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Identification of Children At Risk of Schizophrenia via Deep 
Learning and EEG Responses

David Ahmedt-Aristizabal, Tharindu Fernando, Simon Denman, Jonathan E. Robinson, Sridha Sridharan
Patrick J. Johnston, Kristin R. Laurens, Clinton Fookes

Abstract—The prospective identification of children likely to
develop schizophrenia is a vital tool to support early interventions
that can mitigate the risk of progression to clinical psychosis.
Electroencephalographic (EEG) patterns from brain activity and
deep learning techniques are valuable resources in achieving this
identification. We propose automated techniques that can process
raw EEG waveforms to identify children who may have an
increased risk of schizophrenia compared to typically developing
children. We also analyse abnormal features that remain during
developmental follow-up over a period of ∼4 years in children
with a vulnerability to schizophrenia initially assessed when
aged 9 to 12 years. EEG data from participants were captured
during the recording of a passive auditory oddball paradigm.
We undertake a holistic study to identify brain abnormalities,
first by exploring traditional machine learning algorithms using
classification methods applied to hand-engineered features (event-
related potential components). Then, we compare the perfor-
mance of these methods with end-to-end deep learning techniques
applied to raw data. We demonstrate via average cross-validation
performance measures that recurrent deep convolutional neural
networks can outperform traditional machine learning methods
for sequence modeling. We illustrate the intuitive salient in-
formation of the model with the location of the most relevant
attributes of a post-stimulus window. This baseline identification
system in the area of mental illness supports the evidence of
developmental and disease effects in a pre-prodromal phase of
psychosis. These results reinforce the benefits of deep learning
to support psychiatric classification and neuroscientific research
more broadly.

Index Terms—Early stages of psychosis, Abnormal brain activ-
ity, Convolutional neural networks, Recurrent neural networks.

I. INTRODUCTION

D ISCRIMINATING abnormalities of brain activity in in-
dividuals who are at-risk of mental illness may be pivotal

for early intervention [1]. In schizophrenia, traditional methods
of identifying at-risk individuals on the basis of a positive
family history of the disorder have been supplemented more
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recently by the development of methods to identify individuals
who are putatively in the premorbid [2] and/or prodromal
phases of illness [3] that precede the onset of frank psychosis.
These methods typically identify such individuals based on
clinical signs and symptoms of disease, but event-related
potential (ERP) recordings of brain function have identified
a variety of functional abnormalities among these individuals
at risk for schizophrenia (RSz) that were discovered previously
in adults with chronic schizophrenia [4]. One such ERP
component, the amplitude of the mismatch negativity (MMN)
potential, reflects an automatic process that detects any devi-
ation of an incoming stimuli from the sensory memory trace
established by the preceding stimuli, and is typically elicited
during passive listening to an auditory “oddball” paradigm
in which an infrequent deviant (e.g. which varies in duration
or frequency) is presented against a background of frequent
standard tones. The MMN correlates with disease severity and
appears to be sensitive to disease state, providing a useful
biomarker for the evaluation of abnormal brain function in
children at risk of developing schizophrenia [5], [6].

Several studies have demonstrated the potential of tradi-
tional machine learning (ML) techniques to detect abnor-
malities in brain structure and function for schizophrenia.
For example, Gould et al. [7] used neuroanatomical features
and support vector machines to classify cognitive subtypes
of schizophrenia, while Huang et al. [8] proposed a model
to classify schizophrenia using a random forest operating on
importance scores from multifrequency bands of functional
magnetic resonance images. Regression trees were used for
prediction of psychotic relapse in [9], and structural neu-
roimaging features coupled with support vector machines
and k-nearest neighbours were also used to detect the first
psychosis episode [10], [11]. In these previous studies, the
participants used for experiments have been adults with a
diagnosis of schizophrenia. The evaluation of brain function
during the early stages of the disease that precedes clinical
diagnosis has not been investigated sufficiently. The majority
of prior ML research is based on imaging data evaluation and
has not considered the study of EEG-derived ERP recordings
to explore whether abnormalities of auditory information pro-
cessing can be detected in the premorbid phase of illness,
among RSz children. Additionally, prior approaches have been
centered around extracting hand-engineered features which
have limitations relating to expert knowledge being required.

In recent years, deep learning (DL) techniques have revo-
lutionised computer vision and the medical domain including
the evaluation of brain signals [12] and mental health disor-
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Fig. 1. Overview of the proposed learning algorithms for identifying abnormal brain activity in RSz children. Dataset: 1. EEG data from RSz and TD
children are recorded during the presentation of a passive auditory oddball paradigm. A total of 1,600 trials of 300 ms length from the combined standard
and deviant stimuli represent the data analysed for each participant. A subset of five channels from the midline are selected for analysis. Learning algorithms:
2. Hand-engineering features are extracted, comprising early negative and mid-latency positive component mean amplitudes. Then, traditional classifiers are
used to identify EEG abnormalities. 3. A hybrid deep learning model (R-CNN) is trained to extract spatial and temporal features from raw data. The output
of the model is represented by the classification accuracy of each group.

ders [13]. The major advantage of DL compared to traditional
ML is that feature engineering is not required, and the model
itself discovers the optimal features directly from the data.
These techniques were proposed to learn representations from
neuroimaging [14] and EEG recordings [15] to identify pa-
tients with schizophrenia. However, investigation into how DL
can analyse complex conditions of brain response to auditory
stimulus changes in children have been limited so far. Analysis
of ERP components elicited by deviant auditory stimuli have
been described in premorbid [5] and prodromal [6] phases
of schizophrenia, but an automated classification of EEG
recordings was not considered.

In this paper, we compare the brain electrical activity of
RSz children relative to their typically developing (TD) peers
through an initial assessment (A1) conducted at 9-12 years and
two reassessments completed approximately 24 months (A2)
and 48 months (A3) later. We first use ML algorithms with
hand-engineered features extracted from EEG recordings to
classify physiological signals. Then, we introduce DL models
such as convolutional (CNN) and recurrent neural networks
(RNN) to process data without feature transformation Of the
original EEG recordings, in each assessment phase. We are
also motivated to identify features that remain in the develop-
mental trajectory of RSz children. We aim to explore if the
robustness of the biomarker and model change with age and
putative disease progression. To the best of our knowledge, this
is the first work to apply deep learning to EEG data obtained at
multiple time points from individuals at risk for schizophrenia.
We envision that DL algorithms such as memory networks
could provide the basis for ongoing significant breakthroughs
in distinguishing vulnerability to psychiatric disorders such as
schizophrenia.

Our technical contributions are summarised as follows:
1) We introduce and compare traditional machine learning

and deep learning architectures to classify EEG-based
vulnerability for schizophrenia.

2) We demonstrate that a hybrid deep learning network is
capable of identifying children at-risk of schizophrenia,
can provide the location of relevant features, and is able
to determine the impact of each recording channel for
the identification task.

II. MATERIALS AND METHODS

In this paper, we evaluate different approaches that quan-
tify brain electrical activity to identify children at risk of

schizophrenia, by using either traditional ML or DL architec-
tures. In the ML approach, we use hand-crafted features de-
fined as the early negative and mid-latency positive component
mean amplitudes of the EEG response to each stimulus. Then,
we compare the classification performance with traditional
classifiers. For the DL approach, we design and train from
scratch an architecture based on hybrid networks such as
recurrent convolutional neural networks (R-CNN) [16]. This
model extracts spatio-temporal representations directly from
the raw data without pre-processing, and performs classi-
fication. An abstract view of these approaches is given in
Fig. 1. For evaluation, we first classify trials from RSz
and TD children at each of the three assessment phases.
Then, we determine whether a test participant may exhibit
vulnerability for schizophrenia based on the total number of
trials per recording with functional abnormalities according
to a threshold of acceptance. Finally, we compare and detect
abnormal patterns that remain in RSz children across the
developmental trajectory. Details of each strategy are described
in the following subsections.
A. Dataset

Scalp potentials with a 10-10 configuration were captured
at a sampling rate of 500Hz from 30 Ag/AgCl electrodes
during the presentation of a passive auditory oddball paradigm.
This task comprised 1600 tones at 1000 Hz, including 1360
standard stimuli of 25 ms duration (85%) and 240 deviant
stimuli of 50 ms duration (15%), all with a rise and fall time
of 5 ms. The stimulus onset asynchrony was 325 ms for each
standard and 350 ms for each deviant tone, which yielded an
isochronous interstimulus interval of 300 ms.

Table I summarizes the number of participants included
in our dataset at each assessment. RSz children included
individuals with a positive family history of schizophrenia
(in at least one second-degree relative) and/or children pre-
senting a triad of replicated antecedents of schizophrenia
that included a delay or abnormality in speech and/or motor
development, internalising or externalising problems, and at
least one psychotic-like experience [17]. TD children were
those who presented none of the antecedents of schizophrenia
and no family history of schizophrenia spectrum illness in any
first-, second- or third-degree relative. RSz children were also
categorised according to the developmental trajectory: A1 at
0 months (aged 9-12 years), A2 at ∼24 months (aged 11-14
years), and A3 at ∼48 months (aged 13-16 years).
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TABLE I
RSZ AND TD PARTICIPANTS AND TRIALS FOR EACH ASSESSMENT PHASE.

Assessment Participants Trials
Phase RSz TD RSz TD

A1 65 40 104,000 64,000
A2 65 45 104,000 72,000
A3 57 42 91,200 67,200

Fig. 2. Grand average of the standard and deviant waveforms from the five
midline channels from the post-stimulus window in RSz (dashed line) and
TD children (solid line).

Each participant is represented by a single recording session
with multiple trials and each trial is defined as the post-
stimulus window of 300 ms. The total number of trials per
participant of each group (RSz and TD) corresponds to the
combined number of standard and deviant stimulus (i.e. 1600
trials). We selected a subset of midline channels relevant to
oddball task analysis (Fz, FCz, Cz, CPz, and Pz) [5] (see
Fig. 1). Midline channels are least likely to be excluded in a
participant due to recording problems/artefacts A simple pre-
processing routine was performed on the raw EEG data by
applying a 50 Hz notch filter [5]. Fig. 2 illustrates the window
length of the average brain response elicited by the standard
and deviant tones for RSz and TD children.

B. Learning algorithms

In this paper, we conduct a systematic evaluation of ML
and DL techniques commonly used for sequence modeling.

1) Traditional machine learning: To compare ML classi-
fiers, we first discuss the process of feature extraction. For
each trial, we compute the early negative (mean amplitude
between 80-220 ms) and mid-latency positive (mean amplitude
between 160-290 ms) component amplitudes. These time-
windows correspond to those typically used for the manual
evaluation of the passive auditory oddball paradigm [5], [18].
These values are baselined to the average amplitude of the
100 ms window preceding the stimulus onset. Therefore, the
feature space of each trial is represented by 10 features (two
amplitude values for the five channels of interest), with each
participant being of dimension [#trials,10]. To classify these
hand-engineering features, we adopt traditional classifiers in-
cluding k-nearest neighbors (KNN), decision trees (DT), and
support vector machines (SVMs). These are among the most
common classifiers used in previous studies in neuroimaging
for psychiatric evaluations [7], [10], [11].

2) Deep learning: In our study, we compare DL models
that process raw signals and eschew handcrafted features
for the identification of relevant features at the early stages

Fig. 3. Representation of the input signal (one trial from a RSz child) and the
R-CNN model (2D-CNN-LSTM). A CNN is used to extract spatial features,
and an LSTM is designed to extract temporal features.

of psychosis. The input representation of each raw trial is
defined by [#trials,300,5], which corresponds to the post-
stimulus window of interest of 300 ms and the five channels of
evaluation. We implement per participant a min-max scaling
of each channel. No other pre-processing or feature extraction
techniques are performed.

We exploit many insights about suitable network architec-
tures. We choose to design and train our network from scratch
to learn representations of raw EEG signals with a low num-
ber of trainable parameters. Through extensive experiments,
we compare CNNs, RNNs and R-CNNs architectures. 1D-
CNNs and 2D-CNNs are multi-layered architectures where the
primary idea is to train one-dimensional or two-dimensional
convolution filters to extract local features at different levels
of a hierarchy [19]. RNNs such as long short-term memory
units (LSTM) [20] or gated recurrent units (GRU) [21] have
proven to be stable in modeling dependencies in sequential
data by employing an external memory cell state. R-CNNs are
used to better exploit variable-length sequential data to extract
spatio-temporal features and classify through an end-to-end
deep learning model. R-CNN constitutes of a combination of
1D / 2D convolution layers followed by stacked recurrent units
(LSTMs or GRUs). Shallow hybrid networks have shown to
be suitable for analysing small amounts of training data [22]
and EEG recordings in a mental load classification task [23].
Networks using LSTMs have outperformed counterparts using
GRUs in the specific domain of seizure detection from EEG
data [24].

We adopt an R-CNN model (2D-CNN-LSTM) which shows
the best performance for trial classification on assessment
A1 (see Section III-C). The chosen network architecture is
displayed in Fig. 3. The input is transformed into a feature
map through the first computational block consisting of (1)
one 2D convolutional layer with 32 kernels with size [64× 5]
(experimentally evaluated), (2) one normalization layer, and
(3) one fully connected layer. In the second computational
block, the CNN output is subsequently fed to two stacked
LSTM layers. The hidden state dimension of the LSTMs
are determined empirically and are set to 128 and 64 units,
respectively. Finally, the second hidden recurrent layer is fed
into a classification layer with a sigmoid activation function.
This layer provides an output of [q, 1− q], where q represents
the probability of an abnormal trial to be true and reciprocally
[1 − q] describes the probability for the post-stimulus to be
false.
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III. EVALUATION
A. Experimental setup

1) Trial classification: To evaluate and compare the per-
formance of each proposed ML and DL model, we adopt the
trial classification strategy and the recordings from the initial
assessment A1. With the model that shows the best perfor-
mance, we evaluate trials and participants in the reassessment
phases.

We adopt a 5-cross-validation (CV) strategy [25] across
participants. One fold is considered the test data set, and the
remaining folds are the training data set. This ensures that
per fold, all trials from one child belong to either the train
or test set (e.g. for phase A1, 52 and 13 RSz children are
adopted for training and testing, respectively). We combine
all trials across children of the training set, then, we classify
trials that have not been seen during training. The training set
is divided into 80% for training the model and 20% for tuning
the parameters. The final trial classification is computed as the
average performance of each fold.

2) Participant identification: To evaluate the identification
of RSz children at an individual level in each test fold, we
compute the proportion of trials that were correctly classified
with an abnormality to predict the group membership of
each participant. Where this proportion exceeds a threshold of
60%, we consider the test participant to exhibit vulnerability
for schizophrenia. This boundary level was adopted with the
consideration of the total number of trials and heterogeneity
of EEG responses.

3) Identification of abnormal patterns among assessments
via trial classification: We aim to compare the robustness of
the model for capturing abnormal brain activity across the
developmental trajectories (A1, A2 and A3). In this scenario,
we train the model using all trials from one assessment phase
and test the model with trials from another phase. We evaluate
each test phase (target phase) with 80% of trials allocated for
validation and 20% for test, with a 5-fold CV scheme. Using
this split, we optimize the classifier to perform well on the
target distribution. To generate the final classification of each
test phase, we utilise majority voting.

B. Implementation details

For traditional ML classifiers, we find hyperparameters that
minimize 5-fold CV loss by using automatic optimizers such
as the Bayesian optimization computed in MATLAB [26]. We
select the following parameters. KNN: number of neighbours
(6), distance (euclidean). DT: maximum number of splits (20),
split criterion (Gini’s diversity index). SVM: kernel function
(gaussian), box constraint level (0.0115), kernel scale (0.2938).

We determine experimentally DL parameters such as the
number of layers, the number of channels and the filter
size. We also evaluate potential performance improvements by
using intermediate normalization by batch normalization and
dropout for regularization. We train the proposed DL model
by optimizing the binary cross-entropy loss. We use Adam
optimizer with a learning rate of 10−3, and decay rates for
the first and second moments of 0.9 and 0.999 respectively.
We employ dropout with a probability of 35% in the LSTM
architecture. Batch-size was set to 32. We train the model over

Fig. 4. Group difference in the early negative mean amplitude
(mean ± SD) for each midline channel in RSz (green) and
TD (blue) children.

Fig. 5. Group difference in the mid-latency positive mean amplitude
(mean ± SD) for each midline channel in RSz (green) and
TD (blue) children.

200 epochs using the default initialization parameters from
Keras [27]. As this is a data with an uneven class distribution,
we balance the training data at the trial level using class weight
parameters [27].

C. Experimental results and model interpretation

1) Traditional machine learning: We first illustrate the
difficulty in distinguishing RSz and TD children based on
typical features extracted from the brain response to the
passive auditory oddball paradigm. In [5], the authors demon-
strated that by using peak amplitudes, there exists a statis-
tical difference between RSz and TD children. Considering
only assessment A1, we compute the mean amplitude in the
respective time windows of interest (early negative and mid-
latency positive components) across all participants of each
group and discriminate according to each electrode channel.
Fig. 4 illustrates the mean and standard deviation of the early
negative mean amplitude for each channel for RSz and TD
children, and Fig. 5 presents the same for the mid-latency
positive mean amplitude. To qualitatively illustrate the limita-
tions of these hand engineering features, we apply PCA [28]
and plot the top two components in 2D. Fig. 6 shows the
resultant plot. From this figure, the features are not sufficient
to discriminate between RSz and TD children because there
is not a clear separation between groups. Therefore, we can
argue the complex task to differentiate between groups and
the necessity to automate this process.

An evaluation of the optimized ML classifiers is presented
in Table II. We find that in the assessment A1, all three models
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Fig. 6. 2D illustration of the evaluation of extracted features of RSz and TD
children through PCA in the assessment phase A1. Left: Hand-engineering
features using the average values per participant of the early negative and
mid-latency positive mean amplitudes. Right: Embeddings from the R-CNN
model for 5,000 randomly selected trials from the test set.

KNN, SVM and DT overfit to the training data showing
poor performance and high variance on the validation data,
and achieving average test accuracies of less than 45% (5-
CVs). This baseline suggests that the features extracted were
insufficient to discriminate between RSz and TD children.

2) Deep learning: An evaluation of all DL models to
classify trials in assessment A1 is shown in Table II. The
results showed improved performance of the hybrid network
2D-CNN-LSTM in comparison to ML classifiers, and con-
volutional and recurrent networks. In table III, we list the
average results of trial classification using the best model in
all assessment phases. This framework achieved an average
accuracy across all phases of 89.98% and 69.53% for the
validation and test sets, respectively.

To illustrate the variability of abnormal brain activity across
participants in a selected fold, we compare the individual
performance for all RSz children included in the test set (13
participants for A1 and A2, and 11 for A3). These results
are illustrated via a horizontal boxplot in Fig. 7. It can be
observed that the percentage of trials that were correctly
classified at individual level for RSz children ranges from
43.2% to 95.2% (median 82.1%) for phase A1, from 50.1%
to 91.4% (median 75.2%) for phase A2, and from 58.1% to
81.2% (median 67.1%) for phase A3. This marked intersubject
variability (trials across RSz children) reflects challenges re-
lated to the heterogeneity and variable frequency of abnormal
features within the EEG-based data. Some children exhibit
an abnormality unique from all others and so are poorly
classified. These patterns limit the ability of the model to
generalise across participants, as shown by the difference
between validation and test accuracy. It can also be observed
in Fig. 7 that identifying trials in assessment A3 is more
complex than the other two phases. However in this phase,
the classification results at individual level are more consistent,
which may indicate that the abnormality is similar among RSz
children.

Table III indicates also the participant identification (RSz
and TD children) based on the total number of correct trials
classified on the test set. We evaluate the performance using
the following metrics. Sensitivity: percentage of trials from a
RSz participant that are correctly classified with the abnormal-
ity and are greater than 60%. Specificity: percentage of trials
from a TD participant that are unrelated to the abnormality and
are greater than 60%. In this scenario, the model categorised

TABLE II
TRIAL CLASSIFICATION OF THE LEARNING ALGORITHMS IN A1.

Algorithm Test Accuracy (%)

KNN 44.50
SVM 43.88

DT 44.75

1D-CNN 45.10
2D-CNN 48.64

LSTM 53.90
1D-CNN-LSTM 55.20

2D-CNN-GRU 69.78
2D-CNN-LSTM 72.54

TABLE III
PERFORMANCE FOR CLASSIFYING TRIALS AND PARTICIPANTS FOR EACH

ASSESSMENT PHASE WITH THE R-CNN MODEL.
Assessment Validation Test AUC Test RSz Test TD

Phase Accuracy (%) Accuracy (%) (Sensitivity (%)) (Specificity (%))

A1 88.92 72.54 0.77 8/13 (61.53%) 6/8 (75%)
A2 93.59 69.83 0.71 8/13 (61.53%) 7/9 (77.77%)
A3 87.44 67.02 0.65 9/11 (81.81%) 7/8 (87.5%)

Average 89.98 69.80 68.29 80.09
Assessment phases. A1: Baseline; A2: ∼24 months; A3: ∼48 months.

Fig. 7. Performance at the individual level for RSz children from the test set
for each assessment phase.

TABLE IV
PERFORMANCE WHEN CLASSIFYING TRIALS AMONG PHASES.

Training Phase Test Phase Test Accuracy (%)

A1 A2 78.7
A1 A3 74.1
A2 A1 69.9
A2 A3 70.3
A3 A1 66.2
A3 A2 67.8

the majority of the participants correctly with an average
sensitivity of 68.29% and specificity of 80.09% among the
three assessment phases.

Finally, Table IV depicts the performance when identifying
abnormal patterns that remain among the assessment phases.
According to these results, we can confirm the presence of
certain discriminative features that are common during the
developmental trajectory. Therefore, we demonstrate the ro-
bustness of the model to detect vulnerability for schizophrenia
across changes in age and putative disease progression.

As an EEG signal is recorded in the form of a multi-
channel signal, we can consider this representation an image
of one dimension (i.e. the window length and number of
channels correspond to the width and height of an image,
respectively) [29]. Such a representation merits investigation
as it may enable the use of common DL benchmark used
for image classification. It could be argued that fine-tuning
these architectures to classify raw physiological signals may be
preferable over training a network from scratch. However, we
choose to design and train our own network due to the benefits
conferred by a small number of trainable parameters (1.3M).
To illustrate this point, we fine-tune a pre-trained ResNet50 by
modifying the last two layers (32 and 2 dimensional vectors)
for binary classification. We find experimentally that this type
of architecture is not suitable for our data due to the large
number of training parameters (> 23M) which quickly led
to over-fitting. This supports other research that has preferred
shallow networks for analysing EEG data [29].
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Fig. 8. Overview representation of the extracted activations from the CNN layer of the R-CNN model for random 500 trials correctly classified in the
assessment phase A1. All filters from all trials are combined. Colours blue to yellow corresponds to low-high values.

Fig. 9. Impact of each channel on the model output. We show the SHAP
value of each channel for every sample of the test set (Red and blue denote
high and low feature values respectively). We sort channels by the sum of
SHAP value magnitudes over all test samples (i.e. first row most important),
and use SHAP values to show the distribution of the impacts each channel
has on the model output. This reveals that channel CPz is higher in the rank
because it has values with most displacement from the decision boundary.

3) Model interpretation: The proposed R-CNN model is
able to learn representative features from the raw data auto-
matically. In Fig. 8, we illustrate the heat maps of a feature
sample extracted from the 2D CNN layer, i.e. a representation
of the relevant features from the morphology of the signal.
Here, the feature importance varies from blue to yellow, and
yellow represents highly discriminative features. Considering
an average of 500 randomly selected samples that were
correctly classified from the test set, we note that the most
important features to identify RSz children are located between
200-225 ms in the post-stimulus window. This information can
be corroborated with the group average waveforms depicted in
Fig. 2. We also analyse the discriminative nature by randomly
sampling 5,000 inputs from the test set in assessment A1 and
apply PCA. The output result is shown in Fig. 6. The features
are extracted from the last LSTM layer in the R-CNN model.
This clearly demonstrates that the resultant sparse vector is
able to discriminate a considerable proportion of trials.

We adopt the SHapley Additive exPlanations (SHAP)
framework [30], [31] for interpreting the model output. The
SHAP values represent what the model would have predicted
if the model did not know any information regarding the other
features (channels in this scenario). Hence we are capable
to provide an overview of the most important channels for
the model to identify abnormality. For binary classification,
a SHAP value of 0 is taken as the base decision boundary
and the negative side of the decision boundary is one class
and the positive side is the other (a clear separation of SHAP
values is expected only in a perfect model). An overview
of discriminative channels according to the SHAP values in
evaluating trials from the assessment A1 is illustrated in Fig. 9.
These contacts are sorted based on the importance by the
sum of SHAP value magnitudes over all samples. Higher
features values are shown in red and lower values are in blue.

In this scenario, channel CPz is the most important contact
on the midline in the passive auditory oddball paradigm for
distinguishing RSz children as it provides a higher dispersion
of SHAP values from the decision boundary (i.e 0.00).

D. Discussion

In the last few years, there has been increasing interest in
the potential of traditional machine learning and deep learning
techniques in mental illness evaluation [13]. As introduced
previously, several works have proposed using ML techniques
as a tool for distinguishing between adults with schizophrenia
and healthy controls using neuroimaging data. However, there
has been considerably less work regarding analysis of electro-
physiological recordings of children at risk of schizophrenia.
This scenario is more complex because the characteristic
brain abnormalities among adults with schizophrenia are more
evident than for children putatively at the early stages of
psychosis. In children, the abnormalities can be confused with
those of other neurological and behavioural problems.

We have focused on providing a baseline for identifying
RSz children by exploring traditional ML and DL techniques
and presenting the model interpretation of what the mod-
els are learning for further clinical analysis. Multi-pipeline
studies have been proposed as a useful way to disentangle
what aspects work best to analyse EEG recordings from a
passive auditory oddball paradigm. Contrary to expectations,
all traditional ML approaches tested performed poorly. Using
hand-crafted features such as the early negative and mid-
latency positive mean amplitudes is not sufficient to obtain
good segregation between trials from RSz and TD children.
Therefore, it is important to be aware of the challenges and
limitations when applying traditional ML to psychosis. On
the other hand, we have demonstrated that by using the raw
data from five selected channels of the midline with a tradi-
tional R-CNN model, we can learn important discriminative
features to classify trials and participants with a vulnerability
for schizophrenia. The features extracted from the trained
model illustrate the importance of deep learning for salient
information retrieval to support clinical research evaluations.
This information can be used in the interpretation of the
location and periodicity of possible discriminative features
during the brain response to auditory changes. Having a clear
understanding of the data expected for this paradigm will help
to corroborate what the models are learning.

The identification of the most important channel in the
model decision can have a significant impact on the feasibility
of the auditory recording sessions. Recording sessions to
capture the physiological data in children can be challenging
(e.g. some children might find the procedure irritating). Hence
using only a few channels that discriminate effectively allevi-
ates the time needed to apply the electrodes, which facilitate
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each recording task.
The proposed methodology is a critical step in providing

an automated tool for early intervention before illness onset.
However, the model’s prediction is still far from reaching the
ideal performance. We note that this task is highly complex
because of the increased heterogeneity of participants and
abnormal brain activity at different ages. For this reason, an
interesting direction for future research is the adoption of
architectures that incorporate attention networks and external
memory modules capable of mapping relationships across
participants [32].

IV. CONCLUSION
This paper presents the first application of traditional ma-

chine learning and deep learning techniques for analysing elec-
trophysiological recordings during a passive auditory oddball
paradigm in children with vulnerability for schizophrenia. We
evaluate the capability of deep learning models and show that
they allow for the detection of children at the early stages of
psychosis when the effects of evolving illness are subtle. We
applied several neural network architectures to learn invariant
markers from raw EEG recordings of a cognitive task. In
particular, an R-CNN model reached the best identification
performance in distinguishing abnormal brain activity, which
confirms the utility of a brain activity response as a biomarker.
We have illustrated the discriminative nature of the learned
embedding, the location of discriminative features in the
selected post-stimulus window and the channel importance to
discriminate early stages of psychosis.
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