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A Review of Motion Planning
for Highway Autonomous Driving

Laurène Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien Glaser

Abstract—Self-driving vehicles will soon be a reality, as main
automotive companies have announced that they will sell their
driving automation modes in the 2020s. This technology raises
relevant controversies, especially with recent deadly accidents.
Nevertheless, autonomous vehicles are still popular and attractive
thanks to the improvement they represent to people’s way of life
(safer and quicker transit, more accessible, comfortable, conve-
nient, efficient, and environment friendly). This paper presents a
review of motion planning techniques over the last decade with
focus on highway planning. In the context of this article, motion
planning denotes path generation and decision making. Highway
situations limit the problem to high speed and small curvature
roads, with specific driver rules, under a constrained environment
framework. Lane change, obstacle avoidance, car following, and
merging are the situations addressed in this work. After a
brief introduction to the context of autonomous ground vehicles,
the detailed conditions for motion planning are described. The
main algorithms in motion planning, their features, and their
applications to highway driving are reviewed, along with current
and future challenges and open issues.

Index Terms—Advanced Driver Assistance Systems, Au-
tonomous driving, Decision making, Intelligent vehicles, Motion
planning, Path planning

I. INTRODUCTION

S INCE the last decade, the development of autonomous
vehicles has spread worldwide among universities and the

automotive sector as one of the most promising advancements
in automotive engineering and research.

One of the first contributions to driverless cars dates back
to the 1920s at the Houdina Radio Control Company, which
successfully proceeded with the demonstration of a car con-
trolled by radio signals sent by a trailing vehicle [1]. In the late
80s and 90s, research institutes and automotive manufacturers
partnership numerous autonomous driving projects financed
in, such as the European EUREKA Prometheus program
[2] with the twin cars VaMP and VITA II [3], “No Hands
Across America” from Carnegie Mellon University’s Navlab
[4], ARGO from the University of Parma’s VisLab [5], and
the automated highway platooning Consortium (NAHSC) [6],
among others.
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Nowadays, many technological evolutions in partial au-
tonomous vehicles are already used in Advanced Driving
Assistance Systems (ADAS), and automakers now try to per-
sonalize ADAS to the driver’s style [7]. Concerning highway
planning, the main assistance technologies concern both the
longitudinal and lateral comfort and security with the Cruise
Control (CC), the Intelligent Speed Adaptation (ISA), the
Lane Keeping Assist (LKA), or the Lane Departure Warning
(LDW). While interacting with obstacles, collision avoidance
systems either warn the driver about an imminent collision,
e.g. the Lane Change Assist (LCA), or autonomously take
action, helping the driver stay safe, such as the Adaptive Cruise
Control (ACC) or the Automatic Emergency Braking (AEB).

After Nevada, USA, authorized driverless vehicles on public
roads in June 2011, other American states and countries
adopted laws to test autonomous vehicles in traffic. In re-
sponse, the United Nations Economic Commission for Europe
(UNECE) made the use of ADAS in the Vienna Convention on
Road Traffic [8] more flexible. It allowed automated driving
systems, “provided that these technologies are in conformity
with the United Nations vehicle regulations or can be over-
ridden or switched off by the driver” [9]. With such an
evolution in the automotive field, the Society of Automotive
Engineers (SAE) published a standard classification for au-
tonomous vehicles with a 6-level system, from 0 (no control
but active safety systems) to 5 (no human intervention for
driving) [10]. Levels 4 and 5 have not been technically fulfilled
by automakers yet; however, since the Defense Advanced
Research Projects Agency (DARPA) organized autonomous
vehicle competitions in 2004, 2005, and 2007, and thanks to
new technologies, autonomous functions are evolving quickly
and treat more complex scenarios in real environments. The
11 finalist teams of the DARPA Urban Challenge 2007 [11]
succeeded in navigating through a city environment. The
University of Parma’s VisLab ran the VisLab Intercontinental
Autonomous Challenge (VIAC) in 2010, a 15 900 km trip
in 100 days from Parma, Italy to Shanghai, China [12]; and
ran the PROUD project [13] in 2013, a mixed traffic driving
route open to public traffic through Parma, Italy. In 2011, the
European projects HAVEit [14], ABV [15], and CityMobil
[16] successfully demonstrated highway and city driving. In
2012, highway driving in platooning was achieved by the
SARTRE Project [17]. In 2013, another demonstration by
Daimler and Karlsruhe Institute of Technology completed the
Bertha Benz Memorial Route [18] with both city and highway
driving. In 2016, the international Grand Cooperative Driv-
ing Challenge (GCDC) [19] presented merging, intersection,
and emergency traffic scenarios. In addition to the research
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projects, in 2016, many automotive companies unveiled their
semi-autonomous vehicles corresponding to level 2 of the SAE
classification. Following the demonstration of the Google Car,
Apple announced its Project Titan, and Baidu started public
road tests with the Cloud ride. Meanwhile, the transportation
network companies Uber and Lyft collaborated with automo-
tive companies to test their algorithms.

In spite of the current trendiness of this topic, autonomous
projects are not recent in the robotics literature and many
reviewing works exist on motion planning strategies [20],
[21], [22] or, more recently, on the specific use case of
autonomous driving [23], [24], [25]. However, the standard-
ization of the research to fit industrially realistic prototypes of
self-driving cars introduces new concerns such as functional
safety, real-time computing, a systemic approach, or low-cost
developments, and specific popular applications for parking,
intersection management, or highway driving. The motivation
for highway driving lies in its simple driving structure and
the driver’s limited behavior in nominal situations, making
it the most reachable context for the first fully autonomous
systems in traffic. Furthermore, highways seem to be the first
environment where drivers would be confident driving in a
fully autonomous mode [26].

The purpose of this review is to build a taxonomy of motion
planning algorithms for highway driving with autonomous
vehicles used like the workaday car of the future. The review
is organized as follows: Section II explains the scope of our
classification, related to the perception and control constraints,
and driver/highway driving rules, to highlight the specific
situation of highway driving. Section III describes the state
of the art, and section IV shows a comparison table for
highway applications. Finally, section V discusses the gaps to
be filled in motion planning by the next autonomous driving
car generation, and section VI concludes this work.

II. CONSIDERATIONS FOR HIGHWAY MOTION PLANNING

A. Terminology

Before dealing with planning algorithms, one needs to
define the wide terminology involved. The adjective ego relates
to the vehicle that is mastered and sensors-equipped. In con-
trast, other vehicles are denoted as obstacles. The kinematics
of the vehicle are represented by its states, i.e. its position
and orientation, and their time derivatives (position, speed,
and acceleration, linear and angular). The geometric state
space is called the configuration space. The evolution space
identifies the configuration space-time in which the ego vehicle
can navigate. Both the configuration and evolution spaces are
usually divided into three subspaces: the collision space, in
which the ego vehicle collides with obstacles; the uncertain
space, in which there exists a probability for the ego vehicle
to be in collision; and the free space, in which there is no
collision. The generic term motion characterizes the states’
evolution over time. Motion can refer in the literature to either
free-space (spatial geometric zones), path (sequence of space-
related states in the free space, i.e. geometric waypoints),
trajectory (sequence of spatiotemporal states in the free space,
i.e. time-varying waypoints), maneuver (predefined motion,

considered as a subspace of paths or trajectories, i.e. motion
primitives), or action/task (symbolic operations of maneuvers).
We distinguish generation, which builds sequences of paths,
trajectories, maneuvers, or actions, from planning, meaning
the selection of one sequence among the generated motions.
Finally, the prediction horizon denotes the space or/and time
horizon limit for the simulation of motion.

B. Motion Planning Scheme

A general abstraction of the hierarchical scheme of au-
tonomous vehicle can be found in [18], [24], [27]. We simplify
and adapt the proposed scheme to the one shown in Fig. 1,
which focuses on the motion strategy block.
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Fig. 1. A hierarchical scheme of Autonomous Ground Vehicle systems.

The input data for the motion strategy block displays
data for ego vehicle, obstacles’ behaviors and infrastructure
description, obtained from the perception, localization, and
communication (Vehicle-to-X - V2X) blocks. It does not pay
any attention to how this information has been collected, but to
its quality such as the measures, their uncertainties, and their
trustworthiness. Thus, a scene representation is introduced
between the perception / localization / communication and
motion strategy blocks, as presented in [13]. This component
manages sensors data and provides a perception map with
obstacles, lanes, traffic, road, and ego information. Besides,
a closed-loop system from the perception / localization /
communication block to the motion strategy block is used
to inform the ego perception and localization of the current
and future motion. It also conveys the current and future ego
motion intentions to the environment via communication.

On the other hand, the control block is formally fed with the
reference motion decided by motion strategy, and then acts on
actuators to move the ego vehicle. The motion strategy block
also reacts as a closed-loop system on the control and actuation
blocks. In fact, the information from the sensors on actuators’
outputs provides an up-to-date ego state vector, so that the
motion strategy remains accurate.

Moreover, with semi-autonomous vehicles, the driver will
interfere in the low levels of automation on the actuators pedals
and steering, and on the high levels, so the motion strategy
block acts more or less as a co-driver. In that sense, both
communication from the driver to the motion strategy block
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and the reverse are necessary to warn the driver of the motion
decision and to take into account his/her intention to drive.

The motion strategy decides the most convenient motion
according to some chosen criteria (addressed in II-D). In more
details, in [28], J.-A. Michon names the “three levels of skills
and controls: strategical (planning), tactical (maneuvering),
and operational (control) respectively.” These three layers are
largely exploited in the recent architecture [13], [18]. The
tactical part is usually divided into subparts, with at least
one for behavioral planning and another for motion generation
[18], [24], [27], [29]. In this review, according to the structures
previously described, we distinguish five main functions in
the motion strategy hierarchy, as shown in Fig. 2: (i) route
planning, (ii) prediction, (iii) decision making, (iv) generation,
and (v) deformation. The space and time horizons for each of
the motion planning functions are summarized in Table I.

Route Planning 

(i)

Decision

Making (iii)

Genera�on (iv)
Deforma�on

(v)

Predic�ve planning Reac�ve planning

Predic�on (ii)

Memory behavior

planning

Start-Goal planning

scope for 
motion planning

Fig. 2. Motion planning functions. Motion planning acts as a global, local,
and reactive motion strategy.

The route planner (i) is a trip scheduler; it provides a general
long-term planning through the road network from the initial
position to the driver’s desired destination. This function is
outside the scope of this paper; see [30] for a related review.

The second function, the prediction step (ii), stores the cur-
rent and historic dynamics data to predict the dynamics of all
the elements surrounding the ego vehicle. This process allows
to perform long-term risk estimation and dynamic replanning.
The road infrastructure, the route direction, the driving rules,
and the lane marking evolution are usually extrapolated from
map information. The prediction of obstacles’ behavior is the
most critical task of the prediction function. Although it is
necessary for motion planning, it is not explained in this paper;
see [31] for a corresponding review.

The core functions addressed in this review are decision
making (iii), generation (iv), and deformation (v), which we
call the motion planning scope. In recent works [32], [33], the
motion planning approaches are organized as follows:

– A high-level predictive planning built around three ob-
jectives: risk evaluation, criteria minimization, and con-
straint submission (see II-D). Those are used for decision
making (iii), i.e. to select the best solution out of the
candidates’ generation (iv). One either generates a set
of motions and then makes a decision on the behavior
motion, or, defines the behavior to adopt and then fits
a set of motions. This high-level stage benefits from a
longer predicted motion but is time-consuming.

– A low-level reactive planning deforming the generated
motion from the high-level planning according to a re-
active approach, i.e. the deformation function (v). This

acts on a shorter range of actions and thus has faster
computation.

TABLE I
SPACE AND TIME HORIZON FOR THE MOTION PLANNING FUNCTIONS

Route Prediction Decision Generation Deformation
Planning (i) (ii) Making (iii) (iv) (v)

Space >100 m >1 m >10 m >10 m >0.5 m
<100 m <100 m <100 m <10 m

Time >1 min >1 s >1 s >1 s >10 ms
<1 hour <1 min <1 min <1 min <1 s

C. Specificities of Highway Driving
Motion planning techniques highly depend on the use cases.

Our considerations for highway driving are limited to lane-
divided roads featuring unidirectional flow (opposing direc-
tions of travel being separated by a median strip) in fluid
traffic, i.e. with a dynamic speed over 60km/h. The road shape
is made of straight lines, clothoids, and circles with small
curvature. In a nominal situation, there are only motorized
vehicles, which adhere to the same driving rules. Obstacle’s
behavior prediction is also limited to one-direction, two-lane
changes – right or left – and to accelerate, maintain speed,
or brake. Thus, traffic behaviors are more uniform than city
driving. As detailed in [34], we distinguish eight nominal non-
exclusive situations during a highway trip, without focusing on
exceptional situations:

– Lane keeping: The safety space in front of and behind the
ego vehicle is guaranteed. The longitudinal decision is to
maintain the desired speed, whereas the lateral decision
keeps the ego trajectory inside the ego lane marks.

– Car following: Besides lane following, the ego vehicle
must follow the front ego lane vehicle while maintaining
its longitudinal safety distances.

– Lane changing: This decision is made under either direc-
tional or obstacle constraints. The motion planner must
ensure that the space in the target lane is sufficient and
that the speed is adequate to keep the ego vehicle in a
safe state.

– Lateral-most lane changing: To ensure fluid traffic flow
and safety, some driving rules require leftmost or right-
most lane driving. Hence, the ego vehicle always seeks
to change lanes until the lateral-most lane is reached.

– Passing: The ego vehicle respects a lane keeping or car
following decision while obstacles are in the adjacent
lanes. Keeping lateral safety distances is required.

– Overtaking: This complex maneuver consists of a lane
change, then passing a vehicle or an obstacle, and finally
another lane change to return to the previous ego lane.

– Merging: Two actions occur on a highway: entering or
exiting the highway, and merging two rows of vehicles
into one. The ego vehicle must adapt its longitudinal and
lateral speeds and distances to ease its way into traffic.

– Highway toll: The approach decision is to merge into a
fictional lane in anticipation of a toll lane delimitation and
to reduce speed until stopping, whereas the leave decision
is to accelerate to the reference speed and to merge into
a real traffic lane.
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Autonomous vehicles are also studied in platooning. This
configuration decreases the distances between the vehicles and
thus increases the capacity of roads. The motion planning
strategy in platoons must be more robust than for individual
vehicles in the sense of smoother acceleration and turns to
guarantee the platoon’s stability. Platooning is not as interest-
ing from the perspective of motion planning as from that of
control. We therefore do not consider any specific studies on
platooning in this review. Please refer to [35] for more details.

The main differences between highway, except for platoon-
ing, and city driving consist in a further look-ahead time,
with a stronger focus towards the ahead direction of the
road, whereas city driving involves a closer range but in all
directions. The highway vehicle dynamics is also simpler with
lower turn-angle, no reverse, and less braking/acceleration, but
higher and more constant speed. Thus, even if there are less
hazards, the risk due to high speed is stronger. Moreover,
the higher distances imply poorer sensors capacities. Finally,
less traffic insures more stable scenario. The algorithms which
consider all these specificities in real-time will be favored for
a practical application on highways.

D. Constraints on Highway Driving
Despite indicators such as high reliability, safety, and low

computation time needed for algorithmic specifications, we
also consider more specific highway planning constraints. On
the one hand, the environment’s safety constraints respect the
driving rules and avoid collision. These are called hard con-
straints as they are absolutely essential for autonomous driving
acceptance. On the other hand, the driver makes it necessary
to respect ride optimization constraints for the minimization of
time, distance, or energy consumption, and maximization of
comfort. These are called soft constraints and can be relaxed.
Other feasibility constraints rely on kinematic restrictions of
the vehicle, which are the nonholonomic dynamics, i.e. the
vehicle evolves in a three dimension space with only two
degrees of freedom, a smooth path, i.e. the trajectory should be
differentiable and its curvature continuous, and the dynamics
limitations of a vehicle. The choice of the vehicle’s model
to handle these constraints induces algorithmic complexity,
the more degrees of freedom are used, the more complex is
the model solver. For most highway planning developments,
there is no or very few (particle kinematics with longitu-
dinal and lateral position and velocity states) consideration
of the vehicle model, except for the explicit resolution of
the potential field methods (see III-B3) and the numerical
optimization (see III-B5). This question of degrees of freedom
is a fundamental design parameter in motion planning and
control architecture, and should be addressed to guarantee a
safe and drivable motion [36] as well as consistency [37]. The
last dynamic constraint is the evolution of the ego vehicle in
time. To summarize, the authors in [27] identify the quality
requirements for the generated motion: “feasible, safe, optimal,
usable, adaptive, efficient, progressive, and interactive.”

E. What Is at Stake in this Paper
Our interest in this classification is to highlight the many

types of algorithms used in motion strategy for highway

autonomous driving without limiting ourselves to their math-
ematical complexity, but with a specific focus on their real-
time effectiveness. We do not pretend to rank the methods;
we prefer to classify them from a practical perspective, i.e.
we analyze how the algorithms work well, their advantages
and drawbacks, considering simulations or experiments. The
methods’ optimality is of secondary interest then, compared to
the feasibility of the motion. In the particular case of highway
driving, we must guarantee at least one motion to ensure
continuity. Following the ego lane and adapting its longitudinal
states to the front vehicle is, by nature, always feasible.

III. STATE OF THE ART

The choice of the motion planning methods depends on the
formulation of the motion planning problem.

Firstly, the problem formulation strongly varies with
the inherited data (discrete/continuous, algebraic/analytic or
static/dynamic) for the scene representation. Thus, the sensory
technologies are of great importance to implement a motion
planning algorithm. Even if the uncertainties are more and
more considered in the motion planning scope (see V.A), too
few papers addressing motion planning tackle the issue of the
sensor’s architecture and technology. We invite the readers to
refer to [38] for a corresponding review.

Secondly, motion planning combines five unavoidable as-
pects, as seen in the previous section: (i) state estimation, (ii)
time evolution, (iii) actions planning, (iv) criteria optimization,
and (v) compliance with constraints. How these are handled
changes the outlook of the problem.

Furthermore, two approaches for reviewing motion planning
algorithms coexist: distinguishing and not distinguishing the
driving modes. For the first, the driving modes and use cases
are separated. For example, in [39], the authors focus on the
specific actions of lane changing and merging maneuvers on
highways. In this review, we consider a situation only as a
specific set of criteria and constraints, not as a differentiating
element for the algorithms. In this way, all methods could
be applied to the different situations, with limitations to their
proper functioning. Yet, we noticed that the main functions of
motion strategy described in II-B involve discriminating speci-
ficities among motion planning methods, e.g. the deformation
function requires a reactive online real-time method.

In this section, we first explain our algorithm classification,
and then review the most popular approaches from their
founding principles to their advancement for an application to
highway planning since the DARPA Urban Challenge 2007.
We do not pretend to make an exhaustive taxonomy as an
infinite number of ways of treating motion planning exist.

A. Taxonomy Description

According to what we consider in section II, we propose
in this review to classify the algorithms in the families
summarized in Fig. 3. The term family refers to a set of
algorithms that rely on the same basic principle. They usually
return the same type of output, qualify with the same attributes,
and relate to the same mathematical domain. We propose a
classification based on the following characteristics:
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– The type of output: a space, a path, a trajectory, a maneu-
ver, or a symbolic representation. This information should
be adapted to the control and driver blocks’ interface
shown in Fig. 1. In this respect, it is also essential to
know whether the considered motion planning algorithm
returns only a decomposition or a reference motion. In
the first case, called a set-algorithm, a complementary
algorithm should be added to find the feasible motion.
The second case is identified as a solve-algorithm. These
characterizations are extended from [40], where the au-
thor defined the Findspace and Findpath algorithms to
find a safe position in the evolution space, and to identify
a sequence of safe positions that link the start and goal
positions.

– The space-time property of the algorithm: the predictive
or reactive horizon, as detailed in II-B.

– The mathematical domains: geometric, heuristic, logic,
cognitive, biomimetic. This defines the philosophy of
the approach and the theoretical framework of the solver.
The geometric domain is based on the properties of
space, and it directly works with the space constraints
of the environment and ego vehicle (i.e. kinematic con-
straints). The subsequent problem is dealing with large
space exploration and optimization. The heuristic domain
depends on special knowledge, such as constraints or
data correlation, about the problem. Usually, it is useful
to solve more quickly, to find approximate solutions, to
avoid algorithm complexity or an ego vehicle blockage
situation. Yet, it is generally not sufficient for handling
complex problems and does not guarantee that the opti-
mal solution will be found. The logic domain refers to
deductive approaches built on assertions. Such assertions
are usually made on elementary rules driving the evolu-
tion of the environment. Their main advantage is that they
easily link the effects to the causes, but they are subject
to combinatorial explosion. Cognitive approaches rely on
the evaluation of a situation based on prior knowledge on
this specific situation and common sense, which is close
to the logical way of thinking, for example adhering to

driving rules. The main advantage of cognitive processes
is their ability to use existing knowledge to gather new
information. For the application to autonomous vehicles,
the interest is in modeling the decision process formed
on human behavior characteristics. This helps to justify
the acceptability of autonomous vehicle behavior mim-
icking human behavior. However, we do not currently
have enough experience to validate the effectiveness of
such theories. Therefore, we do not consider algorithms
that hinge on cognition as evidence. Many driver-based
theories agree that driver behavior is too complex and
too difficult, or even impossible, to model, as it is not
rational. The last domain we would like to explore is
the biomimetic domain, which describes physics-inspired
approaches. They obey the physical laws, which are
convenient to implement but can be stuck in infinite loop
motion behaviors. The convergence of the system has to
be obtained with feasible solutions.

For each family, we review the basic idea, the specificities,
the advantages/drawbacks, the evolution, and the interest for
highway planning. One notices that the solutions were first
dealing with a specific method in a specific scientific field,
and then evolved to multi-field mixed algorithms.

B. Algorithm Classification

1) Space Configuration
The space configuration analysis is the choice of a de-

composition of the evolution space. It is a set-algorithm used
mostly for motion generation or deformation when specified.
The methods are based on geometric aspects; they refer to
either a predictive approach with a coarse decomposition
to limit computational time, or a reactive approach with a
finer distribution to be more accurate. The main difficulty is
finding the right space configuration parameters to obtain a
good representation of motion and environment [41]. If the
discretization is too coarse, the collision risk will be badly
interpreted and it will not be possible to respect kinematic
constraints between two successive decompositions; however,
if the discretization is too fine, the algorithm will have poor
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Fig. 3. Taxonomy attribute classification. The radar charts show the distribution of each of the families considering the selected attributes. At the center of
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real-time performance. We distinguish three main subfamilies
for space decomposition, illustrated in Fig. 4: sampling points,
connected cells, and lattice. The basic idea is:

1) to sample or discretize the evolution space;
2) to exclude the points, cells, or lattices in collision with

obstacles or not feasible; and
3) to either send those space decompositions as free-space

constraints, or to solve the resulting space configuration
with a pathfinding algorithm (see III-B2) or a curves
planner (see III-B4) to directly send waypoints, con-
nected cells sets, or lattice sets to the control block.

a) Sampling-Based Decomposition (Fig. 4(a))
Two main routines are used in the literature to return a

set of sampling points. The first one chooses the points in
the evolution space of the ego vehicle with respect to the
kinematic constraints, but with higher calculation time due to
the optimization choice of the samples under these constraints.
The second one picks random points in the evolution space,
so that the algorithm is computed faster but the method
is incomplete, not replicable and sensitive to the random
points’ distribution. Moreover, the links between two points
are not necessarily kinematically feasible. Both routines are
suboptimal and do not guarantee that a solution will be found
if one exists, or that a solution will be returned in a finite
computational time. However, sampling configurations are
flexible to dynamic replanning and do not require any explicit
modeling of the collision space. They can thus be used for a
reactive trajectory deformation.

The most popular random method is the Probabilistic
RoadMap (PRM) [41]. It uses random samplings picked in
the evolution space during the construction phase. These sam-
plings are connected to their neighbors to create an obstacle-
free roadmap, which is then solved during a second query
phase by a pathfinding algorithm, e.g. Dijkstra (see III-B2)
in [42]. In [33], the authors first sample the configuration
space based on a reference path, e.g. the ego lane centerline,
then select the best set of sampling points according to an
objective function, and finally assign a speed profile to the
path to respect safety and comfort criteria.

Goal State

(a) Sampling points

(c) Lattice

Goal 

State

(b) Connected cells

Start State

Goal State

a regular structure 

with 5 mo�on 

primi�ves
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Obstacle

Obstacle
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Selected Path

Selected Path
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Fig. 4. Space configuration illustrations. The points / cells / maneuvers are
candidate solutions in blue, dismissed in red, and the solution in green.

A better strategy is to consider both space and time di-
mensions in the decomposition. Dealing with spatiotemporal
sampling points makes it possible to obtain a predictive algo-
rithm, as was done in [43], where points are constrained in a 5-
dimensional evolution space with vehicle position, orientation,
velocity, and arrival time. Considering the drawback of tiny
space and space close to obstacles, adaptive samplings can
be adapted to autonomous vehicles, as presented in [44] for
robots from 2 to 8 degrees of freedom.

These methods are usually preferred for mobile robotics or
autonomous vehicles in unstructured environments. Their use
for highly structured highway planning is thus diminished.

b) Connected Cells Decomposition (Fig. 4(b))
The methods first decompose the space into cells using

geometry, and then construct an occupancy grid and/or a cells
connectivity graph, see Fig. 5 for application examples. In
the occupancy grid approach, a grid is generated around the
ego vehicle. The information on the obstacles’ detection is
overlaid on the grid. In case uncertainties are considered,
stochastic weights are added to the cells to obtain a costmap
representation. The main drawbacks of an occupancy grid are
the large memory requirements and high computation time,
the false indicative occupation with moving obstacles, and a
space- and time-varying resolution. In the connectivity graph
approach, the nodes represent the cells, and the edges model
the adjacency relationship between cells. The graph can be
interpreted as a path along the edges of the cells or a path to
find inside the connected cells.

Two strategies are distinguished: those that are based on
the obstacles, and those that are not. The representation of
obstacles plays a key role for cells decomposition algorithms.
Obstacles are usually represented as convex polygons [45],
rectangular [46], triangular [47], circular [48], [49], [50],
ellipsoidal shapes [32], [51], based on the obstacle dimensions
and speed; or the entire road lane [52]. For non-obstacle-
based representation, the cells’ organization can be determined
offline, and then filled online. The grid is rapidly obtained,
but does not take advantage of the environment properties.
On the other hand, the obstacle-based representation builds
an online grid, which is more computational as replanning
is necessary to consider the dynamic of the environment.
Whatever the decomposition, probabilistic occupancy can be
applied to define a more realistic decomposition proportional
to the probability of occupancy, as proposed in [53].

The most intuitive non-obstacle-based method is the exact
decomposition in Fig. 5(e), which separates the space with
vertical and/or horizontal segments. An egocentric exact de-
composition adapted to the vehicle’s size and the obstacle’s
relative speed is used to exploit an occupancy grid for a
Markov Decision Process in [50] and a lane change flow
chart in [54] (see III-B6). Reference [52] fills the occupancy
grid with a belief state from the semantic lane information.
In [55], 8 overlapping static and dynamic cells are mapped
based on the lane configuration and performance of integrated
sensors. Considering the nonholonomic behavior of the ve-
hicle, the curvilinear or polar grids [53] provide a more
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realistic decomposition around the ego vehicle. However, as
non-obstacle-based occupancy grids cannot evolve according
to the obstacles’ dynamics, they quickly become obsolete due
to the computational cost of a refined decomposition. Another
drawback is the lack of accuracy on obstacles’ positions.

To consider environment uncertainties, the Vector Field
Histograms (VFH) from [56] statistically models the evo-
lution space with a velocity histogram occupancy grid as a
polar histogram; see Fig. 5(d). Reference [57] proposes a
constrained VFH to treat kinematic and dynamic constraints
to extend to highway applications. VFH methods are mostly
used for deformation function as a reactive planner, as they
are robust to sensors’ uncertainties [58].

To reduce the search space, decrease the computation time
and deal with dynamic obstacles that are either hard to model
or not modeled, the Dynamic Window (DW) approach in
Fig. 5(f), introduced in [59], reduces the search space into a
reachable velocity space within a short time interval. It is also
used as a reactive planner for trajectory deformation. In [60],
DW is directly applied on an image from the camera. Refer-
ence [61] combines a DW approach for avoiding unmodeled
obstacles with a Velocity Vector Fields (VVF) (see III-B3).
The authors in [62] demonstrate safety recommendations for
both static and moving obstacles using DW.

The routines of the second type use the obstacles to set
the cells decomposition. The Voronoi decomposition [63]
builds cells between particular points, which represent each
obstacle, mainly using the Euclidean bisection (L2 Euclidean
distance norm) or absolute value (L1 Manhattan distance
norm); see Fig. 5(b). The method is extended to polygonal
obstacles with the generalized Voronoi diagram [64]. The
decomposition generate a non-regular grid and is classically
interpreted as the way that is equidistant from each obstacle
(way along the edges), i.e. a skeleton. Reference [42] uses
Voronoi diagrams to reduce the obstacle-free point’s space,
whereas the authors in [58] propose a real-time algorithm

based on one Voronoi cell built on the next collision point in
the ego vehicle trajectory. To increase the distance between an
obstacle and the ego vehicle, weighted [65] and uncertain [66]
Voronoi diagrams have been developed in mobile robotics, but
they are not that common for autonomous vehicles. The major
drawbacks of Voronoi decompositions are the heterogeneous
cells sizes, the kinematic feasibility of linking adjacent cells,
and the dynamic evolution, which involves time-consuming
replanning. Moreover, the equidistance does not necessarily
guarantee safety. In response to these issues, the approximate
methods split up into thinner cells when the obstacles are
closer to obtain a more accurate occupation grid. A classic
approximate approach is the quad tree decomposition, as in
[67]. Building a dynamic cells decomposition remains the
major drawback of the Voronoi and approximate approaches.

A major improvement is then to add a time dimension to
the spatial decomposition. The visibility decomposition in
Fig. 5(a) picks points of interest in the scene representation,
and links them with segments if these do not intersect obstacles
[68]. They are extended to a path velocity representation in
[69]. The points of interest can be based on the obstacles’
vertices [70] or along the road border [49]. This implies that
the path along the edges can be in contact with obstacles,
which is then adapted to the highway planning problem
by space shifting the trajectories, as in [70]. In addition,
the driving corridor representation in Fig. 5(c) uses road
boundaries and the spatiotemporal positions of obstacles to
produce a set of free spatiotemporal evolutions as corridors
[18]. From a static decomposition based on visibility decom-
position as graph connectivity, [49] builds a dynamic corridor
from Velocity Obstacles (VO) analysis. This spatiotemporal
algorithm returns the set of all the velocities of the ego vehicle
that lead to a collision [71]. A velocity outside the spatiotem-
poral representation guarantees that there will be no collision
under the hypothesis that the obstacle velocity prediction is
correct. The passage and region channels are then solved

Fig. 5. Illustrations of connected cells decompositions
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with a connectivity graph [45] or with a space constraint-
based optimization method [72]. Reference [73] builds the
corridors with the homotopic method to enumerate the possible
maneuver variants from a path velocity decomposition and
[74] proposes a four collision-free cells partitioning to design
a spatiotemporal transition graph. A major drawback of driving
corridor algorithms is still their calculation time.

Most static cells decompositions are of little interest in the
context of highway planning. Methods that are only based on
obstacle decomposition exclude the road geometry, which is
at the core of highway driving. In contrast, algorithms that
benefit from both road constraints and dynamic obstacles are
of major use for highway planning.

c) Lattice Representation (Fig. 4(c))
In motion planning, a lattice is a regular spatial structure,

which is a generalization of a grid [22]. It is possible to define
motion primitives, that connect one state of the lattice exactly
to another. All the feasible state evolutions resulting from the
lattice are represented as a reachability graph of maneuvers.
The main application of lattice methods is predictive planning.
The advantage of a lattice representation is the consideration
of the kinematic constraints implicitly handled by the motion
on the lattice [75], as well as a spatiotemporal consideration.
Moreover, the lattice can be calculated offline for a quick
replanning [76]. Unfortunately, their application to reactive
planning is mostly limited due to the fixed structure.

The classic lattice representation is based on the maximum
turn strategy [13], [76], where only the turning radius of the
ego vehicle is discretized to propose different curved paths.
As an improvement, the velocity (speed and acceleration) is
considered with a curvature velocity method as presented
in [77], and extended to autonomous vehicles in [72], [78].
The main drawbacks of these methods are the rigidity of the
predefined motion set and the high density of the motion graph
required to reach the goal position. Nevertheless, it is possible
to define an environment-adapted lattice, in contrast to the
previously discussed lattices based on predefined motion. The
authors in [29], [79], [80], [81] operate regular sampling points
over the spatiotemporal evolution space based on highway
lane marks and centerlines. The use of curves to connect the
sampling points provides a curved lattice graph set-algorithm.
Other approaches adapt the lattice to the driver’s behavior for
a priori maneuver, as done in [82] for lane changing.

Lattice representations compile both road boundaries and
kinematic constraints, and can be quickly replanned, which is
useful for highway planning. Nonetheless, the structure’s itera-
tion memory requirement and long-term advantage represent a
burden for fast computing path planning on a highway. As will
be presented in III-B4, curve iterations as tentacles are favored
over lattice representation for highway motion planning.

2) Pathfinding Algorithms
The pathfinding algorithm family is a subpart of graph the-

ory in operational research used to solve combinatorial prob-
lems under a graph representation. The graph can be weighted
or oriented with sampling points, cells, or maneuvers nodes.
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Fig. 6. Illustrations of the processes of (a) Dijkstra, (b) A*, and (c) RRT.

The basic principle is to find a path in a graph to optimize a
cost function. Traveled distance, fuel consumption, and com-
fort are the main cost functions for highway planning problems
[42], [72], [83]. The graph resolution is based on logic and
heuristic methods, which are mainly solve-algorithms and refer
to the decision function even if they do not apply any decision
but a selection. The subfamily of Rapidly-exploring Random
Trees (RRT – see below for details) comprises both set- and
solve-algorithms, with motion generation and selection. The
main use of pathfinding algorithms is for route planning, but
they adapt well for local planning and applications to highways
as predictive algorithms. As benefits, these algorithms are
universal and widely used, and solve either known or unknown
environments. The main drawbacks are their dependency on
the graph size and complexity, which affects the choice of the
solver, and their need for detailed information on the space
configuration, which makes them slow in vast areas. We will
restrict our review to the most frequently observed algorithms
for highway autonomous driving.

For known environments, the graph is previously generated
by a space configuration algorithm to model the connectivity
of the evolution space (see III-B1). In the Dijkstra algorithm
from [84], the author details a method to “Find the path
of minimum total length between two given nodes P and
Q”, which becomes a very popular graph solver for motion
planning application to autonomous vehicles [42], [72], [83];
see Fig. 6(a). As the algorithm uniformly explores all the
directions, it finds the optimal path with respect to the cost
function, but its computational time is high.

This drawback was first reduced with the A* algorithm
introduced in [85], and recently tested on autonomous vehi-
cles’ replanning in [86]; see Fig. 6(b). It consists of applying
Dijkstra’s algorithm with a heuristic search procedure on the
goal-node to expand the fewest possible nodes while searching
for the optimal path. The heuristic should always be optimistic,
i.e. the real cost should be higher than the heuristic cost, as
otherwise the minimal path will be distorted. As an example
of a heuristic evaluation function, [76] chooses the distance to
both ego lanes’ borders and the traveled distance for Dijkstra’s
cost function, whereas [87] adds to the travel time function the
distance to the goal and hazardous motions penalizations as
heuristics. It is also possible to weight the heuristic function
to reduce the calculation time, as described in the Anytime
Weighted A* (AWA*), which guarantees the finding of a
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solution with a non-admissible heuristic [43]. Besides, when
considering kinematic constraints, the approach of hybrid-
state A* search in [88] applies a first heuristic to consider
nonholonomic constraints, and then a second dual heuristic
that uses an obstacle map.

A further disadvantage of Dijkstra and A* stems from dy-
namic environments. In fact, at each time step, the graph has to
be reconstructed. To avoid a high time calculation and dealing
with partially known environments with dynamically changing
weights, a heuristic improvement consists of a dynamic cost
graph search, as does the D* algorithm [89] in [90].

For unknown environments, the RRT subfamily [91] con-
structs its own nodes in the evolution space, as illustrated
in Fig. 6(c). The reasoning is close to the PRM, except
that the nodes are built from one to another and the output
is a path (to solve the nodes connection if a noncollision
and kinematically path exists). Thus, it guarantees kinematic
feasibility and can be used for a reactive generation. Authors in
[92] demonstrate a fast RRT for replanning trajectory. As for
Dijkstra’s algorithm, there are a large number of evolutions
for RRT algorithms in mobile robotics [93], but currently
few applications for highway driving, such as the example in
[94], which looks at more efficient nearest-neighbor techniques
with probabilistic optimality in RRT*. For a randomized
graph, the main drawback is the randomly collected sampling
nodes, which may result in a poor connectivity graph and no
replicability. A simple way to increase the connectivity is to
add a probability function of generating intermediate points in
a specific area, as done by the authors in [42].

Similarly to sampling-based decomposition, probabilistic
graph search is not well suited to a highway structured
environment. Besides, the highway is usually a known environ-
ment, easily represented with space configuration algorithms
in III-B1. In that sense, deterministic pathfinding is favored in
highway motion planning for autonomous vehicles.

3) Attractive and Repulsive Forces
The attractive and repulsive forces approach is a

biomimetic-inspired method. The evolution space is symbol-
ized as attractive forces for desired motions (e.g. legal speed),
and repulsive forces for obstacles (e.g. road borders, lane
markings, obstacles). The main advantage is thus to be reactive
to the dynamic evolution of the scene representation. The
motion of the ego vehicle is then guided by the resultant
forces vector, so no explicit space decomposition is needed.
Reference [86] shows how parabolic and conical functions
are well suited as potential functions. The resolution of the

resultant vector is achieved by either a gradient descent
method [86], [95] – a simple resolution without a vehicle
model, or by the application of Newton’s second law [96]
– based on a vehicle model, which provides a feasible motion
under kinematic constraints. The attractive and repulsive forces
approach both sets and solves the motion planning problems
in a continuous space representation. As the modeling of all
the evolution space is time-consuming, these algorithms are
mostly used as a reactive motion deformation.

The Artificial Potential Field (APF) concept [97] was first
introduced to real-time mobile robotics in [98]. Reference
[99] adapts a set of four artificial potentials over lanes, road,
obstacles, and desired speed, to model the highway functions
described in II-C; see Fig. 7(a). In [100], the authors use
a framework of electric fields as a riskmap with weighted
partial potential to distinguish between emergency reactions
and preventive actions. The benefit of time consideration with
a velocity potential leads the ego vehicle to progress forward
smoothly, as emphasized in [61] with the use of a Velocity
Vector Field (VVF). Furthermore, APF returns direct control
inputs [96] or constraints for the optimization solver [46],
[101]. The first drawback for application to vehicle planning is
the oscillatory behavior when close to obstacles, but smoothing
algorithms overcomes this [95]. The second difficulty is the
presence of local minima. Not only is the ego vehicle stuck
in a local minimum, but overcoming this issue impacts the
smoothness of the path and calculation time. A trivial solution
is to add a heuristic to exit the minima with a randomized
path, as is done in [86], where local minima are also repulsive
artificial potentials. This tends towards the elimination of the
local minima afterwards. However, local minima might be
necessary in highway planning to keep the ego vehicle safe
from inopportune lane changes, as stated in [99].

Extensions to uncertain environments allow to transpose
the algorithms from a deterministic robotics environment to
highway planning. The Virtual Force Field (VFF) introduced
by [56] uses the VFH decomposition (see III-B1) and inter-
prets the probability distribution as potential forces to guide
the vehicle along the weakest grids. This method is adapted
to highway driving in [43] to deform a trajectory previously
obtained with sampling points and A* methods; see Fig. 7(b).

Another drawback of the APF highlighted by [98] is the
lack of dynamic reasoning: namely, only spatial dimensions
are used for dynamic obstacle avoidance, so that the ego
vehicle always tried to avoid the obstacle by bypassing it. To
overcome this inconvenience, the elastic band algorithm [102]
models the environment as a spring-mass system, considering

Fig. 7. Illustrations of attractive and repulsive forces approaches.
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N discrete nodes on which potential forces are applied [48];
see Fig. 7(c). Reference [103] applies elastic band to car
following as a deformation of the leader vehicle path and [104]
develops a time-related elastic band framework with temporal
waypoints for lane changing.

Attractive and repulsive forces are widely implemented
for reactive planning in all kinds of robotics. Except the
high time calculation, they prove their efficiency for highway
planning, thanks to a straightforward integration of the scene
representation, provided that the potential functions are well
chosen within the environment.

4) Parametric and Semi-parametric Curves
Parametric and semi-parametric curves are major geometric

methods in path planning algorithms on highway for at least
two reasons: (i) the highway roads are built as a succession of
simple and predefined curves (line, circle, and clothoid [105]);
and (ii) a predefined set of curves is easy to implement as
candidate solution sets to test. Moreover, as some of the curve-
based algorithms directly take into account the kinematic
constraints of the vehicle, they are widely used to complement
other methods. Geometric considerations are usually separated
from the dynamic constraints. For instance, the authors in [42],
[106] first solve a static problem considering the geometry
of the road, and then solve the dynamic dual problem by
searching for a speed profile built to adapt to the curvature
profile of the road and to respect the constraints of the dynamic
obstacles. In contrast, [107] first fixes the speed profile and
then deforms the curve path. Those decoupled approaches
could lead to a long time reaction for the vehicle in case of
a blocking situation or replanning. Otherwise, curve planners
are well suited to a predictive approach too, as they define a
motion from a start to a goal point or cell or maneuvers. This
property is also suitable for replanning stages.

We distinguish between two exploitations of curve al-
gorithms. First, the point-free curves subfamily is used to
build kinematically feasible trajectories as a set of candidate
solutions (maneuvers). Second, the point-based subfamily uses
curves to fit a set of chosen waypoints (sampling points or
cells). The first routine is a set-algorithm and needs a decision-
maker to return the most convenient maneuver, whereas the
second one requires a space decomposition before fitting a
path or a trajectory, and is thus a solve-algorithm. Both are
considered for the generation function.

The point-free curves subfamily refers to the principle of
lattice, called tentacles algorithm, as introduced in [108]; see
Fig. 8(a). Instead of a space decomposition, the tentacles
are based on primitives parametric curves, such as lines and
circles, clothoids, and sigmoids. Each tentacle is obtained with

Fig. 8. Illustrations of the point-free and point-based curves methods.

different lateral, i.e. steering wheel angle, and/or longitudinal,
i.e. speed, parameters. Moreover, as the search space for solu-
tions is reduced, the computational time is limited compared
to the space decomposition methods. The tentacles can also
be calculated offline, as a trajectory data base [109].

Reference [110] shows that line and circle paths are the
solution for curves of minimal length with constraints on
curvature and start/end positions. In [107], the authors work
with a lane-based zone model built on the linear minimum
and maximum trajectories. Those curve configurations are
tested on tracks in [42], [109]. Despite the simplicity and
good behavior with high curvature, the second order of line
and circle curves is not continuous and hence not realistic
for the curvature continuity of the vehicle model. Regarding
the road design, lines and circles are linked with clothoid
functions to obtain a continuous curvature function. Indeed,
the clothoid has its curvature proportional to the curvilinear
abscissa [50]. This condition is important for the limitation of
the lateral acceleration and thus the vehicle’s comfort [106].
For example, [111] selects clothoid tentacles for overtaking
trajectories based on clearance, change of curvature, and
trajectory orientation criteria. The authors in [112] propose
a fast method to generate a piecewise clothoid curve in
agreement with a reference line (e.g. ego lane centerline
for highway planning), and kinematic constraints. Conversely,
[113] focuses on clothoid path sparsification to perform bet-
ter optimization. However, the clothoid presents an iterative
construction process, which increases its calculation time.

The use of straight lines, curves, and arcs based on clothoids
paths are also favored to generate reference trajectories in
a road-aligned coordinate system [114]. Nevertheless, the
highway curvature is usually small enough for acceptable
approximation of a straight road. Under this assumption, only
two path’s geometries exist for the vehicle: going straight with
a straight line or changing lane. For the second case, the sig-
moid or S-function appears to be an easy solution [115]. The
authors in [32] use sigmoids to generate different candidate
trajectories with acceleration profiles based on experiments
from different driver behaviors.

The point-based curves subfamily is well suited to geo-
metrically constrained environments and to ensure that the
dynamic constraints of the ego vehicle are respected. The
principle is to determine control points in the environment,
and to fit them with a curve. They can also be used for a
smoothing step in other motion planning algorithms. In [29],
the authors use a cubic spiral for path generation, as do [80],
and a cubic function of time for velocity generation, whereas
in [54] quartic and quintic polynomials are respectively used
to generate longitudinal and lateral motions. In [81], the
authors compare cubic polynomial functions and smoother
quartic curvature polynomials to generate the path with cubic
polynomial speed profiles, based on a sampling point lattice.

The use of semi-parametric spline curves is an improve-
ment on polynomial interpolations, which are difficult to find
and increase in complexity. This entails defining curves as
a set of piecewise polynomials. In this way, the obtained
polynomial equations are of a lower degree but there are
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a large number of polynomials to deal with. For example,
[79] generates quintic spline trajectories adapted to the road
shape. The authors in [76] develop adaptive polar splines
with non-zero curvature at the beginning and end segments to
suit highway maneuvers. Among spline curves, we distinguish
Bézier curves; see Fig. 8(b). They use control points instead
of interpolation points as inflection points. The inconvenient
is thus not to pass trough the defined control points, except
for the start and end points. The advantages are their simple
implementation and thus a low computation cost compared to
the previously discussed methods. Reference [49] smooths the
primitive path from three waypoints with a quadratic Bézier
curve to guarantee kinematic feasibility and avoid static obsta-
cles. In [116], the authors also use piecewise quadratic Bézier
curves based on safe lane change distances for autonomous
vehicles and ride comfort. It is also possible to provide the
control points of the Bézier curve from an SVM (see III-B6),
as in [117], which calculates three 4th-degree Bézier curves.

As previously mentioned, the curve algorithms are largely
used to interface with all others motion planning algorithms.
The choice of the curve type mostly depends on the type of
problem and the knowledge of the environment.

5) Numerical Optimization
The optimization problem for motion planning is defined

as a solve-algorithm based on logic and heuristic approaches.
They are part of decision and generation functions. The
optimization is usually expressed as the minimization of
a cost function in a sequence of states variables under a
set of constraints, and is part of competitive combinatorial
operational research to avoid a combinatorial explosion. In
motion planning applications, we distinguish two domains of
interest, as described in [85]. The first one focuses on finding
efficient algorithms to solve complex problems and to improve
search time with a heuristic approach (see III-B2 for some
heuristics details). The second one is the mathematical study of
the problem to deduce particular properties to find a predictive
solution in a restrictive space. As the first domain is commonly
used to decrease the computation time of algorithms, only the
second domain is further discussed in the following.

The considered approaches model the ego vehicle and
environment constraints in a well-defined mathematic form.
The main advantages are that they easily handle the constraints
of the problem, they deal with multicriteria optimization,
and they consider the state dimensionality and kinematics of
the vehicle model [118]. The basic resolution is the Linear
Programming (LP). In LP formulation, the algorithm solves
a linear cost function under linear equalities or inequalities.
The Simplex algorithm is one of the most popular ones;
see [81]. In [119], a spatially based trajectory planning with
Sequential LP (SLP) is proposed. For nonlinear problems
(NLP), nonlinear optimization is used either in the special
case of nonlinear regression problems, such as the Levenberg-
Marquardt algorithm on path optimization in [29], [104], or
in nonlinear integration, as explained in [33] with a Boundary
Value Problem (BVP) solver. For multi-objective problems, the
use of Quadratic Programming optimization (QP) involves

an iterative search of a convex approximation solution to
the original problem, as in [18] with sequential quadratic
programming (SQP) optimization on distance offset, velocity
quadratic error, acceleration, jerk, and yaw rate functions.
In [120], [121], the authors formalize the problem of lane
changing and overtaking with a Mixed Integer Quadratic
Programming (MIQP).

For specific predictive applications, resolution under Model
Predictive Control (MPC) is highly popular [46], [47], [51],
[113], [118], [122], [123]. MPC algorithms solve the problem
at each sampling time to find a predictive motion solution over
a longer horizon time, but only apply the first sequence of ac-
tions. In that respect, MPC models a receding horizon control
and shifts the solution set to remain accurate to upcoming
information. The main advantage of MPC algorithms is their
replanning ability, but they are still too poor for non-convex
and high complexity problems.

Dynamic Programming (DP) draws its efficacy for com-
plex computational problems by breaking them into simpler
subproblems, even with interdependency. The resolution of
each subproblem is combined to find the global problem
solution. This implies that the description of the problems
has good characteristics. In [49], the author searches for the
shortest path in a cells decomposition using a pre-calculated
DP solution. The authors in [124] use DP to calculate the
optimal cost-to-go value of a set of maneuvers for different
speed profiles.

Numerical optimization is widely used in motion planning,
either to decrease the solving time of a graph’s exploration, or
to exploit the mathematical properties of the problem. These
algorithms can be solved by generic numerical resolution tools.
The main encounter frameworks in the literature are CVX and
CVXGEN softwares, Gurobi and YALMIP solvers, Matlab
Optimization Toolbox, NPSOL package, and ACADO Toolkit.

6) Artificial Intelligence
The main contribution of Artificial Intelligence (AI) for

autonomous driving is its ability to reproduce and simulate
drivers’ reasoning and learning. These techniques rely on
thinking and acting consistently with the environment, a
memory structure, and drawing inferences. In this sense, AI
algorithms are particularly interesting for the decision making
function, as discussed in [34]. They are also well suited to mo-
bile robotics, as they are flexible, adaptive, and reactive to their
environment. Moreover, AI techniques are well organized to
deal with huge, incomplete, or inaccurate data. The advantages
of AI-based algorithms are their capacity to answer generic
questions and to absorb new modifications without affecting
the structure of the algorithm. They are mostly employed as
solve-algorithms for predictive planning, but also as symbolic
set-algorithms, and less frequently for reactive deformation. AI
gathers a wide diversity of methods from logic to cognitive
representation. We propose to organize this section in two
main axes – cognitive/rational and rules/learning distinctions
– based on [125]’s distinction between thinking and acting
humanly or rationally. We thus distinguish the four subfamilies
depicted in Fig. 9: logic approaches, heuristic algorithms,
approximate reasoning, and human-like methods.
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Fig. 9. A map of AI-based algorithms.

a) AI Logic-Based Approach
AI logic-based approaches are symbolic planning used

in decision making. They define expert systems to solve
specific complex tasks depending on a knowledge base with
an inference engine to automate the reasoning system. In case
of modification, addition, or removal in the knowledge base,
the inference engine should also be updated, and a recursive
mechanism must be applied to guarantee the convergence
of the new expert system. AI logic methods serve as set-
and solve algorithms, while generating or selecting a set of
time/space states or actions. Furthermore, their fast architec-
ture allows their use for predictive or reactive planning. The
main advantage of these systems is their intuitive setup to em-
ulate human logic and rational reasoning. On the other hand,
the knowledge base requires the discretization of numerous
environment variables with a high number of cause-and-effect
rules and tuning parameters.

The best-known inference engine is rule-based reasoning.
The statements are if observations, then actions. The authors
in [126] report satisfying results of rule-based intention predic-
tion on highways, and use it to perform lane change maneuvers
in [127]. The major advantages are to clearly identify the cause
and effects, the notational convenience and the straightforward
implementation. The main drawbacks are the cyclic reasoning
and the exhaustive enumeration of rules, which lead to infinite
loop and impact the computation time. Furthermore, if the
current situation does not match the observations in the rule
base, an unsuitable default decision may be made. In such
a case, the knowledge data should be enriched and modified
offline. Moreover, as a declarative reasoning, the rules’ order
matters and resolution conflicts can happen. A solution would
be to add a heuristic to prioritize the rules.

To display rule mechanisms, decision trees are promoted
as compressed graphical representations and decision support
tools. In [78], a decision tree is depicted by enumerating all the
possible navigation lanes. To facilitate the organization of the
tree, binary decision diagrams or flowcharts are developed to
represent Boolean functions, as applied in [32], [128]. While
decision trees are simple to interpret, however, calculations
become highly complex with uncertain or approximate values.
On the other hand, decision rules must be interpreted to
ensure safe behavior and to detect and anticipate non-legal and
dangerous behavior of other vehicles, as developed in [107]
with the concept of legal safety.

To avoid the exhaustive rules declaration, the Finite State

Machine (FSM) gives an abstract model of the system behav-
ior, representing the system states linked by actions/conditions.
In [55], the FSM separately describes two longitudinal and
four lateral state transitions with a specific contribution to
an emergency stop assistant on highways. Compared to the
rule-based approach, FSMs directly perform a predetermined
sequence of actions and states, which are then mapped with
path generation and control, as done in [129]; see Fig. 10.
They can also be considered as state classifier algorithms [54],
and thus represent an easy communication tool for collective
and driver-shared driving. FSMs are not imperatively deter-
ministic, which allows for more complex states’ relationships.
Reference [18] exploits multiple state charts in parallel to deal
with concurrent states, which are well suited to performing
simultaneous actions in a decision process (e.g. yielding and
merging). The main disadvantage of the previously discussed
FSM representations is that they are only based on certainty in
knowledge and can not be generalized to unknown situations.

In case of uncertainty, Bayesian networks using Markov
models are employed. They are statistical representations of
causal links, based on probabilistic transitions. They present
a knowledge-based identification step of their parameters to
determine the most likely sequence of states to the sequence of
outputs. Reference [27] matches the most expected obstacles’
behavior intention to return the best ego behavior maneuver
(stop — cruise — accelerate — decelerate and turn-right —
turn-left — straight). The authors in [50] develop a Markov
Decision Process (MDP) on the choice of tentacle trajectories,
and the one in [130] for a lane-staying or -changing decision.
The advantage of MDP is their ability to evaluate several
predictions at the same time. Behavior improvements are
shown using a Partially Observable Markov Decision Process
(POMDP) with a probability distribution over the set of
possible states in [131], [132], [133].

The AI logic-based methods are mostly suitable in con-
strained and predictable environments, such as nominal high-
way driving. Their intuitive and fast architectures are widely
promoted for use in critical safety environments, where cause-
and-effect reasoning is necessary. On the other hand, their
lack of autonomy and rigid program structure for an adaptable
and reconfigurable algorithm are their main disadvantages for
use in open environments such as highways. As the logic-
based approaches are straightforward to implement, no specific
framework stands out in the literature.

Fig. 10. Illustration of an FSM for highway [129]. Ci, Ei, Fi are specific
conditions to transit between the vehicle behaviors Si.
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b) AI Heuristic Algorithms
Heuristic algorithms are experience-based and conducive to

natural environment process exploration. They aim to find an
approximate solution, and are therefore used as faster and more
efficient algorithms when the traditional exhaustive methods
fail. In motion planning, they usually return a set of actions,
but are also able to return paths or trajectories and to act as
set- and solve- algorithm in predictive or reactive planning.
Their main advantage is their low computational time and
complexity, and their ability to handle complex problems. On
the other hand, they provide, by definition, a local solution,
which does not guarantee global optimality and accuracy.

The most convenient interpretation of heuristic methods
involves an agent representation. An intelligent agent is an
autonomous entity modeled with a rational and social behavior,
which adapts to the observations of the environment. Its be-
havior can be based on condition-action rules (only depending
on the current perception), a world model (how it affects the
environment), goals to achieve, or utility to goals, e.g on a
game theoretic formalism in [133]. The faculties of heuristic
agents allow the inclusion of multipolicy decision making,
such as in [132], including distance to goal, lane choice bias,
max yaw rate, and policy cost. They are especially well suited
to uncertain environments. The main drawback is the difficulty
of ensuring convergence towards the solution.

Learning methods are also introduced to the decision in
heuristic approaches. Support Vector Machines (SVM) are
statistical learning classifiers for agent intentions which de-
pend on information search algorithms. In analogy with an
FSM, they are based on states’ classes and in-between margins.
The separation of the classes has to be trained beforehand,
and full labeling of input data is needed to return a convenient
classification. In [117], the authors develop an SVM to provide
the control points to a Bézier curve-fitting method. Authors in
[134] define an SVM for personalized lane change decision
based on the relative velocities and positions.

Evolutionary methods are a more widely used class of
learning algorithms. They are defined as meta-heuristic func-
tions, inspired by biomimetics with a natural rational evolution
process, such as reproduction, mutation, recombination, and
selection. The first step is to determine a set of a priori
solutions associated with a fitness function to evaluate their
quality. A set of evolution processes is then applied to find
a better solution to the optimization problem. In [135], the
authors develop the reasoning system SAPIENT, based on
a population-based incremental learning, to define the most
appropriate parameters for a given task to solve tactical driving
problems. More recently, [136] applies two genetic algorithms
to refine a fuzzy control module, and [137] details a genetic
algorithm with a 4-chromosome structure based on speed,
angle, break and time to avoidance. The risk of such algorithms
is linked to the mutation mechanism, whose random process
can lead to local minima. They are of particular interest for
agent swarm methods; see V-C for references.

AI heuristic algorithms are a good alternative to address
the disadvantages of classical methods. Their attributes are
acceptable for highway driving, where an optimal solution is

not necessary and approximate solutions could be sufficient.
There is no AI-heuristic framework built for the autonomous
vehicle applications, however, major frameworks are available
to solve this family, e.g. JADE for agents, DEAP, Jenetics
or the Matlab Global Optimization Toolbox for evolutionary
algorithms.

c) AI Approximate Reasoning
AI approximate reasoning mimics human reasoning. We

distinguish the logic approach, as described earlier with expert
systems, with the difference that the knowledge base is non-
Boolean; and the learning approach to classify new knowledge
to adapt to future situations. The first presents the advantage
of exhibiting intelligent behavior with intuitive demonstration
and explanation, whereas the second is related to a system
able to understand, think, and learn.

Compared to Boolean logic, fuzzy logic relies on many-
valued variables. It consists of fuzzy expert systems based on
Boolean compromises, which mathematically model vague-
ness and are close to cognitive reasoning with an inductive
logic programming on different attribute-level solutions. They
return a decision, usually expressed as a maneuver or task, and
are thus part of predictive or reactive solve-algorithms. Their
major advantages are the flexibility and permissiveness of the
designed rules and by extension to uncertain data. On the other
hand, their main drawbacks are their lack of traceability and
the absence of a systematic design methodology. The authors
in [138] propose a fuzzy inference decision system to check
whether the ego vehicle has enough time to change lanes based
on a close, medium, or far evaluation of the gaps between the
surrounding obstacles; see Fig. 11. References [139] and [140]
use fuzzy rules on lateral and angular error, respectively, to
propose automatic overtaking maneuvers and lateral following
of a reference map.

Artificial Neural Networks (ANN) are a popular form of
approximate learning solutions. ANNs imitate the low-level
structure of biological neural networks, i.e. connected neurons
in overlaid layers. The learning process is based on error
retropropagation to adjust the neural connections’ weights with
different learning strategies, e.g. supervised, unsupervised,
reinforcement learning. They are used for both generation and
decision making functions, as a set- and solve-algorithm in
predictive and reactive approaches. Their main drawback for

Fig. 11. Illustration of the fuzzy logic decision in [138].
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autonomous driving is the absence of a causal explanation to
a solution, while their main advantage is their ability to learn
by training on multidimensional data. Another disadvantage
is thus the large amount of data required, which makes
them computationally expensive. Reference [122] proposes a
combination of Hidden Markov Models (HMM) and Gaussian
Mixture Regression to mimic the driver’s acceleration and
braking model, whereas [141] learns the driving speed profiles
with a Levenberg-Marquardt algorithm on a 3-layer ANN
with 20 hidden nodes trained on 600 driving trips. The
authors in [142] imitate driver trajectories for lane changing
with Convolutional Neural Networks (CNN), and [143]
compares the learning stage with human driver control inputs.
Reinforcement learning is used in [133] to determine the
policies for each agent in the scene representation, or for
multi-goal overtaking maneuvers in [144] and automated lane
change maneuvers in [145]. Some new promising research
is in progress using the deep learning methods [146], or by
integrating the perception and planning blocks in end-to-end
learning [147]. Neural networks are also extended in case
of uncertainty with Bayesian probabilities in belief networks
[148]. However, one of the challenges of these methods is
ensuring that they learn in the correct way with the diversity
of environments and behaviors of driving.

AI approximate reasoning algorithms seem to be highly
promising for the near future. They rely on logic and statistical
bases, which are extended to cognitive properties. They also
provide adaptive reasoning to evolve appropriately to their
environment. At the moment, the main impediment to these
algorithms is the lack of feedback in real driving scenarios.
As the real-time implementation of approximate reasoning
algorithms is complex, the use of specific frameworks is
favored, e.g. Matlab Fuzzy Logic Toolbox for fuzzy logic
approach or TensorFlow for machine learning.

d) AI Human-Like Methods
AI human-like methods propose high-level models that

mirror human processes for solve-algorithms. We do not pre-
tend in this review to provide a complete description of driver
models; for this, the readers are invited to refer to [149]. The
AI human-like methods discussed in this article are decision
making functions, based on human cognitive aspects. They
are intelligent, potentially learning, and cognitive procedures.
Their knowledge of the environment rules and ability to handle
various and complex situations make them useful for predictive
and reactive planning. Their main advantage is an abstract
and universal representation of the decision making process.
However, they are difficult to model and to use accurately.
In [28], the author highlights different driver models based
on taxonomic or functional, and behavioral or psychological
distinctions. With respect to his decomposition, we categorize
AI human-like methods into three main approaches based on
risk, task, and game theories.

Risk estimators are employed to interpret rational decisions
from the scene analysis with a cognitive bias. The main
advantage is to be intuitive. This implies a balance between
a subjective level of acceptable risk and the objective safety,

which is a negative aspect for a global risk assessment. The
authors in [31] identify two notions to evaluate the risk of a
situation: risk of collision and risky unexpected behavior. In
the scope of this review, we only details algorithms for the
risk of collision. The most basic risk estimator uses a binary
collision prediction. Considering a risk criterion, a threshold
is applied to the obtained value to classify it as risky or
safe. Indicators such as Time-To-Collision (TTC) [51], [55],
[150] or Time-To-React (TTR) [151], [152], e.g. steering or
braking, give measurable estimators to the driver too. This
method is also exploited in [153] to return Inevitable Collision
States (ICS) for grid occupation representation (see III-B1).
The Time-To-Intercept (TTI) indicator is extended in [154]
to return a position-velocity shadow target to prevent obstacle
collision. Binary risk estimators provide a coarse evaluation
of the scene, but uncertainty of the obstacles’ future motion
is a parameter not to neglect. Probabilistic risk estimators are
better suited to providing a more realistic scene representation.

To adapt the risk perception to the driver, compensa-
tion risk estimators introduce driver states such as stress,
drowsiness, or illness. In [155], the authors use a risk-speed
compensation model, i.e. the product of perceived risk and
the driver’s speed is constant. Reference [156] exploits a risk
homeostasis theory to deal with uncertainties over subjective
risk assessment. Furthermore, the authors in [157] introduce a
Time of Zone Clearance (TZC), combined with the perceived
risk on speed, distance, safety, and comfort, and based on the
proposition that risk appears if trajectories overlap.

Even if compensation risk estimators seem to be more
faithful to the human decision, the above risk approaches are
usually based on one factor of risk, whereas risk warning
should take into account all factors of the scene representation.
Reference [158] proposes a two-level risk estimator affected
by weather, traffic, or road conditions, and then refined with
real-time information about the ego vehicle surroundings.
Promising risk assessments have been developed combining
usual risk estimators and belief theory, as proposed in [159]
to relax thresholds applied to fuzzy sets.

The second approach comprises taxonomic models, which
are also popular symbolic models for human decisions. They
identify the sequential driving tasks relations, with behavioral
and ability requirements. Those methods call for a logical
organization, and represent operational research task schedul-
ing. They must then be interpreted either as space-time-action
constraints or with a local planner, e.g. the curve planner
discussed in III-B4. One of the disadvantages is their difficult
explicit description, as they are either focused on a driving
task, such as lane changing or merging, or hardly exhaustive.

Task 32: Passing

32-1   Decides wether to pass (two- or three-lane roads)

32-11   Looks along roadside for no passing control signs

32-111   Does no pass if « no passing » zone is indicated or has been 

indicated previously

32-112   May pass if sign indicates end of « no passing » zone

32-12   Observes lane markings

32-121   Does not pass if left side of lane is marked by the following:

32-1211   One or two solid lines

32-1212   Solid line to the right of broken line

Fig. 12. Illustration of the first elementary tasks for ”passing” in [161].
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However, they present the advantages of providing an abstract
and universal representation and easy replanning. For example,
McKnight and Adams list 45 major driving tasks in [160],
[161], [162], [163], decomposed into 1700 elementary tasks;
see Fig. 12. References [139], [164] define the sequence of
operations to perform an overtaking maneuver; each action is
then validated under a set of numerical criteria to prompt the
next action. The authors in [83] propose a functional archi-
tecture of the driving strategy as a discrete set of behavioral
strategies for a specific traffic situation.

Third, some learning approaches are inspired by interaction
models introduced in game theory. The idea for highway
planning is to consider the moving vehicles as players that
observe each other’s actions and consequently react with an
appropriate strategy. The main advantage of this method is that
it quickly obtains a trained driver model, starting with a merely
basic one. The main drawback is that it assumes that all the
players respect the rules, and it can therefore lead to unsafe
reactions in real-life applications. Moreover, one should make
sure to learn using various behaviors of the players to enrich
the knowledge. In [133], the models develop more complex
strategies as they are trained against the other behaviors. The
authors use POMDP to model the players’ knowledge and
Jaakola reinforcement learning in the training phase.

AI human-like methods are well suited to decision making
in highway scenarios, where drivers’ behaviors are more
predictable due to the basic rules of this environment. They
are also easy to understand and to share with the driver.
Moreover, the application of such algorithms is usually not
as complicated as modeling a driver, but still interesting
enough to involve in complex scenarios. With their simple
architecture and heterogeneous implementation, one notices
that no major framework is highlighted in the literature of
autonomous driving for AI human-like methods.

IV. COMPARISON TABLE FOR HIGHWAY APPLICATIONS

The highway applicability of the previously described meth-
ods is summarized in Table II. We propose to quantify the
constraints’ assessment with a ‘– / ∼ / +’ scale. We assess
‘– –’ as being highly inappropriate, ‘–’ inappropriate, ‘∼’
intermediary, ‘+’ appropriate, and ‘++’ highly appropriate. The
references illustrate the use cases of the families to suggest
their situation adaptiveness (collision avoidance, car following,
lane change, merging, overtaking) and their implementation
in simulation or experimentation, specified with the square
brackets’ superscript and subscript respectively. To quote but
a few, simulators such as CARLA, PreScan, SCANeR studio,
TORCS are developed for autonomous driving.

Unlike the classification in [25], we do not focus on the
usual points of comparison, such as completeness, optimality,
or time complexity, but on how the algorithms offer an
effective and efficiently implementable response to practical
applications. Therefore, one can interpret Table II as a guide
to choose the most appropriate family given the attributes of
the algorithm, and its intrinsic and extrinsic limits. Further-
more, one will notice that references often apply to different

families. In that sense, Table II also helps to understand the
complementary methods for a systemic motion planner design.

Among the characteristics highlighted in this review, the
taxonomy criteria can be found in III-A: (i) the type of use of
set- and solve-algorithm, (ii) the predictive or reactive horizon,
and (iii) the mathematical domain; and the motion planning
functions in II-B (Fig. 2).

As intrinsic limits, we distinguish the performance, ease
of use, and data analysis. The performance first gathers the
real-time implementation. In the case of highway motion
(> 17m/s), with an error of a meter, the motion planning al-
gorithm should return a solution within the order of magnitude
of 10ms to be real-time. As the intrinsic cost of each algorithm
strongly relies on the hardware platform, we inform about
qualitative, but not quantitative computation. The other perfor-
mance requirements are derived from the analysis proposed in
[97]: robustness of the algorithm to find a solution despite
the variation of the environment (merging, jam approach);
stability to keep the solution despite environmental changes;
adaptability to perform a solution in various conditions, e.g.
introducing new scenarios or criteria; and the feasibility of
converging to a solution in a finite time. The ease of use is
defined by the ability to replan in real-time without changing
the structure of the algorithm. The last intrinsic limit relates to
the data analysis: the input type for the scene representation
(discrete, sampled, continuous) and the output type of the
algorithm (space, path, trajectory, maneuver, task), along with
the ability to deal with uncertain data.

The extrinsic limits show the algorithm’s dependency on
high-level sensors of the ego vehicle and/or the infrastructure.
This aspect is important to reflect the real applicability in a
near or further future. If the algorithm works well only with
precise information over a large time horizon, which does
not correspond to the current high-level sensors’ properties,
it will be highly inappropriate for sensors constraints. We
invite the readers to consider [38] as a reference for sensors’
properties. As stated before, the specificities of the driving
environment and vehicle kinematics must be considered. We
therefore consider whether the algorithm performs well in
complex environments (dense traffic, various topologies) and
takes the constraints of the environment and the ego vehicle
kinematics into account.

V. FUTURE RESEARCH DIRECTIONS

This part spotlights some critical and forthcoming issues of
research for highway driving motion planning.

A. Data Management

Like a driver, the decision relies on a proper represen-
tation/perception/modeling of the environment and a good
control of the vehicle’s behavior, as discussed in [165]. Refer-
ence [166] details several perception challenges impacting the
motion planners, and [167] discusses conditions to improve
control algorithms for driving. In this review, we pay attention
to two questions: how much data is enough in terms of
uncertainties and trustworthiness? and how do we make a
decision with latency and unsynchronized data?
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TABLE II
COMPARISON TABLE FOR HIGHWAY APPLICATIONS OF MOTION PLANNING METHODS (‘−−’ VERY INAPPROPRIATE, ‘−’ INAPPROPRIATE,‘∼’ INTERMEDIARY, ‘+’ APPROPRIATE, ‘++’ VERY APPROPRIATE).

Family Characteristics Intrinsic Limits Extrinsic Limits
Performance Use Data analysis Sensor Environment Vehicle
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Configuration space sampling [43]oE se P/R G gen ∼ − ∼ ∼ − ++ s sp − ∼ − + ++

Probabilistic sampling [33]caS [42]∗E se P/R G gen + −− −− + −− ++ s sp + + ∼ −− −−

Non-obstacle-based cells
– Exact decomposition [50]oS [52]∗E [54]lcS [55]eS ; Polar grid [53]∗E se P/R G gen − ∼ − ∼ ∼ − d sp/pa ∼ ++ − −− −−

– VFH [57]∗S [58]∗E ; DW [60]caS [61]∗E [62]∗
/

se R G def + ++ ∼ + + + c sp/tr + − + + ∼

Obstacle-based cells
– Voronoi [42]∗E [58]∗E ; Approximate [67]∗E se P/R G gen −− ++ ∼ + ∼ −− d sp/pa + − − + −

– Visibility graph [49]∗S [70]mS se P/R G gen − ∼ −− − ∼ −− d sp/pa − ∼ −− ∼ −−

– VO [49]∗S ; Driving corridor [18]∗E [72]∗S [73]∗S [74]∗S se P/R G gen − ++ ∼ + + − c sp/tr ∼ − ∼ + +

Lattice
– Maximum turn [13]∗E [76]∗S ; Curvature Velocity [72]∗S [78]∗S se P G gen ∼ + + + + + c tr/ma −− + − + ++

– Road-adapted [29]∗S [79]∗S [80]∗E [81]∗E ; Driver-based [82]∗E se P G gen ∼ + + + + + c tr/ma − ∼ − ++ +

Pathfindings
– Dijkstra [42]∗E [72]∗S [83]∗S so P L dec − ∼ + + ++ ∼ s pa − + −− −− −−

– A∗ [43]oE [76]∗S [86]∗S [87]∗S [88]∗E [90]∗E so P H/L dec ∼ ∼ + + + + s pa ∼ + − ∼ −−

– RRT [92]∗E [94]∗S se/so P/R H/L gen/dec + + ∼ ++ ∼ ++ s pa + − − ∼ ++

Artificial forces
APF [46]∗S [61]∗E [86]∗S [95]∗E [96]∗S [99]∗S [100]∗S [101]∗S ; VFF [43]oE ; Elastic band [48]∗S
[103]cfE [104]caS

se/so R B gen/def − + + + + ++ c sp/pa/tr + + ∼ ++ +

Parametric curves
– Line and circle [42]∗E [107]∗E [109]caE se P/R G gen + − −− + + + s/d/c pa/tr/ma −− + −− + ∼

– Clothoı̈d [50]oS [106]∗S [111]∗E [112]∗S [113]∗S ; Sigmoid [32]lcE [115]∗E se P/R G gen + − −− + + + s/d/c pa/tr/ma − + ∼ ++ ++

Semi-parametric curves
Polynomial [29]∗S [54]lcS [80]∗E [81]∗E ; Spline [76]∗S [79]∗S ; Bézier [49]∗S [116]lcE [117]∗S so P/R G gen ∼ − −− + ++ + s/d/c pa/tr/ma ∼ + + + ++

Mathematical optimization
LP [81]∗E [119]oS ; NLP [29]∗S [33]caS [104]caS ; QP [18]∗E [120]oS [121]∗S ; MPC [46]∗S [47]oS
[51]oS [113]∗S [118]∗S [122]∗E [123]∗E ; DP [49]∗S [124]∗S

so P H/L gen/dec + + + ++ ∼ + s/d/c pa/tr/ma ∼ + + ++ ++

AI Logic
– if-then-rules [32]lcE [78]∗S [107]∗E [126]oS [127]lcE [128]∗S so P/R L dec ∼ + + − + ∼ d ta − ++ − ++ ∼

– FSM [18]∗E [54]lcS [55]eS [129]∗S se/so P/R L dec + + + − ++ + d ta −− ++ ∼ ++ ∼

– Dynamic Bayesian [27]∗S [50]oS [130]∗S [131]lcE [132]∗E [133]∗S se/so P/R H/L dec − ++ + − ++ + d ta ++ + ∼ ++ ∼

AI Heuristic
– Agent [132]∗E [133]∗S se/so P/R H/L/B gen/dec − ∼ − ++ ∼ + s/d/c pa/tr/ma + + + ++ +

– SVM [117]∗S [134]lcS se/so P/R H/L dec ∼ ++ ∼ − + −− s/d/c ma ∼ + + + ∼

– Evolutionary [135]∗
/
[136]lcS [137]caS se/so P/R H/L/B gen/dec − ++ − ++ −− −− s/d/c pa/tr/ma − + + ++ +

AI Approximate
– Fuzzy logic [138]lcS [139]oE [140]∗E so P/R H/L/C dec ∼ + + ∼ + ∼ c ma/ta + ++ ∼ ++ +

– ANN [122]∗E [133]∗S [141]∗S [142]∗E [143]∗E [144]oS [145]∗S [146]∗E [147]∗E se/so P/R H/L/C/B gen/dec −− ∼ ∼ −− + − c tr/ma/ta ∼ −− + + +

– Belief Network [148]∗E se/so P/R H/L/C/B gen/dec −− ∼ ∼ −− + − c tr/ma/ta ++ − + + +

AI Cognitive
– Risk [51]oS [55]eS [150]∗S [151]∗S [152]caS [153]∗S [154]caE [155]∗

/
[156]∗

/
[157]∗S [158]∗S [159]∗S so P/R L/C dec ++ ++ ++ + ++ ++ d ta ∼ −− + ++ ∼

– Task [83]∗S [139]oE [160]∗
/
[161]∗

/
[162]∗

/
[163]∗

/
[164]oS so P/R L/C dec + + ∼ + + − d ta −− ++ ∼ + ∼

– Game [133]∗S se/so P/R C gen/dec ∼ ∼ + − ++ ∼ c ma/ta + + − + +

Legend: Use case – [ ]S = simulation / [ ]E = experimentation; [ ]ca = collision avoidance / [ ]cf = car following / [ ]lc = lane change / [ ]m = merging / [ ]o = overtaking / [ ]e = emergency / [ ]∗ = no specific use case.
Characteristics – se/so = set-/solve-algorithm; P = predictive / R = reactive; G = geometric / H = heuristic / L = logic / C = cognitive / B = biomimetic; gen = generation / dec = decision making / def = deformation.
Data Analysis – d = discrete / s = sampled / c = continuous; sp = space / pa = path / tr = trajectory / ma = maneuver / ta = task
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1) Data Uncertainty and Trustworthiness
As we discussed in II-B, motion planning algorithms

need a scene representation with data characterized by their
uncertainties and trustworthiness. The quality of these data
is crucial for motion planning to ensure safety decisions. For
example, the authors in [168] propose a method to evaluate the
appropriate number of naturalistic driving data to model a car
following behavior. Some research has been conducted on data
uncertainties and trustworthiness on applied methods, such
as Kalman estimators [52], [169], Markov processes [131],
[170], Monte Carlo simulation [170], evidential theory [52],
or interval arithmetic [171]. Furthermore, the planning stage
must also ensure motion continuity to guarantee the safety of
the vehicle even if data are missing.

2) Data Synchronization
The scene’s data are obtained with heterogeneous frequen-

cies and latencies. The problem is therefore choosing a logic
of data synchronization processing, as is done in [172]. A first
solution is to run the algorithm with the same time step for the
motion planner and the controller, and to extrapolate the last
obtained data. The second possibility is to have a planner that
will refresh at each new data arrival. A mixed logic would then
be to operate on a fixed frequency and to refresh the data as
soon as new data arrive, to improve the propagation equations
by extrapolation of the data set.

B. Adaptive Mobility

Adaptive mobility tackles the question of the introduc-
tion of autonomous vehicles to our human environment. In
fact, all the infrastructure and driving rules for transportation
means are built from human models. According to current
and future reflections on autonomous developments, it is not
yet conceivable to consider, in a near future, autonomous
transportation means independent of the current ones. Thus,
it can be wise to ask whether it is reasonable to expect
to model and to reproduce human behavior/reasoning on a
robotic system whose environmental knowledge is not adapted
in terms of perception and reasoning means. Five aspects of
driving are especially subject to this question: safety, eco-
driving, perception compensation, route context, and service-
oriented vehicles.

1) Safety
The safety considerations impose the need for intelligent

enough algorithms to distinguish a permanent or temporary
danger, such as the front vehicle suddenly stopping, or another
one cutting in.

From a motion planning perspective, the ego vehicle is safe
if it is not in conflict with its environment. However, this safety
space highly depends on the safety capacity of robot driving,
which can be different from a human one. As stated in [173],
longitudinal distance and speed controls are generally faster
in autonomous driving, and so longitudinal safety space could
be smaller. In contrast, lateral distance control is generally
more stable with human drivers; thus, lateral safety space
must be larger with robot drivers. Furthermore, this safety
space has to be sufficient against the unexpected challenges of

the environment (e.g. unexpected brakes from leading vehicle,
unforeseen road’s dead end). The formal methods are thus used
to mathematically prove safety properties [174], [175].

Moreover, at the moment, automakers are developing au-
tonomous vehicles with human takeover and human-robot
mixed driving. This implies a possibly shared decision making
between autonomous vehicles and drivers. The first problem
is retaining a stable and predictive decision in case the driver
takes the control back [176]. The second one is that the
decisions of the human driver and the machine may contradict
each other [177]. The third safety consideration is of human
drivers’ behaviors towards robot drivers in the sense of respect,
acceptability, and predictability [178] or comfort [179].

2) Eco-driving Planning
Eco-driving is expressed as a multicriteria optimization

problem (see III-B5), with a cost function based on energy
efficiency and environmental care. Two main aspects are
considered. The first deals with the dynamic model of the ego
vehicle to propose a smooth maneuver, such as low acceler-
ation and constant speed to decrease fuel consumption [180].
The second one is a matter of prediction and anticipation to
not act suddenly, as suggested by the driver policy in [181].

3) Perception Compensation
One of the problems regarding perception is the constraint

of a fixed point of view of the driving scene. However, when
a human driver has to make a decision, he/she optimizes
his/her perception by moving the ego vehicle to capture
more information on a larger perceived environment. This
perception compensation places the ego vehicle in a position
to optimize the capacity of the sensors with a geometrically
wide perception, as suggested in [182] for city driving.

4) Route Context
The route planner is well studied with a trip scheduler.

However, there are very few examples in the literature of
integrating these data for decision and generation functions
(see Fig. 2). In fact, route planning constrains the evolution
space, especially on highways; e.g. a right-hand highway exit
involves the ego vehicle to navigate to the rightmost lane.
These requirements imply respecting constraints in actions,
distances, and time to follow the instructions of the navigator.

5) Service Orientation
The last prospect discussed for adaptive mobility concerns

the future use of transportation. Reference [183] highlights the
roles of driverless vehicles in the service for which they are
designed, e.g. private car, taxi, shuttle bus, logistics, health or
safety vehicles. Their behaviors then become heterogeneous
according to their modality of services. Until now, the classic
representation was the space-time domain decision making, i.e.
where and when the vehicle had to navigate. A third dimension
is now added: how the vehicle has to navigate. The behavior
towards other vehicles then shows a logistic-driven attitude to
prioritize the evolution space.

C. Cooperative Planning
Driving is a social task, where cooperation is inherent to

the decision making. We identify three perspectives regarding
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the automation of vehicles and/or infrastructure, as detailed in
[34]: individual, collective, and shared.

First, individual transportation applies an isolated decision-
maker, with or without communication skills. It is analogous
to a Lagrangian description in fluid mechanics (or traffic
network science), separately considering each particle’s dy-
namics. Each vehicle takes its decision independently of the
others, but considers interaction [159] and courtesy [184].

Second, we identify the Eulerian description in fluid me-
chanics with collective decisions. One globally considers par-
ticles’ interactions and behaviors within a given volume; a
platoon comprises numerous entities – individual vehicles –
but adopts a unified behavior: a swarm intelligence. Collective
systems require a strong knowledge of other vehicles’ states
when acting as auto-organized systems, and/or strong commu-
nication with other vehicles and/or infrastructure if acting as
self-organizing [185]. Many studies have modeled cooperative
platoon maneuvers using multi-agent event-based approach
[186], swarm intelligence [187], risk estimators [188], or fuzzy
logic [189]. Similarly, an intelligent infrastructure approach
includes a conductor of a group of vehicles, which acts as
either a manager or a controller. In case of managing, the
vehicles entering the area supervised by the intelligent infras-
tructure send their intention. The infrastructure then provides
a coordination scheduler to fulfill the desired actions of every
vehicle. In the second case, the intelligent infrastructure takes
full control of the monitoring. In the literature, one can
mainly find intelligent highway managers with knowledge-
based inference engines [190], [191] and agents [183].

The last cooperative approach concerns the drivers’ shared
decision. Today, the first four SAE automation levels in [10]
depict a shared cooperation between drivers and autonomous
vehicles, from driver assistance to partial, conditional, and
high automation. As long as the driver stays in the vehicle,
he/she approves the decisions and can take the control back at
any moment. To maintain decision continuity, human driver
experiences represent a useful base of knowledge for the
system. A fuzzification approach to mix this driver cognition
experience with the system’s decision is proposed in [192]. In
[150], the authors present to the driver a maneuver grid based
on a crash estimation with the Equivalent Energetic Speed
(EES), whereas [193] introduces game theory for cooperative
guidance. Although studies exist on integrating autonomous
vehicles and human drivers, the question of adapting the
autonomous vehicle behavior to the driver type is of interest
for the popularization of such vehicles [194].

D. Validation and Evaluation

In addition to the indicators depicted in Table II, the
evaluation of the algorithms must include a verification of
behaviors, judgments, and responsibilities. Here, we discuss
the validation of transition stability with different planners,
the evaluation of motion planning methods on predefined use
cases, the ethics dilemmas, and the topic of rules relaxation.

1) Transition Stability
The various cases encountered often require the use of

different combined motion planning algorithms. In this case,

we need to know whether the resulting architecture is stable,
reliable, and robust, or whether it is necessary to add a high-
level supervisor to validate the coherence of decisions, actions,
and observations. In [195], the authors propose a behavior
paradigm analogous to the FSM decision to implement an
architecture able to switch from manual to autonomous driving
and between maneuver modes.

2) Evaluation
As stated in section IV, the validation of motion plan-

ning algorithms mostly relies on extensive simulation and
experimental testing results, where a human driver evaluates
the action according to a personal reference index, such as
safety, smoothness, or operation time [54]. There is a lack
of formal analysis and evaluation methods to hierarchically
classify algorithms’ performances. This will change thanks to
the open source scenario library developed by [196] to propose
a benchmark for motion planning algorithms, or with Key
Performance Indicators (KPIs) proposed by [197].

3) Ethics
As soon as robotic systems interact with human beings,

questions of ethics in autonomous decision-makers arise. Ref-
erence [198] proposes an ethical vehicle deployment strategy
in a hybrid rational and AI approach, especially for critical
safety situations. The authors in [199] show how to incorporate
ethics into decisions based on ethical frameworks, such as
deontology – as rules constraining the actions and navigation
of the system, consequentialism – as cost-based construction
for the objective function, or as morality to determine the
different costs of the system’s behaviors.

4) Algorithm Relaxation
The strict respect and relaxation of driving rules are key

points to ensure safety in any case for an autonomous vehicle.
Indeed, even hard constraints might become dangerous in
critical cases [13]. Reference [200] introduces an ontology
for traffic rules in unusual situations with knowledge-based
inference engines to avoid blockage situations, and to preserve
safety with lane crossing or excess speed.

VI. CONCLUSION

To conclude, our literature review revealed a huge amount
of algorithms for motion planning in robotics. The objective
of this paper was to identify the main methods of motion
planning for autonomous vehicles in the highway case. We do
not claim to have exhaustively gathered all algorithms used
for this application, but we hope to have shown the diversity
and potential of highway planning. Through this state-of-the-
art work, we also aspired to present readers with a different
proposal of decomposition methods than what they may have
found in previous reviews. In particular, we believe that the
radar chart illustration of differentiating attributes will allow
future users to identify and orient their work towards a solution
that will correctly answer their problem. Finally, the last
objective of this survey was to encourage readers’ reflections
on the practical implementation of these algorithms and, more
generally, their perspectives of highway motion planning and
autonomous driving.
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stitut VEDECOM and IFSTTAR-LIVIC laboratory,
France. Her research is focused on motion planning
for the application of autonomous vehicles.

Marc Revilloud is a researcher on autonomous
vehicles at Institut VEDECOM, France. He received
the Dipl.-Ing. degree from Université de Technolo-
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