420 12 Proof-based Test Case Generation

[Proof | - ' ! Search Sivalogy 5 IProof - PR ap— —
] Proof Tree . -7 Proof Tree

0:0ne Step Simgilaaies §

0:0ina Stan Smwie st & ol
‘ | [> Apply Strategy |-
| Strategy macros Ol

[Apply Strategy
Strategy macros 3

F Auto Pilot » -
= E Pr{ Full Auto Pilot Ctrl+Shift-
Clq Auto pilot (preparation only) cirl+shift-o
Sir| Finish symbolic execution Crl+Shift-x

d TestGen (finite loop unwinding) ct+shifT
TestGen (finite loop unwinding) ctrishfT | = = A

1 Auto Pilot »
¥ Propositional »
Close provable goals below Ctrl+Shift-C

o
w»| Simplification b

=}

-

Figure 12.2 TestGen macro and Finish symbolic execution macro

The first option, Apply symbolic execution, allows the user to symbolically execute
the program as part of the test case generation process. This option should be checked
if the user has just loaded a Java program into KeY and has not yet manually triggered
proof tree generation, i.e., the proof tree consists only of the root node. The symbolic
execution performed here is based on the TestGen macro provided by KeY. Macros
(see Section 15.3) are proof search strategies that a user can manually trigger by a
right-click on a proof node in the proof tab of the main KeY window and selecting
Strategy macros (see Figure 12.2).

The only difference between the Apply symbolic execution option in the Test Suite
Generation window and the Finish Symbolic Execution macro of the main window is
that loop invariants and method contracts for methods called inside the method under
test are not needed. Instead, loops are unwound and method calls inlined finitely
often as specified by the second option Maximal Unwinds. The number given in this
option is the maximum number of allowed occurrences of loop unwinding or method
inlining rule applications from the root of the proof tree to a leaf. After reaching it
on a given path, symbolic execution will stop on that path. KeYTestGen will then use
the resulting proof tree for generating a test suite.

The Require invariant for all objects option needs to be checked if the user wants
the generated test data objects to fulfill their respective class invariants. The default
semantics of KeY requires only the class invariants of the this object. The Include
postcondition option allows the user to choose whether test data should be generated
for all leaf nodes in the proof tree, or whether KeY TestGen should only generate test
data that does not satisfy the postcondition of the method under test (see Section 12.6
for more details). The first type of test data is useful if the user is interested in a high
coverage test suite, while the second type is useful when looking for counterexamples
only, i.e., inputs that violate the postcondition. It should be noted that activating
Include postcondition only affects the open proof goals where symbolic execution is
finished.*

The option Concurrent Processes determines how many instances of the Z3 SMT
solver will run in parallel when looking for test data.

When the method under test uses classes without a default constructor, or if
private or protected object fields must be initialized by the test, then the option
Use reflection framework should be activated. When activated, the Objenesis library

4 There is no modality containing a program in the sequent.

12.3. Test Cases, Test Suites, and Test Criteria 421

is used to instantiate classes without default constructors and the Java reflection
framework is used to initialize private and protected fields. The text field below the
option allows the user to set the path of the location the Objenesis library file. It
should be noted that the runtime checker OpenJML is not capable of handling code
using the reflection framework. In this case, it is recommended to also activate the
option Generate JUnit and test oracle.

12.3 Test Cases, Test Suites, and Test Criteria

This section is a brief introduction into some testing concepts and criteria. It is
neither complete nor general, but aims to give the reader a lightweight introduction
to the testing-related taxonomy that matters in the present context. For an in-depth
treatment see, for example, [Ammann and Offutt, 2008]. Here, our particular focus
is automation of testing activities.

In general, the two major activities in a testing process are the creation and the
execution of sets of test cases. Traditionally, both activities were manual, whereas
modern testing methods automate the execution of test cases. For Java, the pioneering
framework for automated test execution is JUnit, developed by Kent Beck and Erich
Gamma [Beck, 2004]. Automated test case creation, however, is less common, even
though in the past decade a considerable number of test generation tools have been
proposed. Several of them are, like KeYTestGen, based on symbolic execution
and can automatically generate test cases in the JUnit format. As a result, both
the creation and the execution of test cases are automated. What sets KeYTestGen
apart from most other approaches is its embedding into a program logic for formal
verification. As a consequence, KeYTestGen can interleave test generation and
advanced logical simplification, for example, when filtering out test cases that do
not meet preconditions. It is also possible to formulate and satisfy strong coverage
criteria and to generate test oracles from postconditions, as will be shown below.
Related work is discussed in Section 12.10 below.

A test case can formally be described as a tuple (D, Or) consisting of fest data
D and oracle Or, where D is a tuple (Pp,Sp) of input parameters Pp and initial
state Sp before the execution of the test case. The oracle is a function Or(R,Sy) —
{pass, fail}, telling for each combination of return value R and final state Sy whether
those are the expected results of executing this test case.

A test suite TS™ for a (Java) method m consists of n test cases for that method:

TS™ = {(D1,0r1),...,(Dy,0ry)} (12.1)

In the simplest cases Or; compares the result with a single expected value unique for
D;, but in general, Or; may accept a whole set of results. This definition reflects the
fact that the oracle is specific for each and every test case in testing theory as well as
in most testing frameworks, such as JUnit. In the KeYTestGen approach, however,
we aim at having a single, generic oracle, Or™, for each method m, to be computed

422 12 Proof-based Test Case Generation

from the JML specification of m. Then, a test suite 75™, looks like
TS™ = {(Dy,0r™),...,(Dy,0r)} . (12.2)

Accordingly, in our usage of JUnit, we place a call to the same oracle method in each
test case. Conceptually, as the oracle is the same for all D; in 7S™, we can omit Or™
from the representation of test cases, and keep it separate. Thus, we finally define a
test suite 7S as:

78" = ({Dy,...,D,},0r™) (12.3)

where {Dy,...,D,} is the set of test data, which we now can identify with the set
of test cases, and Or™ is the, now single, oracle for m. Assuming a test suite 7S is
given in any of the forms (12.1), (12.2), or (12.3), we write Z(TS™) to denote the
test data set {Dy,...,Dy} of the test suite.

Automation of test suite generation should relieve the developers from

¢ identifying and manually writing test data sets,
¢ identifying and manually writing oracles,
* using additional tools to assess coverage properties of test suites.

The KeYTestGen tool presented in this chapter automates and merges these items. It
computes a test suite (12.3), and from that (provided the JUnit option is checked)
assembles a JUnit test suite which is closer to the form (12.2). The generated test
suite is formally guaranteed to satisfy certain coverage criteria which are explained
below. From the user’s perspective, the generated test suite does not need further
investigation to check what kind of coverage it achieves.

Approaches used for deriving test data can be roughly divided in two main
categories:

White-box testing: ~ when derivation of test data sets is based on analyses of source
code.

Black-box testing: ~ when derivation of test data sets is based on external descrip-
tions of the software (specification, design documents, requirements, probability
distributions).

KeYTestGen is actually a hybrid of these two categories. Its generation of the test
data set 2(TS™) is mainly white-box, with elements of black-box. It is mainly
based on a thorough analysis of the source code, but also on the preconditions from
the specification. It is its white-box nature which allows KeYTestGen to generate
test suites featuring strong code based coverage criteria by construction (including
MC/DC, see below). In general, the view of a clear cut between white-box and
black-box methods is somewhat old-fashioned. Several approaches combine the two,
in which case we can call the method gray-box. Moreover, used artifacts, like, e.g.,
software models, can be positioned in between the internal and external descriptions.
In any case, the value of these notions is that they mark the extreme points of the
design space.

12.3. Test Cases, Test Suites, and Test Criteria 423

Please note that, regardless of the test data, most methods treat the generation of
oracles entirely in black-box fashion. The same is true for KeYTestGen. Otherwise,
the oracles would be in danger of inheriting errors from the implementation.

Let us turn to coverage criteria which may, or may not, be fulfilled by test suites, or,
more precisely, by their test data sets. Two important groups of code based coverage
criteria are classified as graph coverage criteria and logical coverage criteria. Each
graph coverage criterion defines a specific way in which a test data set may, or may
not, cover the control flow graph.

Definition 12.1 (Control flow graph). A Control Flow Graph represents the code of
a program unit as a graph, where every statement is represented by a node and edges
describe control flow between statements. Edges can be constrained by conditions.

On the other hand, when coverage criteria are defined with reference to the set
of logical expressions occurring in the source code, they are referred to as logical
coverage criteria. These criteria talk about the values logical (sub)expressions take
during the execution of different test cases, and the way they are exercised. There is
arich body of results on subsumptions between different coverage criteria (see [Zhu
et al., 1997] for an extended comparison). A testing criterion C| subsumes C; if, for
any test suite 7S fulfilling Cy, it is true that TS fulfills C,.

Definition 12.2 (Branch, Path, Path condition). A (program) branch is a pair of
program locations (a,b) where a is followed by b in the control flow, with the
restriction that a is also followed by a location other than b in the control flow. A
(program) path is a consecutive sequence of program positions that may be visited
in one execution of a program unit. A path condition is a condition on the inputs
and the initial state of a program unit that must be met in order for a particular path
through the unit to be executed.

For example, the program

—— Java

if (x>0) { A } else { B };
x =x - 1;
if (x<0) { C } else { D }

Java—

has four branches: (if (x>0), A), (if (x>0), B), (if (x<0), C), and (if (x<0), D).
And it contains four paths, within which AC, AD, BC, and BD are executed, respec-
tively. These correspond to path conditions x>0 && (x-1)<0, x>0 && !(x-1)<0,
1x>0 && (x-1)<0, and !'x>0 && !(x-1)<O0, respectively. After simplification,
they become x>0 && x<1, x>0 && x>=1, x<=0 && x<1, and x<=0 && x>=1.
Note that in general the guards may be complex statements with side effects, in
which case they must be considered as part of the branch or path.

Definition 12.3 (Feasible/infeasible path condition). If a path cannot be executed
because its path condition is contradictory (i.e., it is equivalent to false), then the path,

424 12 Proof-based Test Case Generation

respectively the path condition, is called infeasible. Otherwise, the path, respectively
the path condition, is feasible. A feasible or infeasible program branch is defined
analogously.

In the above program the paths AC and BD are infeasible because the path conditions
x>0 && x<1 and x<=0 && x>=1 are infeasible, i.e., unsatisfiable. (We assume x to
be of type int.)

Definition 12.4 (Full feasible bounded path coverage). Let BP be the set of paths
of a method or a sequence of statements P which are bound by a given number of
method invocations and loop iterations. A test suite T satisfies full feasible bounded
path coverage for P if every feasible path of BP is executed by at least one test of 7.

For example, a test suite satisfying full feasible bounded path coverage with bound 2
for the program

while (i<n) { if (cond) { A } else { B } }
must execute the feasible paths from the set {AA, AB, BA, BB}.

Definition 12.5 (Full feasible branch coverage). Let BB be the set of branches of
a method or a sequence of statements P. A test suite 7 satisfies full feasible branch
coverage for P if every feasible branch of BB is executed by at least one test of 7.

Full feasible branch coverage requires that in the above loop the two branches
(if (cond), A) and (if (cond), B) are executed if feasible paths exists containing
these branches. We will see in Section 12.6 that achieving full feasible branch
coverage can be very challenging in certain cases (e.g., Listings 12.2 and 12.3), but
due to the theorem proving capabilities of KeY it can be achieved also for difficult
cases.

The MC/DC coverage criteria is in particular interesting for industrial applications,
because it is required in the aviation domain for certification of critical software
by the DO-178C/ED-12C standard [RTCA] and it is highly recommended in the
automotive domain by the standard ISO 26262. Its interest lies in providing relatively
strong coverage while its complexity (the size of test suites) grows linearly with
the number of atomic conditions in a program. In the following, we give no formal
definition for conditions and decisions, but explain those terms by the example
following the definition.

Definition 12.6 (Modified Condition / Decision Coverage (MC/DC) [RTCA]).
Every point of entry and exit in the program has been invoked at least once, every
condition in a decision in the program has been taken on all possible outcomes at
least once, and each condition has been shown to independently affect the decision’s
outcome. A condition is shown to independently affect a decision’s outcome by
varying just that condition while holding fixed all other possible conditions.

In [Vilkomir and Bowen, 2001] the MC/DC coverage criterion is illustrated by the
following example:

12.3. Test Cases, Test Suites, and Test Criteria 425

Table 12.1 MC/DC coverage example as illustrated in [Vilkomir and Bowen, 2001]

combination| values |variations MC/DC
number |A|B|C|d|A[B| C
1 11|11
2 111|101 *]|* +
3 110[1|1 * +
4 O|1]1(1
5 1{0]0[0] |*| * +
6 0|1|0(0f* +
7 0{0|1]0
8 0/0]|0[0

d= (A& B) || (A& C) || (B & C)

The decision is the entire expression denoted by d. The conditions are the three
subexpressions (A && B), (A && C), and (B && C). A test suite satisfying the
MC/DC criterion is shown in Table 12.1. The pair satisfying each condition is
marked **’. The subset of combinations marked "+’ satisfies the criterion.

KeYTestGen can satisty different coverage criteria. Which coverage criterion is
satisfied depends on the selected settings in the Proof Strategy Settings tab of the KeY
GUI. These settings determine among others how the program is analyzed. If Loop
treatment is set to Expand, then the resulting test suite achieves full feasible bounded
path coverage (Definition 12.4). The bound for expanding (or unrolling) loops can be
set in the Test Suite Generation dialogue (by pressing the & button). If Loop treatment
is set to Invariant and sufficiently strong loop invariants are provided by the user for
loops in the program, then full feasible branch coverage (Definition 12.5) can be
achieved. To fully satisfy either of the coverage criteria it is necessary that symbolic
execution of the program is executed to the end on every execution branch, i.e.,
the maximum number of rule applications must be set sufficiently high in the Proof
Search Strategy tab. A description of how the symbolic program analysis works and
how test cases are selected is provided in Section 12.6.

In order to obtain MC/DC coverage using KeYTestGen, it is necessary to set
Proof splitting to Free in the Proof strategy settings tab when KeY performs symbolic
program analysis (symbolic execution, see Section 12.6). The complexity of the
program analysis and the number of test cases may grow rapidly. This is because in
addition to MC/DC coverage also the coverage criteria defined in Definition 12.4
or 12.5 will be fulfilled when the symbolic program analysis is performed with the
respective settings.

426 12 Proof-based Test Case Generation

12.4 Application Scenarios and Variations of the Test Generator

12.4.1 KeYTestGen for Test Case Generation

KeYTestGen is designed to generate unit tests for one method at a time, hereafter
method under test (MUT). Within this scenario it can be used in a variety of ways.
For example, it can be used as a stand-alone test generation tool with or without the
use of formal specifications, or it can be used to support or complement the formal
verification process with KeY. It covers a spectrum of automation possibilities from
interactively selected tests for specific branches of a proof tree up to fully automatic
generation of test suites. KeYTestGen can generate JUnit tests suites and test oracles
from JML specifications, or it can generate a set of test methods that simply execute
the MUT without any additional features (see Section 12.2.2). The user may choose
to use his own test oracle. For instance, the generated test suites can be compiled and
executed with the runtime assertion checker of OpenJML [Cok, 2011] as shown in
Section 12.8.2.

In the simplest usage scenario, KeYTestGen performs symbolic execution (as
described in Section 12.6) of the MUT and generates a test suite that executes all the
paths of the MUT up to a given bound on loop unwindings and recursive method
calls. The generated tests not only can initialize the parameters Pp of the MUT but
also the fields of objects Sp (using the notation in Section 12.3). A generated JUnit
test may create objects, possibly with a complex linked data structure, to exercise a
particular path through the MUT.

In an advanced usage of KeYTestGen, the user may provide formal specifications,
possibly with quantified formulas, as they are also used in formal verification. The
formal specifications can be used in two ways: (a) to restrict test generation such
that the precondition of the MUT is satisfied and to generate a test oracle from the
postcondition, and (b) to reduce the number of test cases that arise from method and
loop unwindings. An example of case (a) is:

/*@ requires 0<=i && i<b.length; @x*/

. blil=x;
where the precondition prevents an array overflow that may be caused by the expres-
sion b[i]. For an example of case (b) consider the program:

arrCopy(a,b);

x=b[i];
which calls the method from Listing 12.1. Before the statement x=b[i] can be
analyzed via symbolic execution, the symbolic execution engine must first analyze
the call arrCopy (a,b). One possibility is that symbolic execution enters the method
and executes its body as described in Section 12.6.4 below. Generally, this may create
many test cases from case distinctions in the called method. The other possibility is
to—loosely speaking—replace the method call by its postcondition which specifies
the result of all possible executions in one expression, hence reducing the number
of test cases. The same principle applies to loops that may be annotated with loop

12.4. Application Scenarios and Variations of the Test Generator 427

if verification

try to verify has failed
the program L generate a —>»| generate a small
counterexample number of tests
with low coverage

if verification fix th
was successful try to fix the
fault and
test again
generate test suite
with high coverage Z Y
use the test suite try to find the fault
for runtime > using a program
testin if a test | debugger
if the program or 9 99

. . . fails
its environment is
modified

use the test suite

for regression testing

Figure 12.3 Three use-cases of KeYTestGen when used in connection with formal verification.

invariants. We elaborate on this technique in Section 12.6.5. When using method
contracts, the generated tests are white-box tests with respect the MUT, but they are
black-box tests with respect to methods called by the MUT. To take advantage of
method contracts or loop invariants the user must select the respective options in the
Proof Search Strategy tab of the KeY GUI.

12.4.2 KeYTestGen for Formal Verification

When using KeYTestGen in the context of formal verification, we consider three use
cases. These are summarized in Figure 12.3.

The first use case is finding, i.e. locating, software faults. Tests are helpful to
find software faults because when a program is executed in its runtime environment,
i.e. not symbolically, then a standard program debugger can be utilized.’ Program
debuggers are powerful tools that enable the user to follow the program control
flow at different levels of granularity and they enable the inspection of the program
state. A strength of program debuggers is also that the user reads the source code
as it is executed, which is helpful for understanding it. When a proof attempt fails,
either due to a timeout® or because no more rules are applicable, it is difficult to read
the program (execution) from the open proof branches. Even if a counterexample
is generated which represents the initial state of the program revealing the fault it
maybe hardly readable by an inexperienced user. However, this information can be
used to initialize a program in its runtime environment, enabling to use a program
debugger.

3 It is also possible to use the KeY system as a debugger based on symbolic execution, rather than
concrete execution. This is described in Chapter 11 of this book.

6 Maximum number of rule applications reached.

428 12 Proof-based Test Case Generation

The second use case is to further increase confidence in the correct behavior
of a program, even if verification of the program was successful. It is usually not
practical to rigorously apply formal verification to the whole environment of program
that can influence its behavior. This includes components, such as compilers, the
hardware, the operating system, the runtime system, etc. But all these components
are executed when the program is tested. Hence, testing complements verification
where the latter has a systemic incompleteness. In this sense, proofs cannot substitute
tests. An illustrative example is that even if engineers have proved with mathematical
models that an airplane should have the desired aerodynamic properties, passengers
will not be seated in the airplane before it has undergone numerous flight tests.

The third use case is regression testing. Regression testing is used to ensure that
modifications made to software, such as adding new features or changing existing
features, do not worsen (regress) unchanged software features. As software evolves,
existing tests can be quickly repeated for regression testing. Proof construction, on
the other hand, is more expensive and therefore it is reasonable to run a set of tests
before proceeding to a verification attempt after the software has been modified.
More on regression verification with KeY can be found in [Beckert et al., 2015].

Hence, in the first use case a single test or a small number of focused tests is
generated if the verification has failed. A successful verification attempt on the other
hand leads to the second and third use cases. Contrary to the first use case, in the
other use cases a high code coverage test suite is desired.

12.5 Architecture of KeYTestGen

MUT (Method Under Test)+
JML Specification Proof Tree

:> Symbolic Execution + :>
W % FOL Theorem Proving
Testoracle ﬂ

Generator Model/Testdata

& Generator

JUnit Test Suite ﬁ

TestMethod 0
- <: Test-Preamble
Generator

Uses

TestMethod_n

Figure 12.4 Main components and test generation procedure of KeYTestGen

12.5. Architecture of KeYTestGen 429

Figure 12.4 depicts the test generation process and its main components. The input
to KeYTestGen is a Java method under test (MUT), with its JML requirement
specification. The KeYTestGen approach starts with the creation of a proof tree.
The branches of the proof tree mimic the execution of the program with symbolic
values.” Case distinctions (including implicit distinctions like, e.g., whether or not
an exception is thrown) in the program are reflected as branches of the proof tree.
The different branches are used for deriving different test cases.

A path condition, together with the precondition from the specification, constitute
a test data constraint, which has to be satisfied by the test data of a test case for this
path. For example, to generate a test that creates an ArraylndexOutOfBoundsExcep-
tion when executing the statement b [i]=a[i] in method arrCopy (Listing 12.1), the
test data constraint b.length>=0 && b.length < a.length may be generated.
The extraction of test data constraints from the proof tree is described in Section 12.6.

To create a test, concrete fest (input) data D must be generated which satisfies
the test data constraint obtained from the first phase. For example, we may use the
concrete array lengths b.length==1 && a.length==2 to satisfy the above test
data constraint. This task is handled by the model generator (Section 12.7). Here
the term model means the first-order logic interpretation that satisfies the test data
constraint. The challenge of model generation in the context of KeYTestGen is to
generate models for quantified formulas which may stem from the requirement
specification, loop invariants, other JML annotations, or from the logical modeling
of the object heap in the KeY framework.

The test suite consists of a set of test methods (test drivers). The generation of the
test driver is discussed in Section 12.9. It prepares the initial state of the test, executes
the MUT, and checks the final state after the execution of the MUT with a fest oracle
(Or). The first part executed by each test driver (test method) is the test preamble. The
test preamble prepares the initial state in which the MUT is executed by creating Java
objects and initializing program variables and fields with test data. The model which is
generated by the model generator is therefore the input to the test preamble generator.
For example, given the test data b.length==1 && a.length==2, the test pream-
ble may generate the statements int [] a=new int[2]; int[] b=new int[1];.
Additional test data is required to initialize the array elements, but in this example no
specific values were defined by the test data constraint. The final part of the test driver
is the fest oracle. The test oracle can be either an external runtime assertion checker
(e.g. OpenJML), or generated by KeYTestGen from the requirement specification
when the user chooses the option Generate JUnit and test oracle in the Test Suite
Generation window (see Figure 12.1). The generation of the test oracle is explained
in Section 12.8.

7 Symbolic values are expressions over variables.

430 12 Proof-based Test Case Generation

12.6 Proof-based Constraint Construction for Test Input Data

When KeY reads source code and its specification, it translates these entities to a
Dynamic Logic (DL) formula, representing the various properties to be verified, see
Chapter 8. DL (see Chapter 3) is a superset of first-order logic (FOL, see Chapter 2)).
It includes all FOL operators, e.g., A (and), V (or), — (not), — (implication); predi-
cates such as < (less than), = (equality), as well as named predicates and functions;
and quantifiers 3 (exists) and V (forall). Additionally, in DL one can write (p)¢
to express that formula ¢ is true in the state after executing the program p. Thus,
the formula PRE — (p)POST means that if p is executed from a state where the
precondition PRE is true, then in the final state after executing p the postcondition
POST must be true as well. Update operators {x:=e]|| ...} are used to collect assign-
ments from a program which have been simplified such that the expressions e has no
side-effects. Since KeY uses Java programs and defines Java-specific predicates we
refer to KeYFOL and JavaDL. In the following we use the sequent notation A = B
which is an implication where A is a conjunction of formulas and B is a disjunction
of formulas.

12.6.1 Symbolic Execution for Test Constraint Generation

A proof in KeY is essentially inference on DL formulas, using a proof strategy
called symbolic execution. It is exactly this principle which makes the KeY prover
an excellent basis for code coverage-oriented test generation. Therefore, we briefly
demonstrate the principle of KeY-style symbolic execution on an example.

Consider the DL formula (12.4), where we abstract away from the concrete pre-
and postcondition PRE and POST, and from the program fragments p; and p,. The
program swaps the values stored in x and y, using arithmetic, and continues with an
if statement branching over 2x>y.

PRE = (x=x+y; y=x-y; x=x-y; if (2x>y) {pi} else {py}) POST
(12.4)
When proving this formula, KeY symbolically executes one statement after the other,
turning Java code into a compact representation of the effect of the statements. This
representation is called update, which essentially is an explicit substitution, to be
applied at some later point. In our example, symbolic execution of x=x+y; y=x-y;
x=x-y; will, in several steps, arrive at the DL formula given in (12.5).

PRE = {x:=y]||y:=x}if (2x>y) {pi1} else {py}) POST (12.5)

The ‘x :=y||y := %’ is the update, where the || symbol indicates its parallel nature;
that is, the substitutions of x and y will be simultaneous once the update gets applied.

The next step in the proof is a branching caused by the if statement. Essentially,
we branch over the if condition 2x>y, but not without applying the update on the

12.6. Proof-based Constraint Construction for Test Input Data 431

condition. This leads to the two proof branches for proving the following formulas:

PREA ({x:=y]|ly:=x}2x>y) = {x:=y]||y :=x}(p1) POST
PREA ({x:=7y]||y:=x}2x <y) = {x:=y||y :=x}(p2) POST

Next, we apply the update (i.e., the substitution) on 2x > y and 2x <y, resulting in:

PREA2y > x = {x:=7y]||y :=x}(p1) POST (12.6)
PREA2y < x= {x:=7y]||y:=x}{ps) POST (12.7)

Note that the update application has exchanged x and y on the left side of =,
translating the condition on the intermediate state into a condition on the initial state
for the path p; or p, to be taken, respectively. And indeed, the original program (see
12.4) will, for instance, execute p; if 2y > x holds in the initial state. If we choose
to create tests from the proof branches 12.6 and 12.7, then two test cases will be
created, where the formulas PRE A2y > x and PRE A 2y < x are used as the test data
constraints, respectively.

When the proof continues on 12.6 and 12.7, p; and p, will be executed symboli-
cally in a similar fashion. When symbolic execution is finished, all proof branches
will have accumulated conditions on the initial state for one particular program path
being taken. If we now generate test data satisfying these conditions, we arrive at test
cases covering all paths the program can take (up to the used limit of loop unwindings
and recursion inlining).

Updates are extremely useful not only for verification, but also from the logic
testing criteria perspective, as they solve the inner variable problem, i.e., the problem
of inferring initial conditions on variables from intermediate conditions on variables.
Applying an update on a branching condition means to compute the weakest precon-
dition of the branching condition with respect to the symbolically executed program
up to this point.

It is worth noting that KeY may generate more than two proof branches for an
if statement, as the guard could be a complex Boolean formula. All the possible
combinations (with respect to lazy evaluation) are evaluated.

12.6.2 Implicit Case Distinctions

KeY can create proof branches also for implicit conditions that check whether an
exception should be raised. To enable this feature, the user must select the option
runtimeExceptions:allow in the Options — Taclet Options menu. When this option is
activated, then, for example, symbolic execution of the code:

PRE= (u.v = a[il; p) POST

will result in the following five proof branches:

432 12 Proof-based Test Case Generation

PREAa=null
= (throw new NullPointerException(); p) POST

PREAu =null
= (throw new NullPointerException(); p) POST

PREAa#nullAi<O0
= (throw new ArrayIndexOutOfBoundsException();p) POST (12.8)

PREAa#nullAi>a.length
= (throw new ArrayIndexOutOfBoundsException();p) POST (12.9)

PREAu#nullAO<iAi<a.length
= (p) POST

Hence, the test data constraints are in this case the formulas:

PREAa=null

PREAu#nullAO0<iAi<a.length

It should be noted that in the Proof Search Strategy settings Proof splitting must not
be set off. If proof splitting is deactivated, then the proof branches 12.8 and 12.9 will
be subsumed by one proof branch:

PREAa#nullA(i <O0Vi>a.length)
= (throw new ArrayIndexOutOfBoundsException();p) POST (12.10)

When generating a test from the proof branch 12.10, one test will be created satisfying
only one of the subconditions in (1 < 0V i > a.length). Hence, activating Proof
splitting is needed to ensure MC/DC coverage.

12.6.3 Infeasible Path Filtering

It is possible that some paths through a program cannot be taken, because the
conditions to execute the path may contradict each other. Consider for instance the
program:

if (x<y) {if (x>y) { s } }

The statement s cannot be executed because it is not possible that both conditions,
x < yand x >y, are satisfied. The path to s is an infeasible path (see Definition 12.3).
When constructing the proof tree and applying the if-rule twice, we obtain two
proof branches in which s is not reached and the following proof branch, where s is
reached:

PREAx < yAx >y = (s) POST

12.6. Proof-based Constraint Construction for Test Input Data 433

If KeY continues proof tree construction, it will infer that x < y Ax > y is unsatisfiable
and create the proof branch:

PRE Afalse = (s) POST

Since false appears in the assumption, the implication (sequent) is frue and the proof
branch is immediately closed by KeY. During symbolic execution KeY detects most
of the infeasible paths and filters them out from further inspection. Since no state can
satisfy the test data constraint PRE A false no test will be generated for this path.

12.6.4 Using Loop Unwinding and Method Inlining

The simplest way of dealing with a loop is by unwinding it. Consider the sequent:

PRE = (while (i<n) {i++;} p) POST

When the loopUnwind rule is applied once, then the following sequent is obtained:
PRE = (if (i<n) {i++; while (i<n) {i++;}} p) POST (12.11)

The rule introduces an if-statement whose guard is the loop condition (here i<n).
Its branch consists of the loop body (i++;) followed by the original loop statement.
Application of the rule for the if-statement yields the two proof branches:

PREAi>n= <p> POST (12.12)
PREAi <n= (i++; while (i<n) {i++;} p) POST (12.13)

A test that is based on (12.12) satisfies the condition PRE A1 > n and triggers
program behavior where the loop is not entered. A test that derived from (12.13)
satisfies the condition PRE A i < n which ensures that the loop is executed at least
once. After symbolic execution of the statement i++ the loopUnwind rule can be
applied again. When the loopUnwind rule is applied m times, proof branches are
generated with test data constraints which ensure that the loop iterates exactly
0,1,2,...,m—1 times, and the final test ensures that the loop iterates ar least m
times. Loop unwinding is explained in detail in Section 3.6.4.

Loop unwinding can be activated in the Proof Search Strategy settings tab by
selecting Loop treatment to Expand. When using the play button of KeY, the num-
ber of loop unwindings is indirectly controlled by the maximum number of rule
applications. Another possibility is to explicitly set the number of loop unwindings
in the Test Suite Generation window and then use the TestGen strategy macro (see
Figure 12.2). The macro applies symbolic execution rules and limits the number of
rule applications of the loopUnwind rule. The limit of loop unwinding is applied to
each proof branch individually. For example, if the number of loop unwindings is
limited to 3 (default value) and the proof tree is fully expanded, then tests will be

434 12 Proof-based Test Case Generation

generated which execute 0, 1, or 2 loop iterations and some tests will iterate loops at
least 3 times.

Method inlining works in a similar fashion as loop unwinding, where method calls
are replaced by the body of the called method (see Section 3.6.5). When a method
call is replaced by its body, symbolic execution can continue until the next method
call is encountered and method inlining can be applied again. Each method that is
symbolically executed is then also executed by a test, if the path to the method is
feasible.

The advantage of using loop unwinding and method inlining is that no interaction
is required by the user. The problem is that the size of the proof tree can become
too large so that symbolic execution of the program may not finish. No coverage
guarantees can be given for program parts which were not symbolically executed.
Another problem is that the source code of methods (e.g., library methods) may not
be available.

12.6.5 Using Loop Invariants and Method Contracts

When finite unwinding of method calls and loops is used during symbolic execution,
the user does not have to provide method contracts or loop invariants. This technique
is also known as bounded symbolic execution. When using KeYTestGen as an
extension to verification (see Figure 12.3), method contracts and loop invariants
are typically available. Method contracts and loop invariants provide an alternative
approach to symbolically executing the body of a method or loop. Loosely speaking,
a method contract can replace a method call and a loop invariant can replace a loop
during symbolic execution. Furthermore, the proof tree generated by the verification
attempt can be directly reused for test case derivation. A short example of using a
method contract is shown in Section 12.4. For a detailed explanation of the method
contract and loop invariant rules, see Section 3.7.

Method contracts and loop invariants, hereafter contracts, can be used to create
test cases that are likely to be missed by bounded symbolic execution [Gladisch,
2008]. In some cases the latter requires an exhaustive inspection of all execution
paths which is impractical in the presence of complex methods and impossible in the
presence of loops, because loops and recursive methods may represent unboundedly
many paths.

Listings 12.2 and 12.3 show examples of programs for which branch coverage
is hard to achieve with bounded symbolic execution. In order to execute A() in
Listing 12.2, the loop body has to be entered at least 11 times, and in order to execute
C(), it has to be executed exactly 20 times. These numbers could be arbitrarily large
and the result of complex computations, hence requiring exhaustive inspection of
all paths in order to find the case where the branch guards are satisfied. A similar
situation occurs in Listing 12.3. Before symbolic execution can process the statement
if (i==20) { CQO; } it must first symbolically execute the method call D().
When the method call is treated by method inlining an exhaustive inspection of D (),

12.6. Proof-based Constraint Construction for Test Input Data 435

/*@ public normal_behavior
requires 0<=n;
ensures true;
@x/
public void fool(int n) {
int i=0;
/*@ loop_invariant 0<=i && i<=n;
decreases n-i;
@x/
while(i < n) {
if (i==10) { AQO; }

BQO;

it++;
}
if (i==20) { CO; }
¥

Listing 12.2 First example where branch coverage is difficult to achieve

int i;
/*@ public normal_behavior
requires i<=n;
ensures i==n;
modifies i;
@x/
public void D(int n) {
while (i < n) { i++; AQ; }
}

/*@ public normal_behavior
requires i<=n;
ensures i==n;
modifies ij;

Q@x*/

public void foo2(int n) {
D(n);
if (i==20) { CO; }

}

Listing 12.3 Second example where branch coverage is difficult to achieve

which consists of a loop, may be required to find a path such that after the execution
of D() the branch condition i==20 holds. Hence, achieving full feasible branch
coverage (Definition 12.5) is challenging.

When using the loop invariant and method contract rules during proof construction,
test data constraints can be derived from the proof tree solving the described problem.
If the contracts are strong enough, the test data constraints ensure the execution of
desired feasible paths (a) after loops and method calls or (b) within loops. Intuitively,
a loop invariant or a method contract is strong enough if it does not over-approximate
the behavior of the loop or method with regard to the program variables which are

436 12 Proof-based Test Case Generation

critical to enter a desired program position; details can be found in [Gladisch, 2011,
2008].

The loop invariant rule creates three proof branches with the following proof
obligations: (a) the loop invariant holds before the loop is entered, (b) the loop
invariant is preserved by the loop body, and (c) from the loop invariant and the
program after the loop the postcondition follows. When applying the loop invariant
rule in the analysis of Listing 12.2, then from (b), i.e.,

—_—
{i:=0}i=i})0<ini<nhi<n) = (if (i==10) {AO;}...)I

the following proof obligation is derived (among other proof branches):

/—/[%
{i:=0{i:=i}(0O<ini<nAai<nAi=10) = (AQ;...)I (12.14)

The first update {i := 0} stems from the assignment int i=0; before the loop and
the second update {i := iy} replaces the program variable i with a fresh symbol iy
because it can be modified by the loop and must be distinct from i. The constraint
0 <iAi < nis the loop invariant, followed by the loop guard i < n and the guard
i = 10 of the if-statement if (i==10) {A(Q);}. Simplification of 12.14 yields:

io<nAip=10=(A0;...) [

Therefore, the test data constraint for this path, as extracted by KeYTestGen, is
iop < nAip = 10, which implies that » > 10 must be satisfied before the loop in order
to execute the method call A() inside the loop.

From premiss (c) of the loop invariant rule with subsequent symbolic execution
of the conditional statement the following test data constraint is derived:

I
——N—
{i:=0{i:=ig}(0<ini<nAi>nAi=20)

It simplifies to
(isk =niNig = 20)

which implies that if n = 20, then C() will be executed in Listing 12.2. Similarly,
test data constraints can be obtain in order to execute C() in Listing 12.3.

The programs shown in Listings 12.2 and 12.3 can be found in the example
directory coverage/. Since these examples do not use bounded expansion of loops
and methods, the user should not use the TestGen macro. Instead, the user should set
in the Proof Search Strategy tab, Loop treatment to Invariant and Method treatment to
Contract. When pressing the play button, the method foo1 () or foo2(), respectively,
is verified and a closed proof tree is obtained. Using the Test Suite Generation window,
a test suite can be generated. However, the resulting tests will not be “correct”—
when executing the tests and monitoring the execution using, e.g., OpenJML, the
precondition will be violated. The reason is that using the standard settings of the

12.7. From Constraints to Test Input Data 437

model generator (Section 12.7) the test data constraints such as n > 10 or n = 20
cannot be satisfied, because the model generator uses bounded integers. To generate
correct test cases it is necessary to set the Integer Bound of the model generator to 6
bits instead of the default 3 bits. The Integer Bound as well as other bounds can be
adjusted in Options — SMT Solver Options — General SMT Options (see Figure 12.5).

Verification-based test case generation is a flexible technique with respect to the
complexity of the test generation and the resulting quality of the tests. The quality
and number of the tests depends on the scope of the proof tree construction and on
the selection of test data constraints from the proof tree. For instance, the simplest
test is a random test that is generated when the test data is derived from a proof tree
which consists only of the root sequent. In this case, the test data constraint is empty,
i.e., true, and is satisfied by any generated test data. On the other end of the spectrum,
the most sophisticated kind of test is the one which is derived from an open proof
branch of a failed verification attempt. Open proof branches of a fully expanded
proof tree indicate cases with a high probability of a software fault with respect to the
MUT’s specification. In an extreme case a single very specific test may be generated
that reveals a fault. Closed proof branches, on the other hand, correspond to program
paths and conditions that have been already verified and are filtered out from test
generation. However, the user may choose to generate test cases also from closed
branches to get a high test coverage of the MUT (e.g., for testing the environment or
for regression testing).

The branches of the proof tree represent different test cases. Any formula in
the proof tree can be used as a test data constraint. However, depending on which
formulas are chosen for the test data constraints, different specification conditions,
program branches, or paths are tested.

Soundness of the verification system ensures that all paths through the MUT are
analyzed, except for parts where the user chooses to use abstraction, e.g., through
method contracts or loop invariants. Creating tests for proof branches that were cre-
ated using bounded symbolic execution ensures full feasible bounded path coverage
of the regarded program part of the MUT, i.e., all paths of the symbolically executed
program parts will be tested.

12.7 From Constraints to Test Input Data

After extracting the test data constraints from the proof tree, as shown in the previous
section, we need to find test data satisfying either constraint. The test data is used as
input to the method under test (MUT) in the test suite (see Section 12.5). In order
to find such inputs we search for models of the test data constraints. A model is a
first-order logic interpretation satisfying a formula. In terms of testing, the model
is an assignment of concrete values to object fields and parameters, that constitute
the initial state Sp and input parameters Pp, following Section 12.3. For example, if
a model is found for the path condition of an execution path p, and the program is

438 12 Proof-based Test Case Generation

f & Settings for Decision Procedures & e ®
[0ptions Store translation to file:
[y General SMT Opticns
D SMT-Translation .
o (-9 Taclet Translation e
e}
% 23 cE Progress dialog remains open after executing solvers. |v|
[vices Timeout: [s.0
[y simplify
[oves Concurrent Processes: |5
[cvea
Integer Bound: \3
Seq Bound: [3
Object Bound: \3
Locset Bound: [3
Check for support when a solver is started.
Save as Default Values Apply| ‘ ‘ Okay H Cancel ‘

Figure 12.5 SMT solver options. Settings of the bounded model generator that are used for counter
example generation as well as for test data generation.

executed using the input resulting from this model, path p will be executed. If no
model is found, then the path may be infeasible.

We currently use the third party SMT solver Z3 to find models for test data
constraints (see Section 12.2.1). Constraints are translated from KeY’s Java first-
order logic (JFOL, see Chapter 2) to the SMT-LIB 2 language which is supported by
most SMT solvers.

The translation from JFOL to SMT-LIB poses two main challenges. First, we need
to ensure that the models found by the SMT solver are also models for the original
JFOL formula. Second, we need to make sure that the SMT solver is able to find a
model within a reasonable amount of time. Unfortunately, the current state-of-the-art
does not allow us to fully address both objectives. For this reason we have decided
to use bounded data types, i.e., each data type can have only a bounded number of
instances. As a consequence, the SMT solver can find models a lot faster, but at the
same time some models may be missed because the bounds might be too small and
some models may be spurious for the same reason. For the missing models problem,
we would argue in favor of the small scope hypothesis [Jackson, 2002], claiming
that, in practice, most bugs in a program can be found by testing all inputs within
a small scope. As for the problem regarding the spurious models, it hardly occurs
when KeY is used within its normal use case of verifying Java code specified by JML.
Usually—but not necessarily—such cases occur if fixed constant values are used in
the MUT which cannot be represented by the bounded data type. An example of such
a case was shown in Listings 12.2 and 12.3. The user has the possibility to adjust
the bounds using the following menu item Options — SMT Solver Options — General
SMT Options which will open the window shown in Figure 12.5.

12.7. From Constraints to Test Input Data 439

The rest of this section presents some of the more interesting details of the
translation from JFOL to SMT-LIB. Where it is clear from the context we write
‘SMT’ as an abbreviation for ‘SMT-LIB language’. The model generator presented in
this section is largely based on KeY’s counterexample generator described in [Herda,
2014].

12.7.1 The Type System

The SMT-LIB language does not support subtyping, all declared SMT sorts represent
disjoint data type domains. This section explains how we specify in SMT the KeY
type hierarchy, which includes the Java type hierarchy. The KeY type hierarchy is
described in Section 2.4.1. It should be noted that the global program state that
constitutes also the initial state Sp of the test input is stored in a logical constant®
of type Heap. Input parameters Pp and all local program variables of the MUT are
stored as logical constants of type Any or subtypes of it.

In the SMT-LIB data language, types are called sorts. The KeY type system is
specified in SMT using the following eight SMT sorts: Bool, IntB, Heap, Object,
Field, LocSet, SeqB, and Any. All KeY reference types are translated to the sort
Object.

The KeYTestGen translation interprets the bit-vector values representing bounded
integers as signed integers with values ranging from —|IntB|/2 to (|IntB|/2) — 1. In
the SMT Solver Options window (see Figure 12.5) the user can specify different bit
sizes for the IntB, Object, LocSet and SeqB sorts. The bit sizes for the Heap and
Field sorts are calculated by considering the number of constants of the respective
type in the proof obligation. The Field sort has to support all field names and also all
possible array positions determined by the size of the IntB sort. The bit size of the
Any sort is computed automatically and depends on the largest size of the other SMT
Sorts.

For each SMT sort S (except Any, Heap, and Field) membership predicates and
cast functions are declared. The functions are used to check if an instance of Any is
of type S and the enable casts between S and Any. We declare the following functions
for each SMT sort S except Any:

1. isS: Any — Bool
2. Any2S:Any — S
3. S2Any : S — Any

In order to specify Java reference types we define the following two predicates for
each reference type T':

1. instancer : Object — Bool
2. exactlnstancer : Object — Bool

8 A logical constant is a function of arity 0. The value of a logical constant is given by its first-order
logic interpretation, which can change due to the dynamic nature of dynamic logic.

440 12 Proof-based Test Case Generation

For an Object o and a reference type T, instancer(0) is true iff o is of type T
and exactlnstancer(0) is true iff o is of type T and neither a subtype of T nor null.
We also add the necessary assertions to the SMT translation to ensure that the SMT
specification models the Java type hierarchy while respecting the modularity principle
of KeY, i.e., existing proofs will not be affected if new class and interface declarations
are added to the program (see Section 9.1.3). For this, the SMT solver will take not
yet declared reference types into consideration when searching for models.

12.7.2 Preserving the Semantics of Interpreted Functions

JFOL defines several interpreted functions, i.e., functions that are axiomatized and,
therefore, have a fixed semantics (e.g., +). When talking about program states, two
important interpreted functions are store and select (see Section 2.4.1 and p. 527).
The function store is needed to store values to object fields on the heap and the
function select is needed to read values of object fields from the heap.

We need to preserve the semantics for all interpreted functions which appear in the
proof obligation, otherwise the SMT solver will make use of incorrect interpretations
when generating models. For example, if no semantics is specified for the store
function, the solver could generate a model in which the store function returns the
heap it received as an input, which would be incorrect.

We can translate the relevant KeY rules to SMT as follows. KeY already provides
a translation from taclets into JFOL (see Section 4.4). From there we translate into
SMT assertions. For assertions to be satisfiable the size of the Heap sort has to be
carefully set. It needs to be large enough to contain all possible heaps that may
result from the store function. We can consider the heap sort a two dimensional array
of size |Object| x |Field| which contains values of type Any. The number of heaps
|Heap| which we need to support is |Any|/0%ect!|Field| This number is huge, even for
examples with few objects and fields, and would severely affect the performance of
the SMT solver.

But to obtain a correct model it is not always necessary to specify the semantics
of interpreted functions for all possible inputs. We can provide a specification merely
for those inputs that actually appear in the proof obligation. This is achieved by
syntactically replacing all interpreted function calls with their semantics. We call this
approach semantic blasting.

Semantic blasting of functions and predicates that are defined constructively,
i.e., not in terms of observer functions, is straightforward: they are replaced by
their definition. One example is the replacement the subset predicate by using (the
translation of) the subsetToElementOf rule (see Section 2.4.4).

The functions dealing with heaps, location sets, and sequences, however, do
not have a constructive (or inductive) definition. Their semantics is specified in
a co-inductive manner using observer functions such as select, elementOf, get,
and length. For these we can perform a straightforward replacement only if they
appear as an argument of an observer function. For example, for the store func-

12.7. From Constraints to Test Input Data 441

tion we can apply the selectOfStore rule only if we encounter a term of the form
select (store(h,o0, f,v),0', f).

For the remaining case, when an interpreted function call f with a co-inductive
definition is not an argument of an observer function, semantic blasting is performed
in three steps:

1. The pullout taclet replaces an occurrence of f with a constant and adds a defining
equality to the antecedent., see Example 4.10.

2. A suitable extensionality rule (equality ToSelect for heaps, equality ToElementOf
for location sets, and equality ToSeqGetAndSeqlLenRight for sequences) is ap-
plied to the equality added to the antecedent. The extensionality rule states that
two terms #1 and #,, both of type Heap, LocSet or Seq, respectively, are equal if for
all observer functions obs of that type and for all appropriate lists of parameters
P for the observer function obs the following holds: obs(t;, P) = obs(t2,P).

3. On the right hand side of the defining equation f appears now as the argument
of an observer function and we proceed as above.

Example 12.7. Given the sequent = p(store(h,o, f,v)) the semantic blasting steps
are as follows:

1. Apply pullout:
¢ = store(h,o0, f,v) = p(c)

2. Apply the equality ToSelect:
Vo'V f select(c,0', f') = select(store(h,o0, f,v).0', f') = p(c)
3. We can now apply selectOfStore:

Vo'V f' select(c,o, f) =
if(0=0"Af=f'Nf#created) v else select(h,o, f)
= p(c)

12.7.3 Preventing Integer Overflows

When dealing with integer constraints, the solver may find models which are correct
under the semantics of bounded integers (with modulo arithmetic). Such a model
could be wrong when in KeY the default integer semantics of mathematical integers
was set. In such cases a spurious counter example or a false positive test would be
generated. To prevent this, we identify the terms which can cause an overflow and
generate new terms from them which have the same operator but the operands have
an increased bit-size. From a + b, if a and b are bit-vectors of size n, we generate
the term incr(a) + incr(b), where the function incr takes a bit-vector of size n and
returns a bit-vector of size n+ 1 with identical lower 7 bits.

Additionally we add assertions ensuring that the result of the same arithmetic
operation on the increased bit-vectors is not greater than max_int or smaller than

442 12 Proof-based Test Case Generation

min_int . For the previous example we add the assertions incr(a) + incr(b) < max_int
and incr(a) + incr(b) > min_int. The multiplication operation is handled similarly,
however, we double the bit-vector size of the operands instead of increasing it by
one.

12.7.4 Model Extraction

If the given path condition is satisfiable (under the bounded data type semantics),
then the SMT solver will provide a model of it, if no timeout occurs. In the case
of the Z3 solver, the model consists of function definitions. To initialize the test
inputs we extract the required test data from the model by using the get-value SMT
command. This command takes a ground term as an argument and returns the result
of its evaluation. If the SMT solver found a model, then KeY sends a sequence of
get-value queries to the solver and in this way determines the values of constants and
the contents of heaps, locations sets, and sequences in the model.

12.8 Specification-based Test Oracle Generation

The purpose of a test oracle is to decide whether a test case was successful or not (see
Section 12.3). It is executed right after the MUT and it inspects the return value R
and final state Sy of the MUT. In KeY, the JML specification of the MUT determines
whether the tuple (R, Sy) is an error state or not. Hence, the specification which is
provided in a declarative form must be translated into an executable test oracle. For
this purpose two possibilities are supported by KeYTestGen. Section 12.8.1 describes
how KeYTestGen generates a test oracle from a JML specification. Section 12.8.2
describes the usage of a JML runtime assertion checker instead.

12.8.1 Generating a Test Oracle from the Postcondition

KeYTestGen generates an oracle when the option Use JUnit and test oracle is enabled
in the Test Suite Generation window (Figure 12.1). The test oracle is a Boolean
Java method which returns true if the test case satisfies the JML specification of
the MUT and false otherwise. It is generated from the postcondition and checks
whether the postcondition holds after the code under test was executed. We do not
generate the postcondition directly from JML, but rather from its JavaDL translation
in KeY (see Chapter 8). In this way we ascertain to maintain the exact semantics
of the postcondition as in KeY. For example, KeY may include class invariants and
termination conditions as part of the postcondition. The precondition does not need

12.8. Specification-based Test Oracle Generation 443

to be checked, because it is part of the test data constraint and is always satisfied by
the process of test input data generation (see Sections 12.6 and 12.7).

Each test suite contains only one oracle method which is used in all test cases. In
each test case, after running the MUT, we assert that the test oracle method returns
true by using the JUnit method assertTrue. Listing 12.4 shows an abridged version
of the test oracle generated for the arrCopy example presented in Listing 12.1. In the
full definition of the method, the parameters include all program variables evaluated
in the MUT’s final state of execution (e.g., a) as well as in the state before the
execution (e.g., _prea), the information whether an exception was thrown (exc), as
well as the sets of bounded data types (e.g., al1Ints). Method testOracle returns
true if the generated test data satisfies the postcondition of arrCopy in Listing 12.1
and false otherwise. The test oracle in this case checks whether all entries in arrays a
and b are equal, whether the implicit invariant for the self object holds and whether
an exception is thrown.

public boolean testOracle(int[] a, int[] _prea, ...){
return ((subl(a, _prea, ...) &&
inv_javalangObject(self, a, _prea, ...) && (exc == null));
}
public boolean subl(int[] a, int[] _prea, ...){

for(int i : allInts) {
if (1(1(C0 <= i) && (i < a.length)) || (a[il == b[i]))) {
return false;

}
}
return true;
}
public boolean inv_javalangObject(java.lang.Object o, ...) {
return true;
¥

Listing 12.4 The test oracle generated for the example in Listing 12.1

Translating Simple Operators

Propositional and arithmetic operators in JavaDL are translated using Boolean and
arithmetic Java operators. For example, 7(F] A F3) is translated as 7(F}) && ©(F2),
where 7 denotes the translation function from JFOL to Java.

444 12 Proof-based Test Case Generation
Translating Quantified Formulas

Since the translation of test data constraints to SMT-LIB uses bounded data types
(see Section 12.7.1), the model returned by the SMT solver contains only a finite
number of instances of each type. We restrict the quantification domain of unbounded
quantifiers in the postcondition to these bounded domains. This approach is not
correct in general, as the result of a test case may be a false positive or a false
negative. However, it is a reasonable approach since evaluating quantified formulas
over arithmetic expressions in unbounded domains is not feasible.

Concretely, in the test preamble (see Section 12.5) we create a java.util.Set
for each of boolean, int, and Object. Then we add to each of these sets all
instances of the corresponding bounded data type to support bounded quantified
formulas over these three types. For each quantified formula we create an additional
Boolean Java method whose body contains a loop. This loop iterates over the set of
instances of the variable type. An example is the method sub1 in Listing 12.4, where
allInts is the bounded set of integers.

Translating Heap Terms

The global program state is modeled in KeY using a heap data type (see Sec-
tion 12.7.1). The heap can be thought of as a mapping from object fields to their
values. The JFOL functions select and store are used for reading and writing object
fields on the heap (see Section 2.4.1). In the postcondition no changes are made to the
heap, hence, we only need to concern ourselves with select function calls. Generally
we translate a select term of the form select(h, o, f) simply as the Java expression
o.f except for the cases when f is an array field or when /4 is the initial heap. The
two latter cases are treated as follows:

* Array fields are modeled in KeY with the arr function, which takes an integer,
representing the index, and returns a field. The translation of a select function
call with an array field as an argument, 7(select(h,0,arr(i))) is then the Java
array expression o[7(i)], where o is an object of array type and i a term of integer
type.

The translation of select terms is handled differently when the heap argument is
the initial heap. In this case we need to evaluate the expression in the prestate.
This happens when a parameter’ or the JML keyword \o1d is used in the post-
condition. We store the prestate in the test preamble by creating and initializing
a duplicate instance of each object we would normally create. An example is
shown in Listing 12.5, where variables that store the initial state have the prefix
_pre. The duplicate objects form a structure isomorphic to the original object
structure in the initial state. The execution of the MUT affects the original objects
but it does not affect the duplicate objects. Thus, when we wish to evaluate an
expression in the initial state, we use these duplicates instead of the original

9 In IML method parameters are evaluated always in the prestate.

12.9. Synthesizing Executable Test Cases 445

object. If the expression is of reference type, the result will be one of the du-
plicate objects. To maintain the semantics we have to return the original object
associated with the isomorphic duplicate.

Translating Class Invariants

We translate the class invariants that are possibly included in the postcondition by
generating a Boolean Java method for each reference type 7. This method takes
an argument of type 7 and returns frue if the instance fulfills the class invariant
of that reference type and false otherwise. The body of the invariant method is the
translation of the JavaDL formula representing the class invariant of 7. The same
translation is used as for the postcondition.

12.8.2 Using a Runtime Assertion Checker

As an alternative to generating a test oracle, KeYTestGen integrates a runtime asser-
tion checker supplied by OpenJML to check at runtime whether the postcondition
is fulfilled. In this case test cases consist only of the test preamble and MUT. The
generated code must be compiled and executed with OpenJML. For this purpose
we generate two bash scripts to be executed by the user. These scripts can be used
for compiling and running the tests on Linux systems. The scripts are created in the
same folder as the generated test suite. The first, compileWithOpenJML. sh does
not need any arguments. However, the paths to the OpenJML and Objenesis libraries
must be set as explained in Section 12.2.3. Running this script will compile the Java
files of the code under test and of the test suite in such a way to enable run time
assertion checking. The second script, executeWithOpenJML. sh must be called
with the name of the generated test suite class. The script runs all test cases and each
time a JML assertion is violated an error message is displayed.

Figure 12.6 shows the output OpenJML runtime assertion checker for the example
in Listing 12.1. (The exact output may vary, as it depends on the exact versions and
configurations of all tools in the tool chain.) The error messages show that the code
violates the normal behavior JML clause, meaning that the code under test throws an
exception.

12.9 Synthesizing Executable Test Cases

In this section we show how the output of KeYTestGen looks like. After generating
the test input data (see Section 12.7) we can use it to synthesize an executable test
driver for each test (see Section 12.5). A test driver consist of three parts:

1. Test preamble

446 12 Proof-based Test Case Generation

Py o

mihai@mihai-T540p: ~/testFiles/home/mihai/workspace/Examples/src/arrays
mihai@mihai-T540p:~/testFiles/home/mihai/workspz xamples/ Jarrays$./executel
ithOpenJML.sh TestGeneric®_arrCopy

Run: Test Case for NodeNr: 906

Run: Test Case for NodeNr: 865
ArrayUtils.java:6: JML signals condition is false
public void arrcopy(int[] a, int[] b){
~

ArrayUtils.java:3: Associated declaration: ArrayUtils.java:6:
public normal_behaviour
Y

Run: Test Case for NodeNr: 575
ArrayUtils.java:6: JML signals condition is false
public void arrCopy(int[] a, int[] b){
A

ArrayUtils.java:3: Associated declaration: ArrayUtils.java:6:
public normal_behaviour
~

Run: Test Case for NodeNr: 286
ArrayUtils.java:6: JML signals condition is false
public void arrCopy(int[] a, int[] b){
~

ArrayUtils.java:3: Associated declaration: ArrayUtils.java:6:
public normal_behaviour
a

Figure 12.6 OpenJML output for example in Listing 12.1

2. Code under test
3. Test oracle

Generating the test oracle is optional. The user can use a runtime assertion checker
as explained in Section 12.8.2. The settings are described in Section 12.2.3.

Listing 12.5 shows one of the generated test cases for the example in Listing
12.1. The test preamble (lines 4-37) is generated from the model that is obtained by
SMT solving as described in Section 12.7. The model contains values for constants
along with the contents of all heaps which appear in the test data constraint (see
Section 12.6). The goal of the test preamble is to reproduce the initial state from the
model in the executable environment, so we focus on the contents of the initial heap
from the model.

In the first part (lines 4-12) of the test preamble all constants and objects of
the model are declared and initialized. The test driver is optimized in the sense
that only objects are created which are potentially reachable by the MUT and the
test oracle. Solving this reachability problem is possible because it is sufficient to
analyze a bounded number of concrete objects and the relations (field references)
between them. This optimization reduces the code size. Thus, it improves not only
the compile and execution times, but most importantly it improves readability of the
source code when using a program debugger (see Section 12.4). In the second part,
fields/components of the created objects/arrays are initialized with the values that
they have in the model (lines 13-25).

When objects must be created from classes without a default constructor, or when
private or protected fields must be initialized, the user can activate the option Use
reflection framework in the Test Suite Generation window (see Section 12.2). In this
case, object creation using the Java keyword 'new’ as well as expressions with read
and write access to fields are replaced by equivalent methods from RFL.java. This

41
42

12.9. Synthesizing Executable Test Cases

//Test Case for NodeNr: 917
Qorg. junit.Test
public void testcodel(){
//Test preamble: creating objects and intializing test data
java.lang.ArrayIndexOutOfBoundsException _o3 =
new java.lang.ArrayIndexOutOfBoundsException();
java.lang.ArrayIndexOutOfBoundsException _pre_o3 =
new java.lang.ArrayIndexOutOfBoundsException();

int[] _o2 = new int[1]; int[] _pre_o2 = new int[1];

int[] _o4 = new int[2]; int[] _pre_o4 = new int[2];

ArrayUtils _ol = new ArrayUtils();

ArrayUtils _pre_ol = new ArrayUtils();

/%@ nullable */ int[] a = (int[1)_o4;

/*@ nullable */ int[] _prea = (int[])_pre_o4;

/%@ nullable */ int[] b = (int[])_o2;

/*@ nullable */ int[] _preb (int[1) _pre_o2;

boolean measuredByEmpty = (boolean)true;

/*@ nullable */ ArrayUtils self = (ArrayUtils)_ol;

/*@ nullable */ ArrayUtils _preself = (ArrayUtils) _pre_ol;

/*@ nullable */ java.lang.ArrayIndexOutOfBoundsException a_8 =

(java.lang.ArrayIndexOutOfBoundsException)_o3;
/*@ nullable */ java.lang.ArrayIndexOutOfBoundsException _prea_8 =
(java.lang.ArrayIndexOutOfBoundsException)_pre_o3;

_02[0] = -4; _pre_o2[0] = -4;

_04[0] = 0; _pre_o4[0] = 0; _o4[1] = 0; _pre_o4[1] = 0;

Map<Object,0bject> old = new HashMap<Object,Object>();
old.put(_pre_ol,_ol); old.put(_pre_o3,_03);
old.put(_pre_o2,_02); old.put(_pre_o4,_o4);

Set<Boolean> allBools = new HashSet<Boolean>();
allBools.add(true); allBools.add(false);

Set<Integer> alllnts = new HashSet<Integer>();
allInts.add(-4); allInts.add(-3); alllnts.add(-2);
allInts.add(-1); allInts.add(0); alllnts.add(1);
allInts.add(2); alllnts.add(3);

Set<Object> allObjects= new HashSet<Object>();
allObjects.add(_o3); allObjects.add(_o2);
allObjects.add(_ol); allObjects.add(_o4);

//0ther variables
/%@ nullable */ java.lang.Throwable exc = null;
/*@ nullable */ java.lang.Throwable _preexc = null;
//Calling the method under test
int[] _a = a; int[] _b = b;
{

exc=null;
try { self.arrCopy(_a,_b); }
catch (java.lang.Throwable e) { exc=e; }
}
//calling the test oracle
assertTrue(testOracle(exc, _preexc, self, _preself, a, _prea,
b, _preb, allBools, alllnts, allObjects, old));
}

Listing 12.5 A test case generated for the example in Listing 12.1

447

448 12 Proof-based Test Case Generation

file is generated together with the test suite and provides wrapper methods for the
Java reflection framework and the Objenesis library.

In lines 29-37, some Java containers are created which are needed by the test
oracle to check quantified formulas (see paragraph Translating Quantified Formulas
in Section 12.8.1). For the Boolean, integer, and reference types a java.util.Set
is created containing all instances of these types that exist in the model. Also, as
described in Section 12.8.1, the test oracle may have to read the values of object
fields and program variables as they were in the prestate of the MUT while being
executed in the poststate of the MUT. For this purpose the test driver has duplicate
variables with the prefix _pre for every object. These objects have an isomorphic
structure to the original objects. The connection between the original and duplicate
objects is preserved by the map defined in lines 26-28.

The MUT and the code surrounding it (lines 41-47) is taken from the JavaDL
modality in KeY in the root node of the proof tree. Using the surrounding code, and
not just the invocation of the MUT, is important to ensure that actual execution of
the code has the same semantics as symbolic execution of the code. The surrounding
code typically consists of a try/catch block allowing the specification (or test oracle)
to decide what to do if an exception was thrown. Since the modality contains Java
code, we can usually simply copy it. However, the code may contain variables that
do not appear in the generated model (see Section 12.7). These variables are declared
and initialized in lines 38—40.

The test oracle is called in line 49 and is generated as explained in Section 12.8.1.

12.10 Perspectives and Related Work

Traditionally test data generation tools have been classified as black-box and white-
box generation tools, see for instance [Ammann and Offutt, 2008]. Black-box ap-
proaches base test data generation on noncode artifacts such as abstract execution
models or specifications, whereas white-box approaches base test data generation
on the code under test. Gray-box techniques combine these two approaches and use
both code and noncode artifacts. KeYTestGen is a gray-box approach because it uses
both the code and the JML specification for generating the tests. In a recent survey
by Galler and Aichernig [2014], several test case generation tools from industry and
academia are classified according to this distinction, and evaluated.

Another possible classification of test case generation approaches is by the tech-
nique used for the test data generation. In a survey by Anand et al. [2013], the
following techniques are identified:

1. Techniques using symbolic execution to obtain high coverage. The authors
identify the path explosion problem (i.e., the number of paths in the symbolic
execution tree grows too large) as the main obstacle for tools using this tech-
nique and present possible solutions for it. Dynamic symbolic execution, also
called concolic execution, which combines symbolic and dynamic execution,

12.10. Perspectives and Related Work 449

is a widespread approach adopted by numerous other tools. Techniques using
symbolic execution are considered to be part of the white-box category.

2. The model-based testing approach derives test cases from an executable model
representing an abstraction of the software. Different kinds of models can be
used, examples include finite state machines and labeled transition systems. In
a first phase abstract test cases are derived from the model and in the second
phase these test cases are concretized in order to make them applicable on the
original software. Online model-based testing techniques run each test case after
generating it and use the information from the result when generating the next
test cases. Offline model-based testing techniques generate the entire test suite
before running the test cases. Model-based testing is a black-box technique.

3. Combinatorial testing is a technique which is used for testing different con-
figurations of a software (for example parameters of a method, command line
parameters, or options on a graphical user interface). It focuses on finding bugs
that arise when a certain configuration is chosen by the user. To achieve full
coverage all combinations of all options need to be tested, which is usually
infeasible due to the large number of necessary test cases. Combinatorial testing
proposes the choosing of a limited number of sample values for each option and
then only tests all n-combinations of the options using the chosen values. The
goal is to provide satisfactory coverage with a limited test budget. For n = 2 the
approach is called all-pairs testing. This is also a black-box technique.

4. Adaptive random testing improves upon random resting, which is a test case
generation technique that generates the test data randomly. The empirically
founded assumption on which the adaptive random testing approach is based
says that inputs which do not cause a failure are contiguous, and consequently
the inputs causing a failure are contiguous as well. For this reason different
algorithms are used to spread the generated test data evenly on the input domain.
Thus, the chances of finding a failure-inducing input are higher than in the case
of random testing. (Adaptive) random testing is a black-box technique.

KeYTestGen falls in the category of tools based on symbolic execution. In the
rest of this section, we give a selection of tools using that technique. A survey of
popular test generation tools based on symbolic execution is described by Cadar et al.
[2011]. A recent evaluation of symbolic execution-based test generation tools is done
in [Cseppento and Micskei, 2015].

StaDy, a recent extension of a deductive verification tool with test generation
capabilities, is based on Frama-C [Petiot et al., 2014]. Frama-C is a platform for
analyzing C code specified with the ANSII C Specification Language (ACSL). Only
an executable subset of ACSL is supported for test generation. StaDy translates
the specified C code and adds code for checking errors, similarly to compiling
the specified Java code with OpenJML RAC (see 12.8.2). PathCrawler [Botella
et al., 2009], a concolic test case generator, is then used to generate inputs for the
instrumented code.

Symbolic PathFinder [Pasdreanu et al., 2013] also uses symbolic execution and
constraint solving to generate test cases for Java programs. It is an extension of
Java PathFinder, a model checker for Java, and uses its functionality to explore the

450 12 Proof-based Test Case Generation

paths of the symbolic execution tree. The advantage of this approach is that the
model checker can handle comparatively large symbolic execution trees and supports
advanced features of Java such as multithreading. Symbolic PathFinder supports only
simple assertions, without quantifiers.

KLEE [Cadar et al., 2008a] is a symbolic execution test generation tool for
C programs built on top of the LLVM framework. It is a redesign from scratch of
the EXE [Cadar et al., 2008b] tool, with the main goal of improved performance and
scalability. KLEE was able to generate tests for the GNU coreutils utility suite, which
contains the implementations of many utilities (e.g., cat, cp, 1s) of UNIX-like
operating systems. It found bugs that were missed for as long as fifteen years. In
90 hours KLEE was able to generate a test suite with a higher statement coverage
than the developers’ own test suite which was written over a period of fifteen years.

Pex [Tillmann and de Halleux, 2008] uses dynamic symbolic execution to generate
unit tests for .NET programs. It supports simple assertions and assumptions without
quantifiers. Pex was used to generate tests for a core .NET component, and found
some serious bugs therein. Microsoft’s Visual Studio 2015 Enterprise Edition contains
a test case generation feature, IntelliTest, which is based on Pex.

CREST [Burnim and Sen, 2008] uses concolic execution to generate unit tests for
C programs. It provides some novel heuristics for exploring the symbolic execution
tree, achieving significantly higher branch coverage in the generated test suite than
traditional tools based on concolic execution when only a limited number of test
cases can be generated.

LCT [Kidhkonen et al., 2011] is a concolic test case generator for Java programs.
Both test case generation and the execution of the test cases can be done in parallel,
thus increasing the scalability of the tool.

SAGE [Godefroid et al., 2012] uses dynamic symbolic execution for generating
test cases for x86 binaries. It is used at Microsoft for testing large programs such as
image processors or media players which are shipped with the Windows operating
system. A distinguishing feature of SAGE is the heuristics used for exploring the
symbolic execution tree, thus generating a high coverage test suite with a small
number of test cases.

MergePoint [Avgerinos et al., 2014] combines static and dynamic symbolic ex-
ecution in order to generate test cases for binaries. It has been used to test Debian
binaries.

12.11 Summary and Conclusion

KeYTestGen shows how KeY’s formal verification engine can be used for test case
generation. It demonstrates that proving and testing can be usefully combined. Prov-
ing and testing have a lot in common. Proving can be thought of as a virtual or
symbolic testing approach, where the tests are first-order logic interpretations. In
essence, KeYTestGen turns these interpretations into executable test cases which
execute the code under test in the same way as if it was symbolically executed.

12.11. Summary and Conclusion 451

Proving and testing are complementary techniques. Symbolic execution considers
infinitely many values for variables, such that one can prove that a program satisfies
a specification for an unbounded number of inputs. However, finding a proof is
generally difficult and if a proof attempt does not succeed due to a timeout or because
no more rules are applicable on a proof branch, one cannot conclude that a fault
exists in a program. Vice versa, during testing only a bounded number of program
behaviors can be considered. However, testing has many important advantages. It can
be fully automated, a target program and its entire runtime environment (including
hardware) are tested, and if a test fails we know that a fault exists. The user has
the possibility to follow the execution of a test using a program debugger, to obtain
intuition about why the program does not satisfy its specification. In contrast to
proofs, tests can be easily repeated for regression testing when the program under
test has been modified in a nontrivial way.

We discussed variations of the test generator with different features and options.
The main configuration options and features of KeYTestGen are:

e test generation for individual Java methods with JML specifications;

* support for JUnit;

» unwinding/inlining loops and methods, or utilizing abstractions in form of loop
invariants and method contracts;

* support for different coverage criteria such as full feasible bounded path coverage,
full feasible branch coverage, and Modified Condition/Decision Coverage;

* testing of implicit conditions and corner cases such as NullPointerExceptions,
ArrayIndexOutOfBoundsExceptions, and arithmetic under- and overflows;

* support for specifications with quantified formulas through bounded quantifica-
tion domain approximation;

» generation of a test oracle or using the third party runtime checker OpenJML;

* the possibility to create objects from classes without default constructor and
initialization of private and protected fields.

KeYTestGen provides a variety of ways how it can be used. A new user may start
with very simple test case generation, to then gradually add specifications and try out
the more sophisticated features of the tool. In this way, the approach allows a smooth
learning curve. Overall, KeYTestGen allows the software developer to profit from
the very powerful analysis KeY performs on source code, by letting it create good
test suites, in a highly automated fashion.

