[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

33 results sorted by ID

2024/1618 (PDF) Last updated: 2024-10-10
Shaking up authenticated encryption
Joan Daemen, Seth Hoffert, Silvia Mella, Gilles Van Assche, Ronny Van Keer
Secret-key cryptography

Authenticated encryption (AE) is a cryptographic mechanism that allows communicating parties to protect the confidentiality and integrity of messages exchanged over a public channel, provided they share a secret key. In this work, we present new AE schemes leveraging the SHA-3 standard functions SHAKE128 and SHAKE256, offering 128 and 256 bits of security strength, respectively, and their “Turbo” counterparts. They support session-based communication, where a ciphertext authenticates the...

2024/1474 (PDF) Last updated: 2024-09-20
Mystrium: Wide Block Encryption Efficient on Entry-Level Processors
Parisa Amiri Eliasi, Koustabh Ghosh, Joan Daemen
Secret-key cryptography

We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7. Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function. We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...

2024/407 (PDF) Last updated: 2024-03-06
Permutation-Based Hashing Beyond the Birthday Bound
Charlotte Lefevre, Bart Mennink
Secret-key cryptography

It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...

2024/047 (PDF) Last updated: 2024-07-08
On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing
Elena Andreeva, Rishiraj Bhattacharyya, Arnab Roy, Stefano Trevisani
Secret-key cryptography

ZK-SNARKs, a fundamental component of privacy-oriented payment systems, identity protocols, or anonymous voting systems, are advanced cryptographic protocols for verifiable computation: modern SNARKs allow to encode the invariants of a program, expressed as an arithmetic circuit, in an appropriate constraint language from which short, zero-knowledge proofs for correct computations can be constructed. One of the most important computations that is run through SNARK systems is the...

2023/1520 (PDF) Last updated: 2024-04-09
Kirby: A Robust Permutation-Based PRF Construction
Charlotte Lefevre, Yanis Belkheyar, Joan Daemen
Secret-key cryptography

We present a construction, called Kirby, for building a variable-input-length pseudorandom function (VIL-PRF) from a $b$-bit permutation. For this construction we prove a tight bound of $b/2$ bits of security on the PRF distinguishing advantage in the random permutation model and in the multi-user setting. Similar to full-state keyed sponge/duplex, it supports full-state absorbing and additionally supports full-state squeezing, while the sponge/duplex can squeeze at most $b-c$ bits per...

2023/978 (PDF) Last updated: 2023-06-22
$\textsf{PAE}$: Towards More Efficient and BBB-secure AE From a Single Public Permutation
Arghya Bhattacharjee, Ritam Bhaumik, Avijit Dutta, Eik List
Secret-key cryptography

Four recent trends have emerged in the evolution of authenticated encryption schemes: (1) Regarding simplicity, the adoption of public permutations as primitives allows for sparing a key schedule and the need for storing round keys; (2) using the sums of permutation outputs, inputs, or outputs has been a well-studied means to achieve higher security beyond the birthday bound; (3) concerning robustness, schemes should provide graceful security degradation if a limited amount of nonces...

2023/865 (PDF) Last updated: 2023-06-07
A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH
Xiaorui Yu, Fukang Liu, Gaoli Wang, Siwei Sun, Willi Meier
Attacks and cryptanalysis

ASCON, a lightweight permutation-based primitive, has been selected as NIST’s lightweight cryptography standard. ASCON-HASH is one of the hash functions provided by the cipher suite ASCON. At ToSC 2021, the collision attack on 2-round ASCON-HASH with time complexity 2^{103} was proposed. Due to its small rate, it is always required to utilize at least 2 message blocks to mount a collision attack because each message block is only of size 64 bits. This significantly increases the difficulty...

2023/784 (PDF) Last updated: 2024-06-25
History-Free Sequential Aggregation of Hash-and-Sign Signatures
Alessio Meneghetti, Edoardo Signorini
Public-key cryptography

A sequential aggregate signature (SAS) scheme allows multiple users to sequentially combine their respective signatures in order to reduce communication costs. Historically, early proposals required the use of trapdoor permutation (e.g., RSA). In recent years, a number of attempts have been made to extend SAS schemes to post-quantum assumptions. Many post-quantum signatures have been proposed in the hash-and-sign paradigm, which requires the use of trapdoor functions and appears to be an...

2022/1088 (PDF) Last updated: 2022-08-22
Tighter trail bounds for Xoodoo
Joan Daemen, Silvia Mella, Gilles Van Assche
Attacks and cryptanalysis

Determining bounds on the differential probability of differential trails and the squared correlation contribution of linear trails forms an important part of the security evaluation of a permutation. For Xoodoo such bounds were proven with a dedicated tool (XooTools), that scans the space of all r-round trails with weight below a given threshold $T_r$. The search space grows exponentially with the value of $T_r$ and XooTools appeared to have reached its limit, requiring huge amounts...

2022/464 Last updated: 2022-08-27
Superposition Attacks on Pseudorandom Schemes based on Two or Less Permutations
Shaoxuan Zhang, Chun Guo, Qingju Wang
Secret-key cryptography

We study quantum superposition attacks against permutation-based pseudorandom cryptographic schemes. We first extend Kuwakado and Morii's attack against the Even-Mansour cipher (ISITA 2012), and exhibit key recovery attacks against a large class of pseudorandom schemes based on a single call to an $n$-bit permutation, with polynomial $O(n)$ quantum steps. We also show how to overcome restrictions on available quantum data in certain relevant settings. We then consider TPPR schemes, namely,...

2020/1554 (PDF) Last updated: 2020-12-13
DNFA: Differential No-Fault Analysis of Bit Permutation Based Ciphers Assisted by Side-Channel
Xiaolu Hou, Jakub Breier, Shivam Bhasin
Secret-key cryptography

Physical security of NIST lightweight cryptography competition candidates is gaining importance as the standardization process progresses. Side-channel attacks (SCA) are a well-researched topic within the physical security of cryptographic implementations. It was shown that collisions in the intermediate values can be captured by side-channel measurements to reduce the complexity of the key retrieval to trivial numbers. In this paper, we target a specific bit permutation vulnerability in...

2020/1133 (PDF) Last updated: 2022-09-23
Security Analysis of Subterranean 2.0
Ling Song, Yi Tu, Danping Shi, Lei Hu
Secret-key cryptography

Subterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption, MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and has been selected as a candidate in the second round of NIST's lightweight cryptography standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-round permutation in the duplex. It is the simplicity of the round function that makes it an attractive target of cryptanalysis. In...

2020/680 (PDF) Last updated: 2020-06-14
On the Design of Bit Permutation Based Ciphers - The Interplay Among S-box, Bit Permutation and Key-addition
Sumanta Sarkar, Yu Sasaki, Siang Meng Sim
Secret-key cryptography

Bit permutation based block ciphers, like PRESENT and GIFT, are well-known for their extreme lightweightness in hardware implementation. However, designing such ciphers comes with one major challenge - to ensure strong cryptographic properties simply depending on the combination of three components, namely S-box, a bit permutation and a key addition function. Having a wrong combination of components could lead to weaknesses. In this article, we studied the interaction between these...

2020/669 (PDF) Last updated: 2022-04-28
Proof of Mirror Theory for $\xi_{\max}=2$
Avijit Dutta, Mridul Nandi, Abishanka Saha
Secret-key cryptography

In ICISC-05, and in the ePrint $2010/287$, Patarin claimed a lower bound on the number of $2q$ tuples of $n$-bit strings $(P_1, \ldots, P_{2q}) \in (\{0,1\}^{n})^{2q}$ satisfying $P_{2i - 1} \oplus P_{2i} = \lambda_i$ for $1 \leq i \leq q$ such that $P_1, P_2, \ldots$, $P_{2q}$ are distinct and $\lambda_i \in \{0,1\}^n \setminus \{0^n\}$. This result is known as {\em Mirror theory} and widely used in cryptography. It stands as a powerful tool to provide a high-security guarantee for many...

2020/591 (PDF) Last updated: 2020-09-22
Automatic Verification of Differential Characteristics: Application to Reduced Gimli (Full Version)
Fukang Liu, Takanori Isobe, Willi Meier
Secret-key cryptography

Since Keccak was selected as the SHA-3 standard, more and more permutation-based primitives have been proposed. Different from block ciphers, there is no round key in the underlying permutation for permutation-based primitives. Therefore, there is a higher risk for a differential characteristic of the underlying permutation to become incompatible when considering the dependency of difference transitions over different rounds. However, in most of the MILP or SAT based models to search for...

2020/200 (PDF) Last updated: 2022-10-03
Leakage and Tamper Resilient Permutation-Based Cryptography
Christoph Dobraunig, Bart Mennink, Robert Primas
Secret-key cryptography

Implementation attacks such as power analysis and fault attacks have shown that, if potential attackers have physical access to a cryptographic device, achieving practical security requires more considerations apart from just cryptanalytic security. In recent years, and with the advent of micro-architectural or hardware-oriented attacks, it became more and more clear that similar attack vectors can also be exploited on larger computing platforms and without the requirement of physical...

2019/739 (PDF) Last updated: 2019-06-21
A Survey on Authenticated Encryption -- ASIC Designer's Perspective
Elif Bilge Kavun, Hristina Mihajloska, Tolga Yalcin
Implementation

Authenticated encryption (AE) has been a vital operation in cryptography due to its ability to provide confidentiality, integrity, and authenticity at the same time. Its use has soared in parallel with widespread use of the Internet and has led to several new schemes. There have been studies investigating software performance of various schemes. However, the same is yet to be done for hardware. We present a comprehensive survey of hardware (specifically ASIC) performance of the most commonly...

2019/685 (PDF) Last updated: 2019-07-30
Exploring NIST LWC/PQC Synergy with R5Sneik: How SNEIK 1.1 Algorithms were Designed to Support Round5
Markku-Juhani O. Saarinen
Public-key cryptography

Most NIST Post-Quantum Cryptography (PQC) candidate algorithms use symmetric primitives internally for various purposes such as ``seed expansion'' and CPA to CCA transforms. Such auxiliary symmetric operations constituted only a fraction of total execution time of traditional RSA and ECC algorithms, but with faster lattice algorithms the impact of symmetric algorithm characteristics can be very significant. A choice to use a specific PQC algorithm implies that its internal symmetric...

2019/554 (PDF) Last updated: 2021-12-14
How to Build Pseudorandom Functions From Public Random Permutations
Yu Long Chen, Eran Lambooij, Bart Mennink
Secret-key cryptography

Pseudorandom functions are traditionally built upon block ciphers, but with the trend of permutation based cryptography, it is a natural question to investigate the design of pseudorandom functions from random permutations. We present a generic study of how to build beyond birthday bound secure pseudorandom functions from public random permutations. We first show that a pseudorandom function based on a single permutation call cannot be secure beyond the $2^{n/2}$ birthday bound, where n is...

2019/225 (PDF) Last updated: 2019-08-28
Leakage Resilience of the Duplex Construction
Christoph Dobraunig, Bart Mennink
Secret-key cryptography

Side-channel attacks, especially differential power analysis (DPA), pose a serious threat to cryptographic implementations deployed in a malicious environment. One way to counter side-channel attacks is to design cryptographic schemes to withstand them, an area that is covered amongst others by leakage resilient cryptography. So far, however, leakage resilient cryptography has predominantly focused on block cipher based designs, and insights in permutation based leakage resilient...

2019/180 (PDF) Last updated: 2019-02-26
Disco: Modern Session Encryption
David Wong
Cryptographic protocols

At Real World Crypto 2017, Joan Daemen won the Levchin Prize and announced that he believed permutation-based crypto was the future of symmetric cryptography. At the same conference Mike Hamburg introduced Strobe, a symmetric protocol framework capable of protecting sessions as well as building symmetric cryptographic primitives for the single cost of Joan Daemen’s permutation Keccak. The next year, at Real World Crypto 2018 Trevor Perrin came to talk about the Noise protocol framework, a...

2017/977 (PDF) Last updated: 2018-01-09
Cryptanalysis against Symmetric-Key Schemes with Online Classical Queries and Offline Quantum Computations
Akinori Hosoyamada, Yu Sasaki
Secret-key cryptography

In this paper, quantum attacks against symmetric-key schemes are presented in which adversaries only make classical queries but use quantum computers for offline computations. Our attacks are not as efficient as polynomial-time attacks making quantum superposition queries, while our attacks use the realistic model and overwhelmingly improve the classical attacks. Our attacks convert a type of classical meet-in-the-middle attacks into quantum ones. The attack cost depends on the number of...

2017/743 (PDF) Last updated: 2017-08-07
Cryptanalysis of 22 1/2 rounds of Gimli
Mike Hamburg
Secret-key cryptography

Bernstein et al. have proposed a new permutation, Gimli, which aims to provide simple and performant implementations on a wide variety of platforms. One of the tricks used to make Gimli performant is that it processes data mostly in 96-bit columns, only occasionally swapping 32-bit words between them. Here we show that this trick is dangerous by presenting a distinguisher for reduced-round Gimli. Our distinguisher takes the form of an attack on a simple and practical PRF that should be...

2017/539 (PDF) Last updated: 2017-06-08
Public-Seed Pseudorandom Permutations
Pratik Soni, Stefano Tessaro
Foundations

A number of cryptographic schemes are built from (keyless) permutations, which are either designed in an ad-hoc fashion or are obtained by fixing the key in a block cipher. Security proofs for these schemes, however, idealize this permutation, i.e., making it random and accessible, as an oracle, to all parties. Finding plausible concrete assumptions on such permutations that guarantee security of the resulting schemes has remained an elusive open question. This paper initiates the study of...

2016/1188 (PDF) Last updated: 2017-12-04
Farfalle: parallel permutation-based cryptography
Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, Ronny Van Keer
Secret-key cryptography

In this paper, we introduce Farfalle, a new permutation-based construction for building a pseudorandom function (PRF). The PRF takes as input a key and a sequence of arbitrary-length data strings, and returns an arbitrary-length output. It has a compression layer and an expansion layer, each involving the parallel application of a permutation. The construction also makes use of LFSR-like rolling functions for generating input and output masks and for updating the inner state during...

2016/244 (PDF) Last updated: 2024-06-07
Cryptanalysis of Simpira v1
Christoph Dobraunig, Maria Eichlseder, Florian Mendel
Secret-key cryptography

Simpira v1 is a recently proposed family of permutations, based on the AES round function. The design includes recommendations for using the Simpira permutations in block ciphers, hash functions, or authenticated ciphers. The designers' security analysis is based on computer-aided bounds for the minimum number of active S-boxes. We show that the underlying assumptions of independence, and thus the derived bounds, are incorrect. For family member Simpira-4, we provide differential trails with...

2016/044 (PDF) Last updated: 2016-01-19
Defeating the Ben-Zvi, Blackburn, and Tsaban Attack on the Algebraic Eraser
Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells
Public-key cryptography

The \emph{Algebraic Eraser Diffie--Hellman} (AEDH) protocol was introduced in 2005 and published in 2006 by I.~Anshel, M.~Anshel, D.~Goldfeld, and S.~Lemieux as a protocol suitable for use on platforms with constrained computational resources, such as FPGAs, ASICs, and wireless sensors. It is a group-theoretic cryptographic protocol that allows two users to construct a shared secret via a Diffie--Hellman-type scheme over an insecure channel. Building on the refuted 2012 permutation-based...

2016/028 (PDF) Last updated: 2016-01-12
Sponges and Engines: An introduction to Keccak and Keyak
Jos Wetzels, Wouter Bokslag
Secret-key cryptography

In this document we present an introductory overview of the algorithms and design components underlying the Keccac cryptographic primitive and the Keyak encryption scheme for authenticated (session-supporting) encryption. This document aims to familiarize readers with the basic principles of authenticated encryption, the Sponge and Duplex constructions (full-state, keyed as well as regular versions), the permutation functions underlying Keccak and Keyak as well as Keyak v2's Motorist mode of...

2015/540 Last updated: 2016-04-01
PICO: An Ultra lightweight and Low power encryption design for pervasive computing
Gaurav Bansod, Narayan Pisharoty, Abhijit Patil

In this paper we are proposing an ultra lightweight, a very compact block cipher ‘PICO’. PICO is a substitution and permutation based network, which operates on a 64 bit plain text and supports a key length of 128 bits. It has a VERY compact structure that requires GEs for a 128 bit key length. The PICO cipher uses strong bit permutation layer which only needs wires for implementation this reduces overall gate count. Its unique design helps to generate a large number of active S - boxes...

2013/791 (PDF) Last updated: 2014-05-14
APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography
Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, Kan Yasuda
Secret-key cryptography

The domain of lightweight cryptography focuses on cryptographic algorithms for extremely constrained devices. It is very costly to avoid nonce reuse in such environments, because this requires either a secure pseudorandom number generator (PRNG), or non-volatile memory to store a counter. At the same time, a lot of cryptographic schemes actually require the nonce assumption for their security. In this paper, we propose APE as the first permutation-based authenticated encryption scheme that...

2013/773 (PDF) Last updated: 2013-12-12
CBEAM: Efficient Authenticated Encryption from Feebly One-Way $\phi$ Functions
Markku-Juhani O. Saarinen
Secret-key cryptography

We show how efficient and secure cryptographic mixing functions can be constructed from low-degree rotation-invariant $\phi$ functions rather than conventional S-Boxes. These novel functions have surprising properties; many exhibit inherent feeble (Boolean circuit) one-wayness and offer speed/area tradeoffs unobtainable with traditional constructs. Recent theoretical results indicate that even if the inverse is not explicitly computed in an implementation, its degree plays a fundamental...

2013/482 (PDF) Last updated: 2013-08-14
Bounds in Shallows and in Miseries
Céline Blondeau, Andrey Bogdanov, Gregor Leander
Secret-key cryptography

Proving bounds on the expected differential probability (EDP) of a characteristic over all keys has been a popular technique of arguing security for both block ciphers and hash functions. In fact, to a large extent, it was the clear formulation and elegant deployment of this very principle that helped Rijndael win the AES competition. Moreover, most SHA-3 finalists have come with explicit upper bounds on the EDP of a characteristic as a major part of their design rationale. However, despite...

2005/278 (PDF) (PS) Last updated: 2005-08-21
A New Rabin-type Trapdoor Permutation Equivalent to Factoring and Its Applications
Katja Schmidt-Samoa
Public-key cryptography

Public key cryptography has been invented to overcome some key management problems in open networks. Although nearly all aspects of public key cryptography rely on the existence of trapdoor one-way functions, only a very few candidates of this primitive have been observed yet. In this paper, we introduce a new trapdoor one-way permutation based on the hardness of factoring integers of $p^2q$-type. We also propose a variant of this function with a different domain that provides some...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.