Karteesinen tulo

Wikipediasta
Siirry navigaatioon Siirry hakuun
Karteesinen tulo A × B, kun A={a,b,c} ja B= {x,y}

Karteesinen tulo eli tulojoukko on joukko-operaatio,[1] jolla muodostetaan kahdesta tai useammasta joukosta uusi joukko. Se on nimetty ranskalaisen matemaatikon ja filosofin René Descartesin mukaan. Descartes loi käsitteen kehitellessään analyyttista geometriaa.

Karteesisen tulon yleinen muoto voidaan esittää seuraavasti:

ja ja , missä ovat joukkoja.

Esimerkkejä karteesisesta tulosta

[muokkaa | muokkaa wikitekstiä]

Kahden joukon karteesinen tulo

[muokkaa | muokkaa wikitekstiä]

Kahden joukon X ja Y karteesinen tulo on sellaisten järjestettyjen parien (x, y) joukko, joissa x on joukon X alkio ja y joukon Y alkio.

Merkitään: ja .

Karteesisen tulon osajoukkoja kutsutaan binäärisiksi eli kaksipaikkaisiksi relaatioiksi.

Kolmen joukon karteesinen tulo

[muokkaa | muokkaa wikitekstiä]

Euklidinen kolmiulotteinen avaruus voidaan ilmaista joukkona , jonka alkiot eli "pisteet" ovat järjestettyjä kolmikkoja , missä .

Muita esimerkkejä

[muokkaa | muokkaa wikitekstiä]
  • Olkoot ja . Tällöin ja .
  • Olkoot M = {risti, pata, ruutu, hertta} ja N = {ässä, kuningas, rouva, jätkä, 10, 9, 8, 7, 6, 5, 4, 3, 2}.
    Tällöin M × N = {(risti, ässä) , (risti, kuningas), (risti, rouva),...,(hertta, 2)}. (korttipakka)
  • Reaalitaso: R2 = R × R = {(x, y)| x ∈ R, y ∈ R}
  1. Mark Freitag: Mathematics for Elementary School Teachers: A Process Approach, s. 95. Cengage Learning, 2013. ISBN 9781285528762 (englanniksi)

Kirjallisuutta

[muokkaa | muokkaa wikitekstiä]
  • Merikoski, Jorma; Virtanen, Ari; Koivisto, Pertti: Diskreetti matematiikka I. Tampere: Tampereen yliopisto, 2001 (1993). ISBN 951-44-3604-0
  • Lipschutz, Seymour: Set Theory and Related Topics. McGraw-Hill, 1964. ISBN 0-07-037986-6