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Abstract. The Business Process Modelling Notation (BPMN) is a standard for capturing business

processes in the early phases of systems development. The mix of constructs found in BPMN makes

it possible to create models with semantic errors. Such errors are especially serious, because errors

in the early phases of systems development are among the most costly and hardest to correct.

The ability to statically check the semantic correctness of models is thus a desirable feature

for modelling tools based on BPMN. Accordingly, this paper proposes a mapping from BPMN

to a formal language, namely Petri nets, for which efficient analysis techniques are available.

The proposed mapping has been implemented as a tool that, in conjunction with existing Petri

net-based tools, enables the static analysis of BPMN models. The formalisation also led to the

identification of deficiencies in the BPMN standard specification.

Keywords: Business process modelling and analysis, BPMN, Petri nets.

1 Introduction

The Business Process Modeling Notation (BPMN) [17] is a standard notation for capturing business

processes, especially at the level of domain analysis and high-level systems design. The notation inherits

and combines elements from a number of previously proposed notations for business process modeling,

including the XML Process Definition Language (XPDL) [21] and the Activity Diagrams component of

the Unified Modeling Notation (UML) [16]. BPMN process models are composed of: (i) activity nodes,

denoting business events or items of work performed by humans or by software applications; and (ii)

control nodes capturing the flow of control between activities. Activity nodes and control nodes can be

connected by means of a flow relation in almost arbitrary ways.

Languages that follow a similar paradigm, known as graph-oriented process definition languages, have

been previously studied from a formal perspective (e.g. the work on task structures [2]). It is known that

models defined in this family of languages may exhibit a range of semantic errors, including deadlocks and



livelocks. Such errors are especially problematic at the levels of domain analysis and high-level systems

design, because errors at these levels are among the hardest and most costly to correct. BPMN even

increases the types of semantic errors with respect to traditional graph-oriented languages, because it

combines graph-oriented features with other features, drawn from a range of sources including Workflow

Patterns [5] and Business Process Execution Language (BPEL) [12], a standard for defining business

processes at the implementation level. These features include the ability to define: (i) subprocesses that

may be executed multiple times concurrently; (ii) subprocesses that may be interrupted as a result of

exceptions; and (iii) message flows between processes. The interactions between these features are an

additional source of semantic errors.

For these reasons the ability to statically analyse BPMN models is likely to become a desirable

feature for tools supporting process modelling in BPMN. Anecdotal evidence suggests that BPMN

users sometimes produce models with semantic errors that could be detected using existing verification

technology.4

The semantic analysis of BPMN models is hindered by the heterogeneity of its constructs and the

lack of an unambiguous definition of the notation. While syntactic rules are comprehensively docu-

mented in tables throughout the BPMN standard specification, the actual semantics is only described

in narrative form using sometimes inconsistent terminology. This paper takes on the challenge of defining

a formal semantics for a large subset of BPMN. The semantics is defined as a mapping between BPMN

models and Petri nets. The choice of using plain Petri nets as a target for the mapping is motivated by

the availability of efficient static analysis techniques. Thus, the proposed mapping not only serves the

purpose of disambiguating the core constructs of BPMN, but it also provides a foundation to statically

check the semantic correctness of BPMN models. To support this claim, we have implemented a tool

that translates between the XML serialization of BPMN models supported by an existing BPMN tool,

and the Petri Net Markup Language (PNML). The paper reports experiences in importing the resulting

BPMN models into a Petri net analysis toolset for the purpose of performing semantic analysis.

The paper focuses on the control-flow perspective of BPMN, that is, the subset of the notation

that deals with the order in which activities and events are allowed to occur. It does not deal with

its non-functional features (i.e. artifacts, groups and associations) and organisational modeling features

(i.e. lanes and pools). Also, the proposed mapping is specifically designed to produce Petri nets that are

suitable for static analysis.

The rest of the paper is structured as follows. To make the paper self-contained, Sect. 2 provides an

introductory overview of BPMN and Petri nets. Sect. 3 presents a mapping from BPMN to Petri nets.

During this formalisation, some deficiencies were identified in the BPMN standard specification. These

are discussed in Sect. 4. Sect. 5 reports the tool implementation and its application to static analysis.

Finally, related work is discussed in Sect. 6 and conclusions are outlined in Sect. 7.

4 See www.brsilver.com/wordpress/2006/09/06/whats-wrong-with-this-picture/.
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2 Background

In this section, the Business Process Modelling Notation (BPMN) and the basic concepts of Petri nets

are introduced in turn.

2.1 BPMN

A BPMN process is made up of BPMN elements. Figure 1 provides an overview of a set of BPMN

elements related to control-flow specification. These include objects, sequence flows, and message flows.

An object can be an event , activity or gateway . A sequence flow links two objects in a process diagram

and denotes a control flow (i.e. ordering) relation. Message flows are used to capture the interaction

between processes. The figure does not show BPMN elements that do not have a control-flow semantics

such as lanes, artifacts, groups and associations.

Figure 1. Overview of BPMN.

An event may signal the start of a process (start event), the end of a process (end event), and may

also occur during the process (intermediate event). A message event is used to send or receive a message.

A timer event indicates that a given time instant has been reached, and an error event signals a fault or

exception raised during the process. There are other types of events in BPMN, namely link events, rule

events, terminate events, and compensation events. Link events are a notational convenience to spread

a model into several “pages” and therefore they do not affect the semantics of a model. Rule events are

similar to message events. They only differ in the way they are triggered: rule events are triggered by

data updates while message events are triggered by arrival of messages. For the purposes of our work,

we have found that we can treat them in very similar ways. Similarly, terminate events can be treated

as a special type of error events. Finally, compensation events are outside the scope of this paper.

An activity can be a task or a subprocess. A task is an atomic activity, standing for work to be

performed. There are 7 task types: service, receive, send , user , script , manual , and reference. A sub-

process is a compound activity defined as a flow of other activities. It can be invoked via a subprocess
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invocation activity . There are embedded and independent subprocesses. An embedded subprocess is part

of a process while an independent one can be called by different processes. Also, an activity may have

attributes specifying its additional behaviour, such as looping and parallel multiple instances.

A gateway is defined as a routing construct. There are: parallel fork gateways (AND-split) for creat-

ing concurrent (sequence) flows, parallel join gateways (AND-join) for synchronising concurrent flows,

data/event-based XOR decision gateways for selecting one out of a set of mutually exclusive alternative

flows where the choice is based on either the process data (data-based, i.e. XOR-split) or external event

(event-based, i.e. deferred choice), XOR merge gateways (XOR-join) for joining a set of mutually ex-

clusive alternative flows into one flow, and inclusive OR decision gateways (OR-split) for selecting any

number of branches among all its outgoing flows. In particular, an event-based XOR decision gateway

must be followed by either receive tasks or intermediate events to capture race conditions based on

timing or external triggers (e.g. the receipt of a message from an external partner).

An intermediate message, timer, or error event attached to the boundary of an activity signals an

exception, which we call an “exception event”. The occurrence of the activity will be interrupted upon

the occurrence of the exception, and the process execution along the normal sequence flow will switch

to the exception flow at the point when the exception occurs. Note that an error event on a normal

sequence flow models “throwing” an error, while one attached on the boundary of the activity models

“catching” an error. This is similar to the strictly hierarchical throw-catch mechanism used in most

programming languages.

A message flow is used to show transmission of messages between two interacting processes via

communication actions such as send/receive task or message event. The two processes are located

respectively within two separate pools, representing two participants (e.g., business entities or roles). In

graphical representation, a message flow is drawn as a dashed line with an open arrowhead connected

to the target process and a circle connected to the source process, and a pool is drawn as a rectangle

labelled with the process name.

Finally, a BPMN model is composed of a set of BPMN processes which are related to each other via

subprocess invocation activities or message flows.

2.2 Petri nets

Petri nets are a formal model of concurrent systems. Petri nets are particularly suited to model behavior

of systems in terms of “flow”, be it the flow of control or flow of objects or information. This feature

makes Petri nets a good candidate for formally defining the semantics of BPMN models, since BPMN is

also flow-oriented. In addition, Petri nets have been studied from a theoretical point of view for several

decades, and this research had led to a number of tools that enable their automated analysis.

A Petri net is a directed graph composed of two types of nodes: places and transitions. This graph-

ical syntax allows Petri nets to be intuitively visualized. Usually, places are represented as circles and

transitions are represented as rectangles. Petri nets are bipartite graphs, meaning that an arc in the net

may connect a place to a transition or vice-versa, but no arc may connect a place to another place or a
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transition to another transition. A transition has a number of immediately preceding places (called its

input places) and a number of immediately succeeding places (called its output places).

Places are containers for tokens. Tokens represent the thing(s) that flow through the system. At a

given point during the execution of a Petri net, each place may hold zero, one or multiple tokens. Thus,

a state of a Petri net is represented as a function that assigns a number of tokens to each place in

the net. Such a function is called a marking. For example, Figure 2(i) depicts a marking of a Petri net

where there is one token in the leftmost place and no token in any other place. The state of a Petri net

changes when one of its transitions fires. A transition may only fire if there is at least one token in each

of its input places. In this case, we say that the transition is enabled. For example, in Figure 2(i), the

transition labeled t1 is enabled since this transition has only one input place and this input place has

one token. When a transition fires, it removes one token from each of its input places and it adds one

token to each of its output places. For example, Figure 2(ii) depicts the state obtained when transition

t1 fires starting from the marking in Figure 2(i). The token in the leftmost place has been removed,

and a token has been added to each of the output places of transition t1. In a given marking, there

may be multiple enabled transitions simultaneously. In this situation, any of these enabled transitions

may fire at any time. For example, in Figure 2(ii) there are two transitions enabled: “Send Invoice”

and “Prepare Shipment”. Any of these transitions may fire in the next execution step. Note that when

the label attached to a transition is long (e.g. “Send Invoice”) we place the label inside the rectangle

representing this transition. Also, we will sometimes omit the label of a transition altogether. Transitions

without labels correspond to “silent steps” which have no effect on the outside world, as opposed to a

transition such as “Send Invoice”.

Figure 2. Sample workflow net in two different states.

Constraints may be imposed on the structure of Petri nets depending on the intended purpose. In

this paper, we aim at generating Petri nets that conform to the following restrictions (also known as

workflow nets): there is a unique source place (i.e. a single place is not the target of any arc), a unique

sink place (i.e. a single place that is not the source of any arc), and every other place and transition is

on a directed path from the unique source place to the unique sink place. In other words, workflow nets

have a distinguished start place and a distinguished end place. For example, the Petri net in Figure 2 is

a workflow net. Intuitively, a workflow net models the execution of one instance of a business process,

from its creation up to its completion. The initial marking of a workflow net contains a single token
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located in the source place, and in principle, at least one token should reach the end place. Completion

policies for workflow nets will be discussed later in the paper.

3 Mapping BPMN onto Petri Nets

To facilitate the definition of the mapping, we first introduce a notion “well-formed BPMN process”.

Such a process has the following characteristics: (i) a start event or an exception event has just one

outgoing (sequence) flow but no incoming flow; (ii) an end event has just one incoming flow but no

outgoing flow; (iii) activities and intermediate events have exactly one incoming flow and one outgoing

flow; (iv) fork or decision gateways have one incoming flow and more than one outgoing flows; and (v)

join or merge gateways have one outgoing flow and more than one incoming flows. The first two of these

conditions are syntactic restrictions inherent to the definition of start and end events in BPMN. The

latter three conditions are not part of the syntactic restrictions of BPMN, but we have introduced them

in order to simplify the presentation of the mapping. Importantly, these three latter conditions do not

affect the generality of the proposed mapping. It is trivial to re-write any BPMN model that does not

fulfill these conditions into one that does using the following transformation rules:5

– transform multiple incoming flows to an event or activity into one incoming flow, by preceding the

corresponding object with an XOR-join gateway that has all the incoming flows of the object;

– transform multiple outgoing flows from an event or activity into one outgoing flow, by following the

corresponding object with an AND-split gateway that has all the outgoing flows of the object;

– decompose an AND (or XOR) gateway with multiple incoming and multiple outgoing flows into an

AND (or XOR) join gateway followed by an AND (or XOR) split gateways, where the join gateway

has all the incoming flow and the split gateway has all the outgoing flows;

– transform a task with an input message flow and an output message flow into two related tasks; one

with an input message flow and one with an output message flow;

– transform a process that does not have a start or an end event into a process that does, by preceding

each task without incoming flows by a start event and succeeding each task without outgoing flows

by an end event.

A BPMN model is well-formed if it consists of a set of well-formed BPMN processes. Below, we

define a mapping of well-formed BPMN models to Petri nets. Both labelled and unlabelled Petri net

transitions are used. The labelled transitions model tasks and events, and the unlabelled ones (also

called “silent” transitions) capture internal actions that do not have directly visible effects.

3.1 Mapping Tasks, Events and Gateways

Figure 3 depicts the mapping from BPMN tasks, events, and gateways to Petri-net modules. A task

or an intermediate event is mapped onto a transition with one input place and one output place. The
5 The BPMN2BPEL tool implementation automatically performs a pre-processing step to “normalize” the

process model using these rules.
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transition, being labelled with the name of that task or event, models the execution of the task or event.

A start or end event is mapped onto a similar module except that a silent transition is used to signal

when the process starts or ends.

Figure 3. Mapping task, events, and gateways onto Petri-net modules.

Gateways, except event-based decision gateways and OR-split gateways, are mapped onto Petri-

net modules with silent transitions capturing their routing behaviour. These mappings, as shown in

Figure 3, are straightforward. For data-driven decision gateways, we model the boolean conditions in

the outgoing flows as silent transitions that have a common place as input. Thus, these silent transitions

will compete for a single token, and the choice as to which one will fire will be non-deterministic. In

other words, we do not model the conditions themselves, but only the fact that one of the conditions

will hold true when the gateway is reached. In the case of an event-based gateway, the race condition

between events or receive tasks is captured by having the corresponding transitions compete for tokens

in the place corresponding to the gateway’s input flow (but without introducing silent transitions as

we do for decision gateways). For an OR-split gateway, since its behaviour can be captured through a

combination of AND-split and XOR-split gateways [5], the mapping, which is not shown in Figure 3,

can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indicate that their usage is not unique to one

module. They are used to link the Petri net modules of two connecting BPMN objects and thus are

identified by both objects. Generally, any sequence flow is mapped onto a place except for event-based

decision gateways.

3.2 Activity Looping and Multiple Instances

In BPMN, an activity may have attributes that specify special behaviour such as repetition (i.e. the

activity is executed multiple times sequentially) and multiple instantiation (i.e. the activity is executed

multiple times concurrently). There are two variants of sequential activity repetition: one corresponding
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to a “while” loop and the other corresponding to a “repeat-until” loop. From a control-flow perspective

these repetition constructs can be seen as “macros”, in the sense that they can be expanded in terms of

decision and merge nodes as shown in Figure 4. Note that the value of attribute “TestTime” determines

whether the repeated activity corresponds to a “while” loop or a “repeat-until” loop.

Figure 4. Macro expansions for repeated activities.

Activities with a “multiple instantiation” attribute, hitherto called multi-instance activities, are

executed in multiple instances (i.e. copies) with each of these instances running concurrently and inde-

pendently of the others. The number of instances (n) may be determined at design time or at runtime.

If n is known at design time, the “multiple instantiation” construct can be regarded as a macro. Indeed,

a multi-instance activity of this type can be replaced by n identical copies of the activity enclosed be-

tween an AND-split and an AND-join as shown in Figure 5. On the other hand, if n is only calculated

at runtime, we need to synchronize an a priori unknown number of instances of the activity. This type

of synchronization can be expressed using high-level Petri net features such as those found in Coloured

Petri nets or YAWL [4]. Since we deliberately restrict the proposed mapping to produce plain Petri

nets, we have chosen not to deal with multi-instance activities where n is only determined at runtime.

Nonetheless, if the purpose of the mapping is to check for deadlocks in the process model, we can treat

a multiple-instance activity as a single-instance one. Indeed, because the multiple instances (or copies)

of the activity are executed independently, it is sufficient to check that one instance does not deadlock

to ensure that the entire multi-instance activity does not deadlock. This is why our tool implemen-

tation offers the option of mapping multiple-instance activities with an a priori unknown n, with the

assumption that n = 1.

3.3 Subprocess

A subprocess may be viewed as a standalone process. Figure 6 shows the mapping of a subprocess without

exception handling and with a single start and end event. A BPMN process model may have multiple

start or end events. The behaviour of such a process is however not clear in the BPMN specification

Figure 5. Macro expansion for a multi-instance activity where n is known at design time.
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(see Sect. 4 for a detailed discussion). Hence, we have restricted the mapping to sub-processes with a

single start event and a single end event only. This restriction could be lifted if a clear semantics for

multiple (sub-)processes with multiple start and end events was given.

Figure 6. Mapping of a subprocess without exception handling.

Figure 7 depicts the mapping of calling a subprocess (P ) via a subprocess invocation activity (SI).

Two places drawn in dashed borders capture respectively the incoming and outgoing flows of activity

SI. There are two new transitions: one identified as t(SI,call) modelling the invocation of subprocess P ,

the other t(SI,return) modelling the flow returns to the parent process after P completed.

Figure 7. Calling a subprocess via a subprocess invocation activity.

3.4 Exception Handling

In BPMN, exception handling is captured by exception flows. An exception flow originates from an error

event attached to the boundary of an activity. For presentation purposes, it is convenient to distinguish

the case where the activity is a single task, from the case where it is a subprocess. Figure 8 shows the

mapping of an error event associated with a task. Given that the execution of task T is atomic, the

occurrence of exception Ex may only interrupt T when T is enabled and has not yet completed. In

Petri net terms, this means that the occurrence of exception Ex can “steal” the input token that would

normally be consumed by the transition corresponding to task T .

Figure 8. Mapping of a task with an exception flow.

In the case of an exception flow associated to a subprocess, the occurrence of the exception (i.e. the

error event) will cancel the execution of the subprocess assuming that this latter has started but has

not yet completed. The mapping is complicated by the fact that it needs to capture the cancellation of

the running subprocess at any point when the exception occurs. This means that when the transition
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corresponding to the error event fires, all the tokens left in the Petri net fragment corresponding to

the subprocess need to be removed. However, due to the local nature of Petri net transitions, it is

cumbersome to model a “vacuum cleaner” that would remove all tokens from a given fragment of a

net [3].

Hence, to model the cancellation of a subprocess, we adopt an approach based on the idea of “by-

passing” tasks and events inside the subprocess upon occurrence of an exception. The basic idea is to

attach a status flag to the subprocess, which may have a value of ok or nok. If the flag is set to ok, it

allows the normal flow to continue; otherwise (the flag is set to nok), it signals the occurrence of the

exception, and thereby stops the normal flow but enables to bypass the remaining tasks and events until

the end of the subprocess. To this end each task and event has a skip counterpart. When the status

flag is set to ok tasks and events can be executed and their skip counterparts cannot. When the status

flag is set to nok tasks and events cannot be executed, but their skip counterparts can. This way, when

an exception occurs, we direct all the tokens left in the various places in the net to flow to the end of

the subprocess, without executing any remaining tasks or events on the way. After this bypassing phase

finishes, the exception handling may start.

Following this approach, Figure 9 depicts the mapping of a subprocess P with an exception flow

that originates from an error event Ex. Two places p(P,ok) and p(P,nok) model the ok and nok values of

the status flag attached to P , respectively. Once P starts, the flag is set to ok, and each task or event

along the normal flow in P needs to check this value (via the bidirectional arc to p(P,ok)) before it can

be executed. If exception Ex occurs before subprocess P ends, the value of the flag will change from ok

to nok. As a result, any remaining task or event in P will be skipped (e.g. transition t(T,skip) models

skipping task T ). Finally, before reaching the end of P , the flow switches to the exception handling

(which starts with task Tx) via transition t(P,excp). The occurrence of t(P,excp) also clears the nok value

of the status flag. Whereas, if no exception occurs, the flag will remain ok until the end of subprocess

P .

Figure 9. Mapping of a subprocess with an exception flow.

This mapping works both for exceptions thrown internally within the subprocess and for exceptions

triggered from outside the subprocess (such as exceptions triggered by the arrival of a message or the

expiry of a timer). In the first case, the error event at the boundary of the subprocess has a matching
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error event inside the subprocess, which corresponds to “throwing” the exception. In the second case,

the error event at the boundary of the subprocess does not have a matching error event inside the

subprocess. In terms of the mapping, this distinction makes little difference, except for the fact that in

the second case, the transition Ex, corresponding to the error event, is enabled immediately when the

subprocess is entered. In the latter case, this transition is only enabled when the subprocess reached

event which corresponds to “throwing” the exception. Only then can the transition corresponding to

the error event fire.

On the other hand, the above mapping does not work properly if there are one or more activities

within the subprocess which may be active multiple times concurrently. Such an activity would need to

be “bypassed” multiple times (as many times as it is active) and thus a counter would be required to

record how many times the activity in question needs to be bypassed. Such counter can not be encoded

in plain Petri nets if the maximum value of the counter is unknown [3]. To address this issue, we check

that the contents of the subprocess can be mapped onto a 1-safe Petri net. A Petri net is 1-safe if there

is no marking reachable from the initial marking through a series of transition firings, in which there is

more than one token in any given place. In other words, in a 1-safe net, there can not be more than one

token in a given place at a time. In BPMN terms, this means that no activity will ever be enabled or

running more than once concurrently. Indeed, if an activity was enabled multiple times concurrently, this

would translate into the corresponding transition being enabled multiple times at once, which means

that its input place would have two tokens simultaneously.

Thus, given a subprocess with an exception flow (e.g. subprocess P in Figure 9), we first translate

the subprocess itself into a Petri net; then, we check that this Petri net is 1-safe, and only if it is 1-safe

we may proceed to translating the associated exception flow into a Petri net module. Otherwise we do

not proceed with the translation. This means that the net enclosed within the dotted box in Figure 9

must be 1-safe.

The fact that a subprocess is 1-safe ensures that, assuming the subprocess is not executed multiple

times concurrently, none of its tasks or events will ever be executed multiple times concurrently. However,

we still need to ensure that, once the subprocess has been invoked, it is not invoked again until the first

invocation has completed. This condition may be violated as a result of the “unsafeness” coming from

“upstream” in the process model. That is, we need to ensure that the fragment of the model that

precedes the subprocess invocation is also 1-safe. This scenario is different from the previous one in that

the cause for multiple concurrent executions of a given task/event is external to the subprocess. Rather

than excluding these scenarios from the mapping, we propose to map them into a Petri net which would

prevent a subprocess from being executed multiple times concurrently. This is achieved by introducing

a “blocking mechanism” that withholds a new execution of the subprocess until the previous execution

has completed. In terms of Figure 9 this would mean adding a ‘status’ place p(P,enabled), which, when

holding a token, represents that the process can occur or, when not holding a token, represents that the

process cannot occur. When an instance of sub-process P starts, it consumes the token, such that no

other instances can start. When the instance completes, it puts the token back on the place. In this way

11



ensuring that a new execution of P has to wait until the previous execution of P finishes. Intuitively,

place p(P,enabled) can be viewed as holding a “resource” for execution of subprocess P . This resource is

created when the top-level process starts and will be collected when the top-level process ends.

While studying the above issues, we found out that the semantics of exception flows attached to

subprocesses that may be executed multiple times concurrently is unclear in the BPMN specification.

This is further discussed in 4.

Finally, we note that if a subprocess P is nested within another subprocess P ′, the execution of

P may be cancelled at due to the cancellation of P ′, regardless of the reason why P ′ is cancelled.

Accordingly, each task or event in P needs to check the ok status of both P and P ′ to ensure that once

P ′ is cancelled the execution of P stops as well.

3.5 Message Flow

A message flow describes the interaction between processes. It can be mapped to a place with an incoming

arc from the transition modelling a send action and an outgoing arc to the transition modelling a receive

action. A special case is the mapping of a message flow to a start event where the process is instantiated

each time a message is received. In this case, the message flow is directly mapped to an arc linking the

transition that models sending the message to the place that signals triggering the start event (e.g.,

place ps in the mapping of start event s shown in Figure 3, which we refer to as the “trigger place”

of start event s). Figure 10 shows four mapping rules, each capturing a case for a message sent by a

task or an end event and received by a task or a start event. Note that a task may be replaced by an

intermediate message event without changing the rule.

Figure 10. Mapping of message flows between BPMN processes.

The above mapping is restricted to tasks that either send or receive messages but not both (such

as user task and service task). This restriction does not limit the expressive power of BPMN, because

successively sending and receiving a message can be represented by two tasks such as a send followed

by a receive.
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3.6 Initial Marking Configuration

The initial state of a BPMN model can be specified by the initial marking of the corresponding Petri

net model. The basic idea for configuring the initial marking is to mark the trigger places for each of

the start events that do not have any incoming message flows and that the processes they belong to

are top-level processes. A message flow that has as a target the start event of a process, will create an

instance of the process upon message delivery. So, the mapping should ensure that the trigger place of

each start event with an incoming message flow does not contain a token in the initial marking, because

the process can only be instantiated as a consequence of this event when a message has arrived. A

special case is that each top-level process is instantiated by another process via an incoming message

flow to its start event. Then, the model designer will need to determine which of the top-level process

start events is triggered initially.

Figure 11 depicts the initial marking configuration for three typical examples of BPMN models that

consist of two interacting processes, namely P1 and P2. P1 has a start event s1, and P2 has a start

event s2. The first example in (a) exhibits one process instantiation dependency, where process P2 is

initiated upon a message sent from process P1. As a result, the trigger place ps1 for event s1 is the only

place being marked (with a token drawn as a big black dot) in the initial marking of the corresponding

Petri net model. The second example in (b) shows no process instantiation dependency between P1 and

P2, where neither event s1 nor s2 has an incoming message flow, and the interaction occur after both

processes are initiated. In this case, the trigger places for both s1 and s2 (i.e. ps1 and ps2) have to be

marked initially. Finally, the example in (c) exhibits mutual process instantiation between P1 and P2,

where event s1 has an incoming message flow from process P2 and vice versa. In this case, it is up to

the model designer to determine which trigger place (i.e. ps1 or ps2) will be initially marked.

Figure 11. Configuring initial markings of BPMN models with interacting processes.

4 Issues in the BPMN Specification

During the formalisation, we identified a number of deficiencies in the BPMN specification. Below, we

outline the most salient ones and discuss options for resolving them.

13



Process models with multiple start events A BPMN process model may have multiple start events but the

meaning of BPMN process models with multiple start events is underspecified. The BPMN specification

states that “each Start Event is an independent event. That is, a Process Instance SHALL be generated

when the Start Event is triggered”. Though ambiguous, this statement suggests that it is enough for

one of the start events to occur for a process instance to be generated. However, once a process instance

is generated by the occurrence of a start event, it is unclear whether the other start events may, must or

may not occur as part of the execution of that process instance. To add to the confusion, the specification

states that: “If there is a dependency for more than one Event to happen before a Process can start [...]

then the Start Events must flow to the same activity within that Process. The attributes of the activity

would specify when the activity could begin. If the attributes specify that the activity must wait for

all inputs, then all Start Events will have to be triggered before the Process begins.” This statement

suggests that once a process instance has been created by the occurrence of one of its Start Events, it

may be necessary to wait for the other Start Events to be triggered as well. However, closer examination

of the attributes associated to activities shows that none of them allow one to model that an activity

must “wait for all inputs”. We suggest that the BPMN standard should clarify the allowed combinations

of start events that may occur in the context of a lawful execution of a process model with multiple

start events.

The mapping described in this paper can be applied to BPMN models with multiple start events.

However, it would not yield a workflow net, but instead, a Petri net with multiple source places (i.e.

places with no incoming arcs). Such Petri nets can still be analyzed from a control-flow perspective

using Petri net techniques. However, one needs to establish the initial marking of the net from which

the analysis should be performed.

Process instance completion The BPMN specification does not clearly state when should an execution

of a process model be considered to be “completed”. This is particularly problematic for process models

with multiple end events since many options are possible in this case, e.g. is it enough that one end event

occurs (or is reached) for the process instance to be completed, or should we wait for all end events to

be reached, or should we wait until there is no activity within the process instance that is enabled or

active? We could only find in the specification one statement regarding this issue: “the process MUST

NOT end until all parallel paths have completed”. However, the notion of “parallel path” is not defined,

nor is the notion of “completion of a path”. Completion policies for process models with multiple end

tasks have been studied in [13]. This paper formalizes the notion that “an instance of a process model

is completed when at least one of its end tasks has been executed at least once, and there is no other

enabled task for that process instance”. We suggest that the BPMN standard specification should adopt

this completion policy.

Again, the mapping proposed in this paper can be applied to BPMN models with multiple end

events. However, it would not yield a workflow net. Instead, it would yield a Petri net with multiple sink

places (i.e. places with no outgoing arcs). Analysis of such process models is possible using Petri net

techniques provided that a completion policy is defined. In addition, if the BPMN model is 1-safe, the
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resulting Petri net with multiple sink places can be translated into a Petri net with a single sink place

as shown in [13]. Our tool implementation does not implement this feature but instead would produce

a Petri net with multiple end places.

Exception handling for multi-instance subprocesses The BPMN specification is also unclear regarding the

semantics of an exception handler attached to a multi-instance activity that invokes a subprocess. It is

not clear from the BPMN specification whether an exception thrown by an instance of such a subprocess

and caught by an exception handler attached to the multi-instance activity, should interrupt: (i) only

the subprocess instance in question; or (ii) all instances of that subprocess. If the first of these two

options was adopted, another ambiguity would need to be resolved, namely: should the interrupted

instance of the subprocess be considered as “completed” for the purpose of determining the completion

of the multi-instance activity in question? Indeed, a multi-instance activity that invokes a subprocess is

completed, by default, if all the subprocess instances it spawns have completed.

Also, a subprocess may be executed multiple times as a result of unsafeness in the parent process

model. If a process is not 1-safe, it may happen that one of its activities invokes a subprocess once,

and while the subprocess instance spawned by this invocation is still executing, the same activity is

executed again and thus invokes the subprocess a second time, thus leading to two subprocess instances

that execute concurrently. Again, if an exception is thrown by one of these instances and is caught by

an exception handler attached to the invocation activity, it is unclear whether this exception would only

affect that subprocess instance, or all subprocess instances spawned by the invocation activity.

OR-join gateway The BPMN specification states that an OR-join (i.e. inclusive merge) gateway “will

wait for (synchronize) all Tokens that have been produced upstream” and that the “Process flow SHALL

continue when the signals (Tokens) arrive from all of the incoming Sequence Flow that are expecting a

signal based on the upstream structure of the Process”. However, the notion of “upstream” is unclear,

especially when the OR-join is part of a cycle in the process model, in which case the OR-join is

“upstream” with respect to itself. Thus, situations may occur in which the firing of a given OR-join

depends on whether or not this same OR-join may eventually fire, leading to a vicious cycle. The

semantics of OR-join gateways has been extensively studied for other process modelling languages,

most notably YAWL. It is perhaps best for the BPMN specification to adopt an existing semantics with

a formal foundation rather than attempting to define a new one.

5 Analysis of BPMN Models

The mapping from BPMN to Petri nets presented in Sect. 3 serves as a specification for a tool that

transforms BPMN models into Petri nets. This section shows how we implemented such a tool (Sect. 5.1),

how it can be used to semantically analyse the BPMN models (Sect. 5.2), and the result of testing the

tool over a number of BPMN models available in practice (Sect. 5.3).
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5.1 Tool Design and Implementation

Figure 12 shows the structure of the tool that we implemented. The tool uses standard file formats to

keep it as open as possible. It is freely available at http://is.tm.tue.nl/staff/rdijkman/cbd.html#

transformer.

Figure 12. Structure of the BPMN to Petri net transformation tool.

The tool takes an XML Metadata Interchange (XMI) [15] file that contains the model as input. XMI

is a standardised file format for storing models, such that if there is agreement on the meta-model, the

XMI is tool-independent. In that way all tools that conform to the XMI standard and a meta-model

can seamlessly exchange models (which are instances of that meta-model). Seamless exchange of models

would also be possible between our transformation tool and graphical modelling tools. However, to the

best of our knowledge, no meta-model has been standardised for BPMN yet.6 Pending such a standard

we defined our own meta-model, which is presented and motivated in details in a companion technical

report [8]. This report also contains a mathematical specification of the mapping which has been used to

implement the tool. Basically, the specification consists of a set of rules which specify how to transform

one or a combination of BPMN element(s) into a Petri net module, i.e. a set of places, transitions

and arcs whose identifiers are chosen according to the identifiers of the source BPMN element(s). By

computing the union of the sets of places, transitions and arcs produced by each rule, we obtain the full

Petri net. This specification was used to implement the core component of the tool, which takes as input

an instance of the adopted BPMN meta-model and generates a Petri net represented as a set of places,

transitions and arcs. Each individual rule is implemented as a Java method and another overarching

method is used to fire the appropriate rule(s) for each element in the BPMN model and to compute the

union of the obtained Petri net modules.

We use the ILog BPMN Modeller as a graphical editor to create BPMN models. Since the ILog

tool does not generate standard XMI output, we implemented a simple pre-processor to transform the

tool’s output into XMI. The transformation tool subsequently loads this XMI representation of the

BPMN model, applies the transformation and exports the resulting Petri net in the form of a PNML

file. PNML [6] is a standardized file format for storing Petri net models. PNML files can be read by a

number of Petri net modelling and analysis tools.

6 A meta-model called BPDM has been proposed, but at the time of writing this paper this meta-model is not

yet fully aligned with BPMN.
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5.2 Static Analysis

The PNML file for the mapping of a BPMN model can serve as input to a Petri net-based verification

tool, e.g., ProM [9], for static analysis of the model. We can use ProM to check for the following

properties:

– Absence of dead tasks, i.e. there are no tasks that can never be performed within a model. It can be

checked through the absence of dead transitions within the corresponding net.

– Proper completion, i.e. any process instance eventually reaches a completion state. As formulated

in Sect. 4, a process instance is completed if it has reached the end event and there are no enabled

tasks. In Petri net terms, this corresponds to a dead marking7 in which only the sink place is marked.

Additionally, there are two types of undesirable dead markings: deadlocks (i.e. a dead marking where

the sink place is unmarked) and markings with trash tokens (i.e. a dead marking where in addition

to the sink place, other places are marked).

Figure 13 shows three examples of BPMN models and the corresponding Petri nets, which violate the

above properties. The first example (shown in Figure 13(a)) is an order process that may not complete

properly. If the credit card check fails, the process will complete but a token is left in-between task

“preparation of products” and “ship products”. Pragmatically, this means that the products are packed

but not shipped because of payment issues. The process would need to be corrected to properly withdraw

this remaining token and to undo any product preparations that may have been performed. The second

example (Figure 13(b)) is a travel itinerary process that does not complete at all (i.e. it deadlocks). The

reason is that initially there is a choice to either confirm the itinerary or to discuss it with the client,

while the process only completes if both these tasks are executed. The third example (Figure 13(c)) is

an answer process that contains dead tasks: the e-mail is never sent. This might indicate a design error,

e.g., the designer forgot to draw a flow between the two data-based decision gateways at the start of

the process.

5.3 Empirical Evaluation

We tested BPMN2PNML on a set of models. These are: models collected from the BPMSWatch Web

Log8, models distributed with the ILOG BPMN Process Modeler, models collected from the BPMN

Wikipedia entry9, and models designed by the authors in their separate work [7, 18]. This set of

models, together with the three examples shown in Figure 13, are included in the distribution of the

BPMN2PNML tool.

Table 1 shows the size of each tested BPMN model in terms of number of tasks, events, XOR-

gateways, AND-gateways, subprocesses, message flows and exception flows. It also shows the size of the

resulting Petri-nets in terms of number of places and transitions. Finally, the table shows the time (in

7 A marking is dead if it does not enable any transition.
8 http://www.brsilver.com/wordpress/about/
9 http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
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Figure 13. Examples of BPMN process models and transformations to Petri nets.

milliseconds) it took a regular desktop computer to transform the models. We distinguished between the

time it took to perform the actual transformation and the total time. The total time includes the time it

takes to initialize the model repository and load the BPMN model into the repository. We consider this

time separately, because in practical modeling tools a repository will already have been initialized and

the model will already have been loaded. Therefore, this overhead time may not be necessary in practical

tools. The computation times show that the transformation can be performed within a reasonable time,

even if it is not implemented efficiently. They also show that the computation time does not increase

much then the model size increases, therewith providing evidence that the transformation scales.

We detected errors in models 5, 7 and 11. Model 5 contained dead tasks, model 7 contained incomplete

process executions, and model 11 contained a livelock.

6 Related Work

To the best of our knowledge, the only other attempt to define a comprehensive formal semantics of

BPMN is that of Wong & Gibbons [22], which use Communicating Sequential Processes (CSP) as the

target formal model. Like our semantics can be checked by Petri net checking tools, their semantics

can be checked by CSP checking tools such as FDR [10]. In their work, a BPMN model is mapped

to a set of CSP processes and events. Each task object is mapped to a CSP process while the flow

relations between task objects are captured through CSP events. The conditions for initiation of a task

are encoded as possible combinations of CSP events that need to occur for the task to be enabled. When

a task completes, it generates event occurrences that may then combine with other event occurrences

to initiate other tasks. The CSP models produced in this way may be large and complex, and they do
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Table 1. Evaluation results of BPMN2PNML.

Model BPMN Model Petri Net Model Processing Times (ms)

No. tasks events XOR∗ AND subprocesses messages exceptions places transitions total transformation

1 11 2 9 2 31 34 16828 1234

2 7 4 4 4 23 21 13875 1297

3 9 8 3 2 2 35 39 14703 2031

4 4 2 2 10 10 13109 703

5 3 2 2 2 12 11 15375 734

6 4 8 4 4 24 20 13781 1218

7 5 12 4 5 31 25 13828 1265

8 2 2 4 11 12 13187 797

9 5 2 2 11 11 13000 641

10 5 2 2 11 9 15516 750

11 6 4 2 2 19 16 13891 1125

12 6 4 3 2 1 20 19 13625 1093

13 12 4 10 2 1 1 38 43 14657 2016

∗ This includes both data-based and event-based gateways.

not preserve the structure of the BPMN model. For example, a simple sequence of BPMN activities is

not translated as a sequence of processes. Also, Wong & Gibbons [22] do not show how can the CSP

semantics be used to detect various types of errors.

Puhlmann & Weske [20] present the foundations of a tool for static analysis of BPMN process models.

This tool relies on a mapping from a subset of BPMN to π-calculus. However, this mapping only covers a

small subset of BPMN. In particular, it does not take into account error handling, which is a key feature

of BPMN. Puhlmann & Weske also show that the π-calculus expressions produced by this tool can be

used to check the soundness of BPMN models using existing reasoning tools based on the π-calculus,

in particular using the Mobility Workbench. Experiments show however that this approach does not

scale beyond relatively small BPMN models (less than 10 nodes), whereas our approach can cope with

models at least three times larger without being affected by efficiency issues.

Several formal semantics have been defined for other informal languages that share common features

with BPMN. For example, [2] defines a mapping from a language called workflow task structures into

Workflow nets (a subclass of Petri nets) while [1] provides a similar mapping for Event-driven Process

Chains (EPCs). Task structures are composed of tasks, AND split and join gateways, and XOR split and

join gateways. Task structures support subprocess invocation, but not exception handling or multiple

instances of subprocesses as in BPMN, thus making their mapping to Petri nets easier. A task structure

can have multiple sink tasks, like BPMN can have multiple end events. In task structures the intended

termination semantics is that of implicit termination as defined in [13] – that is, an instance of the

process model is considered to be completed when one of the sink tasks has been performed and no

other task is active or enabled. To map this feature into Petri nets, [2] uses so-called “shadow places”
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that keep track of the number of active parallel streams. Termination is detected once the number of

streams goes back to zero. However, this solution only works when the resulting net is bounded, and

also it uses weighted arcs with potentially large weights. The idea can be used to extend the proposed

BPMN mapping to deal with implicit termination, but it has an adverse effect on the complexity of

analysis algorithms due to the use of weighted arcs. Next, the mapping of EPCs in terms of Workflow

nets provided in [1] is similar to the one for task structures discussed above. The main difference is that

EPCs have OR-join connectors, which is present as OR-join gateways in BPMN.

In this paper we use workflow nets as a basis for verifying BPMN models, using standard verification

techniques such as deadlock and livelock analysis [2]. Other behavior verification techniques for business

process models exist [14] that allow a designer to specify pre- and postconditions of a business process.

These verification techniques then check whether the specified pre- and postconditions hold for a certain

process.

BPMN shares several features with the Business Process Execution Language (BPEL) [12]. A num-

ber of formal semantics of BPEL have been defined in terms of Petri nets and other models of concur-

rency [11, 19]. These formalizations have been used to develop verification tools for BPEL. However,

the types of verification problems for BPEL are different from those in BPMN. In particular, livelocks

and deadlocks that may arise in BPMN models do not arise in BPEL process definitions because of the

block-structured nature of BPEL’s control-flow constructs.

7 Conclusion

The BPMN standard specification is relatively detailed when it comes to specifying syntactic constraints

on BPMN models, but it is unsystematic and sometimes inconsistent when it comes to defining their

semantics. The lack of formal semantics of BPMN hinders on the development of tool support for

checking the correctness of BPMN models from a semantic perspective. This paper has taken a first

step to address this gap by providing a mapping from BPMN to Petri nets. The mapping has been

implemented in a tool and its application to verifying the soundness of BPMN models has been tested

using the ProM framework. In addition, this formalisation has permitted us to unveil a number of issues

in the BPMN specification and to suggest solutions.

The proposed mapping does not fully deal with: (i) exception handling for subprocesses that may

execute multiple times concurrently and (ii) OR-join gateways. These two missing features coincide with

the limitations of Petri nets that motivated the design of the YAWL worflow definition language [4].

YAWL extends Petri nets with a concept of cancellation region, which allows an entire region of the net

to be interrupted at once when an event occurs. In future work we plan to adapt the proposed mapping

so that it generates YAWL nets in those cases where a translation to Petri nets is not feasible. The

resulting YAWL nets can be analysed using techniques such as those described in [23]. The tradeoff is

that verification of YAWL nets is computationally more complex than the corresponding verification

problems on Petri nets. Studying this tradeoff, both analytically (in terms of worst-case complexity)

and empirically, is a direction for future work.
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