234 results sorted by ID
Practical Electromagnetic Fault Injection on Intel Neural Compute Stick 2
Shivam Bhasin, Dirmanto Jap, Marina Krček, Stjepan Picek, Prasanna Ravi
Implementation
Machine learning (ML) has been widely deployed in various applications, with many applications being in critical infrastructures. One recent paradigm is edge ML, an implementation of ML on embedded devices for Internet-of-Things (IoT) applications. In this work, we have conducted a practical experiment on Intel Neural Compute Stick (NCS) 2, an edge ML device, with regard to fault injection (FI) attacks. More precisely, we have employed electromagnetic fault injection (EMFI) on NCS 2 to...
Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani
Cryptographic protocols
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
Post-Quantum Secure Channel Protocols for eSIMs
Luk Bettale, Emmanuelle Dottax, Laurent Grémy
Cryptographic protocols
The transition to Post-Quantum (PQ) cryptography is increasingly mandated by national agencies and organizations, often involving a phase where classical and PQ primitives are combined into hybrid solutions. In this context, existing protocols must be adapted to ensure quantum resistance while maintaining their security goals. These adaptations can significantly impact performance, particularly on embedded devices.
In this article, we focus on standardized protocols which support...
Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs
Amit Singh Bhati, Elena Andreeva, Simon Müller, Damian Vizar
Secret-key cryptography
A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications.
A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various...
Machine Learning-Based Detection of Glitch Attacks in Clock Signal Data
Asier Gambra, Durba Chatterjee, Unai Rioja, Igor Armendariz, Lejla Batina
Attacks and cryptanalysis
Voltage fault injection attacks are a particularly powerful threat to secure embedded devices because they exploit brief, hard-to-detect power fluctuations causing errors or bypassing security mechanisms. To counter these attacks, various detectors are employed, but as defenses strengthen, increasingly elusive glitches continue to emerge. Artificial intelligence, with its inherent ability to learn and adapt to complex patterns, presents a promising solution. This research presents an...
LightCROSS: A Secure and Memory Optimized Post-Quantum Digital Signature CROSS
Puja Mondal, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
Implementation
CROSS is a code-based post-quantum digital signature scheme based on a zero-knowledge (ZK) framework. It is a second-round candidate of the National Institute of Standards and Technology’s additional call for standardizing post-quantum digital signatures. The memory footprint of this scheme is prohibitively large, especially for small embedded devices. In this work, we propose various techniques to reduce the memory footprint of the key generation, signature generation, and verification by...
cuTraNTT: A Novel Transposed Number Theoretic Transform Targeting Low Latency Homomorphic Encryption for IoT Applications
Supriya Adhikary, Wai Kong Lee, Angshuman Karmakar, Yongwoo Lee, Seong Oun Hwang, Ramachandra Achar
Implementation
Large polynomial multiplication is one of the computational bottlenecks in fully homomorphic encryption implementations. Usually, these multiplications are implemented using the number-theoretic transformation to speed up the computation. State-of-the-art GPU-based implementation of fully homomorphic encryption computes the number theoretic transformation in two different kernels, due to the necessary synchronization between GPU blocks to ensure correctness in computation. This can be a...
Mind the Faulty Keccak: A Practical Fault Injection Attack Scheme Apply to All Phases of ML-KEM and ML-DSA
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis
ML-KEM and ML-DSA are NIST-standardized lattice-based post-quantum cryptographic algorithms. In both algorithms, Keccak is the designated hash algorithm extensively used for deriving sensitive information, making it a valuable target for attackers. In the field of fault injection attacks, few works targeted Keccak, and they have not fully explored its impact on the security of ML-KEM and ML-DSA. Consequently, many attacks remain undiscovered. In this article, we first identify various fault...
SoK: The Engineer’s Guide to Post-Quantum Cryptography for Embedded Devices
Maximilian Pursche, Nikolai Puch, Sebastian N. Peters, Michael P. Heinl
Applications
Embedded systems are flexible and cost-effective and thus have found a use case in almost every part of our daily lives. Due to their widespread use, they have also become valuable targets for cyber attacks. However, translating cutting-edge cyber security from servers and desktops to the embedded realm can be challenging due to the limited computational power and memory of embedded devices. Although quantum computing is still in early research and development, it threatens to break...
R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection
Archisman Ghosh, Dong-Hyun Seo, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications
Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space.
In recent years, physical...
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Attacks and cryptanalysis
Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...
A note on ``a novel authentication protocol for IoT-enabled devices''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis
We show that the authentication protocol [IEEE Internet Things J., 2023, 10(1), 867-876] is not correctly specified, because the server cannot complete its computations. To revise, the embedded device needs to compute an extra point multiplication over the underlying elliptic curve. We also find the protocol cannot provide anonymity, not as claimed. It can only provide pseudonymity.
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications
Blockchain technology ensures accountability,
transparency, and redundancy in critical applications, includ-
ing IoT with embedded systems. However, the reliance on
public-key cryptography (PKC) makes blockchain vulnerable to
quantum computing threats. This paper addresses the urgent
need for quantum-safe blockchain solutions by integrating Post-
Quantum Cryptography (PQC) into blockchain frameworks.
Utilizing algorithms from the NIST PQC standardization pro-
cess, we aim to fortify...
Switching Off your Device Does Not Protect Against Fault Attacks
Paul Grandamme, Pierre-Antoine Tissot, Lilian Bossuet, Jean-Max Dutertre, Brice Colombier, Vincent Grosso
Attacks and cryptanalysis
Physical attacks, and among them fault injection attacks, are a significant threat to the security of embedded systems. Among the means of fault injection, laser has the significant advantage of being extremely spatially accurate. Numerous state-of-the-art studies have investigated the use of lasers to inject faults into a target at run-time. However, the high precision of laser fault injection comes with requirements on the knowledge of the implementation and exact execution time of the...
Implementation and Performance Evaluation of Elliptic Curve Cryptography over SECP256R1 on STM32 Microprocessor
Onur İşler
Implementation
The use of Internet of Things (IoT) devices in embedded systems has become increasingly popular with advancing technologies. These devices become vulnerable to cyber attacks as they gain popularity. The cryptographic operations performed for the purpose of protection against cyber attacks are crucial to yield fast results in open networks and not slow down network traffic. Therefore, to enhance communication security, studies have been conducted in the literature on using asymmetric...
PoMMES: Prevention of Micro-architectural Leakages in Masked Embedded Software
Jannik Zeitschner, Amir Moradi
Implementation
Software solutions to address computational challenges are ubiquitous in our daily lives. One specific application area where software is often used is in embedded systems, which, like other digital electronic devices, are vulnerable to side-channel analysis attacks. Although masking is the most common countermeasure and provides a solid theoretical foundation for ensuring security, recent research has revealed a crucial gap between theoretical and real-world security. This shortcoming stems...
A Cautionary Note: Side-Channel Leakage Implications of Deterministic Signature Schemes
Hermann Seuschek, Johann Heyszl, Fabrizio De Santis
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Nebula: A Privacy-First Platform for Data Backhaul
Jean-Luc Watson, Tess Despres, Alvin Tan, Shishir G. Patil, Prabal Dutta, Raluca Ada Popa
Applications
Imagine being able to deploy a small, battery-powered device nearly anywhere on earth that humans frequent and having it be able to send data to the cloud without needing to provision a network—without buying a physical gateway, setting up WiFi credentials, or acquiring a cellular SIM. Such a capability would address one of the greatest bottlenecks to deploying the long-tail of small, embedded, and power-constrained IoT devices in nearly any setting. Unfortunately, decoupling the device...
INSPECT: Investigating Supply Chain and Cyber-Physical Security of Battery Systems
Tao Zhang, Shang Shi, Md Habibur Rahman, Nitin Varshney, Akshay Kulkarni, Farimah Farahmandi, Mark Tehranipoor
Applications
Battery-operated applications have been ubiquitous all over the world ranging from power-intensive electric cars down to low-power smart terminals and embedded devices. Meanwhile, serious incidents around batteries such as swelling, fire, and explosion have been witnessed, which resulted in horribly huge financial and even life loss. People used to attribute such aftermaths to unintentional design mistakes or insufficient quality inspection of original battery manufacturers. However, this is...
Exploiting RPMB authentication in a closed source TEE implementation
Aya Fukami, Richard Buurke, Zeno Geradts
Secret-key cryptography
Embedded Multimedia Cards (eMMCs) provide a protected memory area called the Replay Protected Memory Block (RPMB). eMMCs are commonly used as storage media in modern smartphones. In order to protect these devices from unauthorized access, important data is stored in the RPMB area in an authenticated manner. Modification of the RPMB data requires a pre-shared authentication key. An unauthorized user cannot change the stored data. On modern devices, this pre-shared key is generated and used...
Correction Fault Attacks on Randomized CRYSTALS-Dilithium
Elisabeth Krahmer, Peter Pessl, Georg Land, Tim Güneysu
Attacks and cryptanalysis
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Richard Petri, Emanuele Strieder
Attacks and cryptanalysis
NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for Extendable and Deeply Embedded Processors
Oren Ganon, Itamar Levi
Implementation
The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge...
Barrett Multiplication for Dilithium on Embedded Devices
Vincent Hwang, YoungBeom Kim, Seog Chung Seo
Implementation
We optimize the number-theoretic transforms (NTTs) in Dilithium — a digital signature scheme recently standardized by the National Institute of Standards and Technology (NIST) — on Cortex-M3 and 8-bit AVR. The core novelty is the exploration of micro-architectural insights for modular multiplications. Recent work [Becker, Hwang, Kannwischer, Yang and Yang, Volume 2022 (1), Transactions on Cryptographic Hardware and Embedded Systems, 2022] found a correspondence between Montgomery and Barrett...
A masking method based on orthonormal spaces, protecting several bytes against both SCA and FIA with a reduced cost
Claude Carlet, Abderrahman Daif, Sylvain Guilley, Cédric Tavernier
Cryptographic protocols
In the attacker models of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA), the opponent has access to a noisy version of the internal behavior of the hardware. Since the end of the nineties, many works have shown that this type of attacks constitutes a serious threat to cryptosystems implemented in embedded devices. In the state-of-the-art, there exist several countermeasures to protect symmetric encryption (especially AES-128). Most of them protect only against one of these two...
Lightweight but Not Easy: Side-channel Analysis of the Ascon Authenticated Cipher on a 32-bit Microcontroller
Léo Weissbart, Stjepan Picek
Attacks and cryptanalysis
Ascon is a recently standardized suite of symmetric cryptography for authenticated encryption and hashing algorithms designed to be lightweight.
The Ascon scheme has been studied since it was introduced in 2015 for the CAESAR competition, and many efforts have been made to transform this hardware-oriented scheme to work with any embedded device architecture.
Ascon is designed with side-channel resistance in mind and can also be protected with countermeasures against side-channel...
Let's Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation
Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, Bart Preneel
Secret-key cryptography
IoT devices collect privacy-sensitive data, e.g., in smart grids or in medical devices, and send this data to cloud servers for further processing. In order to ensure confidentiality as well as authenticity of the sensor data in the untrusted cloud environment, we consider a transciphering scenario between embedded IoT devices and multiple cloud servers that perform secure multi-party computation (MPC). Concretely, the IoT devices encrypt their data with a lightweight symmetric cipher and...
A Methodology to Achieve Provable Side-Channel Security in Real-World Implementations
Sonia Belaïd, Gaëtan Cassiers, Camille Mutschler, Matthieu Rivain, Thomas Roche, François-Xavier Standaert, Abdul Rahman Taleb
Physical side-channel attacks exploit a device's emanations to compromise the security of cryptographic implementations.
Many countermeasures have been proposed against these attacks, especially the widely-used and efficient masking countermeasure.
While theoretical models offer formal security proofs, they often rest on unrealistic assumptions, leading current approaches to prove the security of masked implementations to primarily rely on empirical verification.
Consequently, the...
Bypassing Android isolation with fuel gauges: new risks with advanced power ICs
Vincent Giraud, David Naccache
Attacks and cryptanalysis
Efficient power management is critical for embedded devices, both for extending their lifetime and ensuring safety. However, this can be a challenging task due to the unpredictability of the batteries commonly used in such devices. To address this issue, dedicated Integrated Circuits known as "fuel gauges" are often employed outside of the System-On-Chip. These devices provide various metrics about the available energy source and are highly accurate. However, their precision can also be...
From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium
Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes, Tobias Schneider, Markus Schönauer, Okan Seker, Christine van Vredendaal
Attacks and cryptanalysis
The post-quantum digital signature scheme CRYSTALS-Dilithium has been recently selected by the NIST for standardization. Implementing CRYSTALS-Dilithium, and other post-quantum cryptography schemes, on embedded devices raises a new set of challenges, including ones related to performance in terms of speed and memory requirements, but also related to side-channel and fault injection attacks security. In this work, we investigated the latter and describe a differential fault attack on the...
Secure Context Switching of Masked Software Implementations
Barbara Gigerl, Robert Primas, Stefan Mangard
Implementation
Cryptographic software running on embedded devices requires protection against physical side-channel attacks such as power analysis. Masking is a widely deployed countermeasure against these attacksand is directly implemented on algorithmic level. Many works study the security of masked cryptographic software on CPUs, pointing out potential problems on algorithmic/microarchitecture-level, as well as corresponding solutions, and even show masked software can be implemented efficiently and...
Revealing the Secrets of Radio-Enabled Embedded Systems: on extraction of raw information from any on-board signal through RF
Erez Danieli, Menachem Goldzweig, Moshe Avital, Itamar Levi
Implementation
In this work we are interested in evaluating the possibility of extracting information from radio-enabled embedded-systems from a long distance. That is, our focus is capturing information from sources in the micrometer to tens of centimeters scale, such as intra- or inter- device busses, board-level routing traces etc. Moreover, we focus on distances in the range of millimeters to tens of centimeters from the (on-chip or on-board) embedded-system Tx Antenna to the signal source....
Energy Consumption Evaluation of Post-Quantum TLS 1.3 for Resource-Constrained Embedded Devices
George Tasopoulos, Charis Dimopoulos, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, Ron Steinfeld
Cryptographic protocols
Post-Quantum cryptography (PQC), in the past few years, constitutes the main driving force of the quantum resistance transition for security primitives, protocols and tools. TLS is one of the widely used security protocols that needs to be made quantum safe. However, PQC algorithms integration into TLS introduce various implementation overheads compared to traditional TLS that in battery powered embedded devices with constrained resources, cannot be overlooked. While there exist several...
Side-Channel Analysis of Integrate-and-Fire Neurons within Spiking Neural Networks
Matthias Probst, Manuel Brosch, Georg Sigl
Attacks and cryptanalysis
Spiking neural networks gain attention due to low power properties and event-based operation, making them suitable for usage in resource constrained embedded devices. Such edge devices allow physical access opening the door for side-channel analysis. In this work, we reverse engineer the parameters of a feed-forward spiking neural network implementation with correlation power analysis. Localized measurements of electro-magnetic emanations enable our attack, despite inherent parallelism and...
AI Attacks AI: Recovering Neural Network architecture from NVDLA using AI-assisted Side Channel Attack
Naina Gupta, Arpan Jati, Anupam Chattopadhyay
Attacks and cryptanalysis
During the last decade, there has been a stunning progress in the domain of AI with adoption in both safety-critical and security-critical applications. A key requirement for this is highly trained Machine Learning (ML) models, which are valuable Intellectual Property (IP) of the respective organizations. Naturally, these models have become targets for model recovery attacks through side-channel leakage. However, majority of the attacks reported in literature are either on simple embedded...
Time-Efficient Finite Field Microarchitecture Design for Curve448 and Ed448 on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani, Lubjana Beshaj
Public-key cryptography
The elliptic curve family of schemes has the lowest computational latency, memory use, energy consumption, and bandwidth requirements, making it the most preferred public key method for adoption into network protocols. Being suitable for embedded devices and applicable for key exchange and authentication, ECC is assuming a prominent position in the field of IoT cryptography. The attractive properties of the relatively new curve Curve448 contribute to its inclusion in the TLS1.3 protocol and...
Enabling FrodoKEM on Embedded Devices
Joppe W. Bos, Olivier Bronchain, Frank Custers, Joost Renes, Denise Verbakel, Christine van Vredendaal
Implementation
FrodoKEM is a lattice-based Key Encapsulation Mechanism (KEM) based on unstructured lattices. From a security point of view this makes it a conservative option to achieve post-quantum security, hence why it is favored by several European authorities (e.g., German BSI and French ANSSI). Relying on unstructured instead of structured lattices (e.g., CRYSTALS-Kyber) comes at the cost of additional memory usage, which is particularly critical for embedded security applications such as smart...
Unlimited Results: Breaking Firmware Encryption of ESP32-V3
Karim M. Abdellatif, Olivier Hériveaux, Adrian Thillard
Attacks and cryptanalysis
Because of the rapid growth of Internet of Things (IoT), embedded systems have become an interesting target for experienced attackers. ESP32~\cite{tech-ref-man} is a low-cost and low-power system on chip (SoC) series created by Espressif Systems. The firmware extraction of such embedded systems is a real threat to the manufacturer as it breaks its intellectual property and raises the risk of creating equivalent systems with less effort and resources. In 2019,...
PROLEAD_SW - Probing-Based Software Leakage Detection for ARM Binaries
Jannik Zeitschner, Nicolai Müller, Amir Moradi
Applications
A decisive contribution to the all-embracing protection of cryptographic software, especially on embedded devices, is the protection against SCA attacks. Masking countermeasures can usually be integrated into the software during the design phase. In theory, this should provide reliable protection against such physical attacks. However, the correct application of masking is a non-trivial task that often causes even experts to make mistakes. In addition to human-caused errors,...
Recommendation for a holistic secure embedded ISA extension
Florian Stolz, Marc Fyrbiak, Pascal Sasdrich, Tim Güneysu
Foundations
Embedded systems are a cornerstone of the ongoing digitization of our society, ranging from expanding markets around IoT and smart-X devices over to sensors in autonomous driving, medical equipment or critical infrastructures. Since a vast amount of embedded systems are safety-critical (e.g., due to their operation site), security is a necessity for their operation. However, unlike mobile, desktop, and server systems, where adversaries typically only act have remote access, embedded systems...
KEMTLS vs. Post-Quantum TLS: Performance On Embedded Systems
Ruben Gonzalez, Thom Wiggers
Implementation
TLS is ubiquitous in modern computer networks. It secures transport for high-end desktops and low-end embedded devices alike. However, the public key cryptosystems currently used within TLS may soon be obsolete as large-scale quantum computers, once realized, would be able to break them. This threat has led to the development of post-quantum cryptography (PQC). The U.S. standardization body NIST is currently in the process of concluding a multi-year search for promising post-quantum...
To Be, or Not to Be Stateful: Post-Quantum Secure Boot using Hash-Based Signatures
Alexander Wagner, Felix Oberhansl, Marc Schink
Implementation
While research in post-quantum cryptography (PQC) has gained
significant momentum, it is only slowly adopted for real-world
products. This is largely due to concerns about practicability and
maturity. The secure boot process of embedded devices is one s-
cenario where such restraints can result in fundamental security
problems. In this work, we present a flexible hardware/software
co-design for hash-based signature (HBS) schemes which enables
the move to a post-quantum secure boot...
Performance Evaluation of NIST LWC Finalists on AVR ATmega and ARM Cortex-M3 Microcontrollers
Yuhei Watanabe, Hideki Yamamoto, Hirotaka Yoshida
Implementation
This paper presents results of performance evaluation of NIST Lightweight Cryptography standardization finalists which are implemented by us. Our implementation method puts on the target to reduce RAM consumption on embedded devices. Our target microcontrollers are AVR ATmega 128 and ARM Cortex-M3. We apply our implementation method to five AEAD schemes which include four finalists of the NIST lightweight cryptography standardization and demonstrate the performance evaluation on target...
Sequential Digital Signatures for Cryptographic Software-Update Authentication
Bertram Poettering, Simon Rastikian
Public-key cryptography
Consider a computer user who needs to update a piece of software installed on their computing device. To do so securely, a commonly accepted ad-hoc method stipulates that the old software version first retrieves the update information from the vendor's public repository, then checks that a cryptographic signature embedded into it verifies with the vendor's public key, and finally replaces itself with the new version. This updating method seems to be robust and lightweight, and to reliably...
ImpedanceVerif: On-Chip Impedance Sensing for System-Level Tampering Detection
Tahoura Mosavirik, Patrick Schaumont, Shahin Tajik
Implementation
Physical attacks can compromise the security of cryptographic devices. Depending on the attack’s requirements, adversaries might need to (i) place probes in the proximity of the integrated circuits (ICs) package, (ii) create physical connections between their probes/wires and the system’s PCB, or (iii) physically tamper with the PCB’s components, chip’s package, or substitute the entire PCB to prepare the device for the attack. While tamper-proof enclosures prevent and detect physical access...
Post-Quantum Authenticated Encryption against Chosen-Ciphertext Side-Channel Attacks
Melissa Azouaoui, Yulia Kuzovkova, Tobias Schneider, Christine van Vredendaal
Public-key cryptography
Over the last years, the side-channel analysis of Post-Quantum Cryptography (PQC) candidates in the NIST standardization initiative has received increased attention. In particular, it has been shown that some post-quantum Key Encapsulation Mechanisms (KEMs) are vulnerable to Chosen-Ciphertext Side-Channel Attacks (CC-SCA). These powerful attacks target the re-encryption step in the Fujisaki-Okamoto (FO) transform, which is commonly used to achieve CCA security in such schemes. To...
Randomness Optimization for Gadget Compositions in Higher-Order Masking
Jakob Feldtkeller, David Knichel, Pascal Sasdrich, Amir Moradi, Tim Güneysu
Implementation
Physical characteristics of electronic devices, leaking secret and sensitive information to an adversary with physical access, pose a long-known threat to cryptographic hardware implementations. Among a variety of proposed countermeasures against such Side-Channel Analysis attacks, masking has emerged as a promising, but often costly, candidate. Furthermore, the manual realization of masked implementations has proven error-prone and often introduces flaws, possibly resulting in insecure...
Modular Polynomial Multiplication Using RSA/ECC coprocessor
Aurélien Greuet, Simon Montoya, Clémence Vermeersch
Implementation
Modular polynomial multiplication is a core and costly operation of ideal lattice-based schemes. In the context of embedded devices, previous works transform the polynomial multiplication to an integer one using Kronecker substitution. Then thanks to this transformation, existing coprocessors which handle large-integer operations can be re-purposed to speed-up lattice-based cryptography. In a nutshell, the Kronecker substitution transforms by evaluation the polynomials to integers,...
Effective and Efficient Masking with Low Noise using Small-Mersenne-Prime Ciphers
Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert
Implementation
Embedded devices used in security applications are natural targets for physical attacks. Thus, enhancing their side-channel resistance is an important research challenge. A standard solution for this purpose is the use of Boolean masking schemes, as they are well adapted to current block ciphers with efficient bitslice representations. Boolean masking guarantees that the security of an implementation grows exponentially in the number of shares under the assumption that leakages are...
Efficiently Masking Polynomial Inversion at Arbitrary Order
Markus Krausz, Georg Land, Jan Richter-Brockmann, Tim Güneysu
Implementation
Physical side-channel analysis poses a huge threat to post-quantum cryptographic schemes implemented on embedded devices. Still, secure implementations are missing for many schemes. In this paper, we present an efficient solution for masked polynomial inversion, a main component of the key generation of multiple post-quantum KEMs. For this, we introduce a polynomial-multiplicative masking scheme with efficient arbitrary order conversions from and to additive masking. Furthermore, we show how...
CUDA-Accelerated RNS Multiplication in Word-Wise Homomorphic Encryption Schemes
Shiyu Shen, Hao Yang, Yu Liu, Zhe Liu, Yunlei Zhao
Implementation
Homomorphic encryption (HE), which allows computation over encrypted data, has often been used to preserve privacy. However, the computationally heavy nature and complexity of network topologies make the deployment of HE schemes in the Internet of Things (IoT) scenario difficult. In this work, we propose CARM, the first optimized GPU implementation that covers BGV, BFV and CKKS, targeting for accelerating homomorphic multiplication using GPU in heterogeneous IoT systems. We offer...
TinyABE: Unrestricted Ciphertext-Policy Attribute-Based Encryption for Embedded Devices and Low-Quality Networks
Marloes Venema, Greg Alpár
Public-key cryptography
Ciphertext-policy attribute-based encryption (CP-ABE) has attracted much interest from the practical community to enforce access control in distributed settings such as the Internet of Things (IoT). In such settings, encryption devices are often constrained, having small memories and little computational power, and the associated networks are lossy. To optimize both the ciphertext sizes and the encryption speed is therefore paramount. In addition, the master public key needs to be small...
Riding the Waves Towards Generic Single-Cycle Masking in Hardware
Rishub Nagpal, Barbara Gigerl, Robert Primas, Stefan Mangard
Implementation
Research on the design of masked cryptographic hardware circuits in the
past has mostly focused on reducing area and randomness requirements. However,
many embedded devices like smart cards and IoT nodes also need to meet certain
performance criteria, which is why the latency of masked hardware circuits also
represents an important metric for many practical applications.
The root cause of latency in masked hardware circuits is the need for additional register stages that synchronize the...
Private Circuits with Quasilinear Randomness
Vipul Goyal, Yuval Ishai, Yifan Song
Foundations
A $t$-private circuit for a function $f$ is a randomized Boolean circuit $C$ that maps a randomized encoding of an input $x$ to an encoding of the output $f(x)$, such that probing $t$ wires anywhere in $C$ reveals nothing about $x$. Private circuits can be used to protect embedded devices against side-channel attacks. Motivated by the high cost of generating fresh randomness in such devices, several works have studied the question of minimizing the randomness complexity of private...
Performance Evaluation of Post-Quantum TLS 1.3 on Resource-Constrained Embedded Systems
George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, Ron Steinfeld
Cryptographic protocols
Transport Layer Security (TLS) constitutes one of the most widely used protocols for securing Internet communications and has also found broad acceptance in the Internet of Things (IoT) domain. As we progress toward a security environment resistant to quantum computer attacks, TLS needs to be transformed to support post-quantum cryptography. However, post-quantum TLS is still not standardised, and its overall performance, especially in resource-constrained, IoT-capable, embedded devices, is...
Compressed SIKE Round 3 on ARM Cortex-M4
Mila Anastasova, Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Mehran Mozaffari Kermani
Implementation
In 2016, the National Institute of Standards and Technology (NIST) initiated a standardization process among the post-quantum secure algorithms. Forming part of the alternate group of candidates after Round 2 of the process is the Supersingular Isogeny Key Encapsulation (SIKE) mechanism which attracts with the smallest key sizes offering post-quantum security in scenarios of limited bandwidth and memory resources. Even further reduction of the exchanged information is offered by the...
Dynamic Random Probing Expansion with Quasi Linear Asymptotic Complexity
Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, Damien Vergnaud
The masking countermeasure is widely used to protect cryptographic implementations against side-channel attacks. While many masking schemes are shown to be secure in the widely deployed probing model, the latter raised a number of concerns regarding its relevance in practice. Offering the adversary the knowledge of a fixed number of intermediate variables, it does not capture the so-called horizontal attacks which exploit the repeated manipulation of sensitive variables. Therefore, recent...
Mixed Certificate Chains for the Transition to Post-Quantum Authentication in TLS 1.3
Sebastian Paul, Yulia Kuzovkova, Norman Lahr, Ruben Niederhagen
Implementation
Large-scale quantum computers will be able to efficiently solve the underlying mathematical problems of widely deployed public key cryptosystems in the near future. This threat has sparked increased interest in the field of Post-Quantum Cryptography (PQC) and standardization bodies like NIST, IETF, and ETSI are in the process of standardizing PQC schemes as a new generation of cryptography. This raises the question of how to ensure a fast, reliable, and secure transition to upcoming PQC...
Wavelet: Code-based postquantum signatures with fast verification on microcontrollers
Gustavo Banegas, Thomas Debris-Alazard, Milena Nedeljković, Benjamin Smith
Implementation
This work presents the first full implementation of Wave, a postquantum code-based signature scheme. We define Wavelet, a concrete Wave scheme at the 128-bit classical security level (or NIST postquantum security Level 1) equipped
with a fast verification algorithm targeting embedded devices. Wavelet offers 930-byte signatures, with a public key of 3161 kB. We include implementation details using AVX instructions, and on ARM Cortex-M4, including a solution to deal with
Wavelet’s large public...
ZPiE: Zero-knowledge Proofs in Embedded systems
Xavier Salleras, Vanesa Daza
Implementation
Zero-Knowledge Proofs (ZKPs) are cryptographic primitives allowing a party to prove to another party that the former knows some information while keeping it secret. Such a premise can lead to the development of numerous privacy-preserving protocols in different scenarios, like proving knowledge of some credentials to a server without leaking the identity of the user. Even when the applications of ZKPs were endless, they were not exploited in the wild for a couple of decades due to the fact...
Safe-Error Analysis of Post-Quantum Cryptography Mechanisms
Luk Bettale, Simon Montoya, Guénaël Renault
Applications
The NIST selection process for standardizing Post-Quantum Cryptography Mechanisms is currently running. Many papers already studied their theoretical security, but the resistance in deployed device has not been much investigated so far. In particular, fault attack is a serious threat for algorithms implemented in embedded devices. One particularly powerful technique is to use safe-error attacks. Such attacks exploit the fact that a specific fault may or may not lead to a faulty output...
FuzzyKey: Comparing Fuzzy Cryptographic Primitives on Resource-Constrained Devices
Mo Zhang, Eduard Marin, David Oswald, Dave Singelee
Implementation
Implantable medical devices, sensors and wearables are widely deployed today. However, establishing a secure wireless communication channel to these devices is a major challenge, amongst others due to the constraints on energy consumption and the need to obtain immediate access in emergencies. To address this issue, researchers have proposed various key agreement protocols based on the measurement of physiological signals such as a person's heart signal. At the core of such protocols are...
Towards Human Dependency Elimination: AI Approach to SCA Robustness Assessment
Unai Rioja, Lejla Batina, Igor Armendariz, Jose Luis Flores
Applications
Evaluating the side-channel resistance of a device in practice is a problematic and arduous process. Current certification schemes require to attack the device under test with an ever-growing number of techniques to validate its security. In addition, the success or failure of these techniques strongly depends on the individual implementing them, due to the fallible and human intrinsic nature of several steps of this path.
To alleviate this problem, we propose a battery of automated attacks...
High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption
Jean-Sébastien Coron, François Gérard, Simon Montoya, Rina Zeitoun
Implementation
Masking is the main countermeasure against side-channel attacks on embedded devices. For cryptographic algorithms that combine Boolean and arithmetic masking, one must therefore convert between the two types of masking, without leaking additional information to the attacker. In this paper we describe a new high-order conversion algorithm between Boolean and arithmetic masking, based on table recomputation, and provably secure in the ISW probing model. We show that our technique is...
SoK: Deep Learning-based Physical Side-channel Analysis
Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, Lejla Batina
Foundations
Side-channel attacks represent a realistic and serious threat to the security of embedded devices for almost three decades. The variety of attacks and targets they can be applied to have been introduced, and while the area of side-channel attacks and mitigations is very well-researched, it is yet to be consolidated.
Deep learning-based side-channel attacks entered the field in recent years with the promise of more competitive performance and enlarged attackers' capabilities compared to...
Streaming SPHINCS+ for Embedded Devices using the Example of TPMs
Ruben Niederhagen, Johannes Roth, Julian Wälde
Implementation
We present an implementation of the hash-based post-quantum signature scheme SPHINCS+ that enables heavily memory-restricted devices to sign messages by streaming-out a signature during its computation and to verify messages by streaming-in a signature. We demonstrate our implementation in the context of Trusted Platform Modules (TPMs) by proposing a SPHINCS+ integration and a streaming extension for the TPM specification. We evaluate the overhead of our signature-streaming approach for a...
A Tale of Twin Primitives: Single-chip Solution for PUFs and TRNGs
Kuheli Pratihar, Urbi Chatterjee, Manaar Alam, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty
Implementation
Physically Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are two highly useful hardware primitives to build up the root-of-trust for an embedded device. PUFs are designed to offer repetitive and instance-specific
randomness, whereas TRNGs are expected to be invariably random. In this paper, we present a dual-mode PUF-TRNG design that utilises two different hardware-intrinsic properties, i.e. oscillation frequency of the Transition Effect Ring Oscillator (TERO)
cell...
XDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage
Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam, Daniel Page
Implementation
Side-channel analysis (SCA) attacks pose a major threat to embedded systems due to their ease of accessibility. Realising SCA resilient cryptographic algorithms on embedded systems under tight intrinsic constraints, such as low area cost, limited computational ability, etc., is extremely challenging and often not possible. We propose a seamless and effective approach to realise a generic countermeasure against SCA attacks. XDIVINSA, an extended diversifying instruction agent, is introduced...
A lightweight ISE for ChaCha on RISC-V
Ben Marshall, Daniel Page, Thinh Hung Pham
Implementation
ChaCha is a high-throughput stream cipher designed with the aim of ensuring high-security margins while achieving high performance on software platforms. RISC-V, an emerging, free, and open Instruction Set Architecture (ISA) is being developed with many instruction set extensions (ISE). ISEs are a native concept in RISC-V to support a relatively small RISC-V ISA to suit different use-cases including cryptographic acceleration via either standard or custom ISEs. This paper proposes a...
Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms
Jose Maria Bermudo Mera, Angshuman Karmakar, Suparna Kundu, Ingrid Verbauwhede
In this paper, we introduce Scabbard, a suite of post-quantum key-encapsulation mechanisms. Our suite contains three different schemes Florete, Espada, and Sable based on the hardness of module- or ring-learning with rounding problem. In this work, we first show how the latest advancements on lattice-based cryptography can be utilized to create new better schemes and even improve the state-of-the-art on post-quantum cryptography.
We put particular focus on designing schemes that can...
Spectral Approach to Process the (Multivariate) High-Order Template Attack against Any Masking Scheme
Maamar Ouladj, Sylvain Guilley, Philippe Guillot, Farid Mokrane
Implementation
Cryptographic software is particularly vulnerable to side-channel attacks when programmed in embedded devices.
Indeed, the leakage is particularly intense compared to the noise level, making it mandatory for the developer to implement side-channel attack protections.
Random masking is a customary option, but in this case, the countermeasure must be high-order,
meaning that each sensitive variable is splitted into multiple (at least two) shares.
Attacks therefore become computationally...
ROTed: Random Oblivious Transfer for embedded devices
Pedro Branco, Luís Fiolhais, Manuel Goulão, Paulo Martins, Paulo Mateus, Leonel Sousa
Cryptographic protocols
Oblivious Transfer (OT) is a fundamental primitive in cryptography, supporting protocols such as Multi-Party Computation and Private Set Intersection (PSI), that are used in applications like contact discovery, remote diagnosis and contact tracing. Due to its fundamental nature, it is utterly important that its execution is secure even if arbitrarily composed with other instances of the same, or other protocols. This property can be guaranteed by proving its security under the Universal...
A Tale of Two Boards: On the Influence of Microarchitecture on Side-Channel Leakage
Vipul Arora, Ileana Buhan, Guilherme Perin, Stjepan Picek
Implementation
Advances in cryptography have enabled the features of confidentiality, security, and integrity on small embedded devices such as IoT devices. While mathematically strong, the platform on which an algorithm is implemented plays a significant role in the security of the final product. Side-channel attacks exploit the variations in the system’s physical characteristics to obtain information about the sensitive data. In our scenario, a software implementation of a cryptographic algorithm is...
Low-Latency Hardware Masking of PRINCE
Nicolai Müller, Thorben Moos, Amir Moradi
Implementation
Efficient implementation of Boolean masking in terms of low latency has evolved into a hot topic due to the necessity of embedding a physically secure and at-the-same-time fast implementation of cryptographic primitives in e.g., the memory encryption of pervasive devices.
Instead of fully minimizing the circuit's area and randomness requirements at the cost of latency, the focus has changed into finding optimal tradeoffs between the circuit area and the execution time.
The main latency...
Quantum-Resistant Security for Software Updates on Low-power Networked Embedded Devices
Gustavo Banegas, Koen Zandberg, Adrian Herrmann, Emmanuel Baccelli, Benjamin Smith
Applications
As the Internet of Things (IoT) rolls out today to devices
whose lifetime may well exceed a decade,
conservative threat models should consider attackers with access to quantum computing
power.
The SUIT standard (specified by the IETF) defines a security
architecture for IoT software updates, standardizing the metadata and
the cryptographic tools---namely, digital signatures and hash functions---that guarantee the legitimacy of software updates.
While the performance of SUIT has...
More efficient post-quantum KEMTLS with pre-distributed public keys
Peter Schwabe, Douglas Stebila, Thom Wiggers
Cryptographic protocols
While server-only authentication with certificates is the most widely used mode of operation for the Transport Layer Security (TLS) protocol on the world wide web, there are many applications where TLS is used in a different way or with different constraints. For example, embedded Internet-of-Things clients may have a server certificate pre-programmed and be highly constrained in terms of communication bandwidth or computation power. As post-quantum algorithms have a wider range of...
KEMTLS with Delayed Forward Identity Protection in (Almost) a Single Round Trip
Felix Günther, Simon Rastikian, Patrick Towa, Thom Wiggers
Cryptographic protocols
The recent KEMTLS protocol (Schwabe, Stebila and Wiggers,CCS’20) is a promising design for a quantum-safe TLS handshake protocol. Focused on the web setting, wherein clients learn server public-key certificates only during connection establishment, a drawback of KEMTLS compared to TLS 1.3 is that it introduces an additional round trip before the server can send data, and an extra one for the client as well in the case of mutual authentication. In many scenarios, including IoT and embedded...
On Reverse Engineering Neural Network Implementation on GPU
Łukasz Chmielewski, Léo Weissbart
Applications
In recent years machine learning has become increasingly mainstream across industries. Additionally, Graphical Processing Unit (GPU) accelerators are widely deployed in various neural network (NN) applications, including image recognition for autonomous vehicles and natural language processing, among others. Since training a powerful network requires expensive data collection and computing power, its design and parameters are often considered a secret intellectual property of their...
2021/516
Last updated: 2022-03-21
A new weak curve fault attack on ECIES: embedded point validation is not enough during decryption
Weiqiong Cao, Hongsong Shi, Hua Chen, Wei Xi, Yuhang Wang
Public-key cryptography
ECIES has been widely used in many cryptographic devices and systems to ensure the confidentiality of communication data. Hence, researching its security of implementation is essential. It is generally considered that the embedded point validation towards the input point $Q$ during decryption is enough to resist most of the existing fault attacks and small subgroup attacks. Even many open source algorithm libraries (e.g., OpenSSL and BouncyCastle) only employ the embedded point validation...
Physically Related Functions: A New Paradigm for Light-weight Key-Exchange
Durba Chatterjee, Harishma Boyapally, Sikhar Patranabis, Urbi Chatterjee, Debdeep Mukhopadhyay, Aritra Hazra
Cryptographic protocols
In this paper, we propose a novel concept named Physically Related Function(PReF) which are devices with hardware roots of trust. It enables secure key-exchange with no pre-established/embedded secret keys. This work is motivated by the need to perform key-exchange between lightweight resource-constrained devices. We present a proof-of-concept realization of our contributions in hardware using FPGAs.
Stealing Neural Network Models through the Scan Chain: A New Threat for ML Hardware
Seetal Potluri, Aydin Aysu
Applications
Stealing trained machine learning (ML) models is a new and growing concern due to the model's development cost. Existing work on ML model extraction either applies a mathematical attack or exploits hardware vulnerabilities such as side-channel leakage. This paper shows a new style of attack, for the first time, on ML models running on embedded devices by abusing the scan-chain infrastructure. We illustrate that having course-grained scan-chain access to non-linear layer outputs is sufficient...
Classic McEliece Implementation with Low Memory Footprint
Johannes Roth, Evangelos Karatsiolis, Juliane Krämer
Public-key cryptography
The Classic McEliece cryptosystem is one of the most trusted quantum-resistant cryptographic schemes. Deploying it in practical applications, however, is challenging due to the size of its public key. In this work, we bridge this gap. We present an implementation of Classic McEliece on an ARM Cortex-M4 processor, optimized to overcome memory constraints. To this end, we present an algorithm to retrieve the public key ad-hoc. This reduces memory and storage requirements and enables the...
Speeding-up Ideal Lattice-Based Key Exchange Using a RSA/ECC Coprocessor
Aurélien Greuet, Simon Montoya, Guénaël Renault
Implementation
Polynomial multiplication is one of the most costly operations of
ideal lattice-based cryptosystems. In this work, we study its
optimization when one of the operand has coefficients close to 0.
We focus on this structure since it is at the core of lattice-based
Key Exchange Mechanisms submitted to the NIST call for post-quantum
cryptography. In particular, we propose optimization of this
operation for embedded devices by using a RSA/ECC coprocessor that
provides efficient large-integer...
Auto-tune POIs: Estimation of distribution algorithms for efficient side-channel analysis
Unai Rioja, Lejla Batina, Jose Luis Flores, Igor Armendariz
Applications
Due to the constant increase and versatility of IoT devices that should keep sensitive information private, Side-Channel Analysis (SCA) attacks on embedded devices are gaining visibility in the industrial field. The integration and validation of countermeasures against SCA can be an expensive and cumbersome process, especially for the less experienced ones, and current certification procedures require to attack the devices under test using multiple SCA techniques and attack vectors, often...
Improvements to RSA key generation and CRT on embedded devices
Mike Hamburg, Mike Tunstall, Qinglai Xiao
Public-key cryptography
RSA key generation requires devices to generate large prime numbers. The naïve approach is to generate candidates at random, and then test each one for (probable) primality. However, it is faster to use a sieve method, where the candidates are chosen so as not to be divisible by a list of small prime numbers $\{p_i\}$.
Sieve methods can be somewhat complex and time-consuming, at least by the standards of embedded and hardware implementations, and they can be tricky to defend against...
EPID with Malicious Revocation
Olivier Sanders, Jacques Traoré
Cryptographic protocols
EPID systems are anonymous authentication protocols where a device can be revoked by including one of its signatures in a revocation list. Such protocols are today included in the ISO/IEC 20008-2 standard and are embedded in billions of chips, which make them a flagship of advanced cryptographic tools. Yet, their security analysis is based on a model that suffers from several important limitations, which either questions the security assurances EPID can provide in the real world or prevents...
On the Worst-Case Side-Channel Security of ECC Point Randomization in Embedded Devices
Melissa Azouaoui, François Durvaux, Romain Poussier, François-Xavier Standaert, Kostas Papagiannopoulos, Vincent Verneuil
Implementation
Point randomization is an important countermeasure to protect Elliptic Curve Cryptography (ECC) implementations against side-channel attacks. In this paper, we revisit its worst-case security in front of advanced side-channel adversaries taking advantage of analytical techniques in order to exploit all the leakage samples of an implementation. Our main contributions in this respect are the following: first, we show that due to the nature of the attacks against the point randomization (which...
A Fast and Compact RISC-V Accelerator for Ascon and Friends
Stefan Steinegger, Robert Primas
Implementation
Ascon-p is the core building block of Ascon, the winner in the lightweight category
of the CAESAR competition. With ISAP, another Ascon-p-based AEAD scheme is currently competing
in the 2nd round of the NIST lightweight cryptography standardization project.
In contrast to Ascon, ISAP focuses on providing hardening/protection against a large
class of implementation attacks, such as DPA, DFA, SFA, and SIFA, entirely on mode-level.
Consequently, Ascon-p can be used to realize a wide range of...
Hardware-Assisted Intellectual Property Protection of Deep Learning Models
Abhishek Chakraborty, Ankit Mondal, Ankur Srivastava
Implementation
The protection of intellectual property (IP) rights of well-trained deep learning (DL) models has become a matter of major concern, especially with the growing trend of deployment of Machine Learning as a Service (MLaaS). In this work, we demonstrate the utilization of a hardware root-of-trust to safeguard the IPs of such DL models which potential attackers have access to. We propose an obfuscation framework called Hardware Protected Neural Network (HPNN) in which a deep
neural network is...
Rapidly Verifiable XMSS Signatures
Joppe W. Bos, Andreas Hülsing, Joost Renes, Christine van Vredendaal
Applications
This work presents new speed records for XMSS (RFC 8391) signature verification on embedded devices. For this we make use of a probabilistic method recently proposed by Perin, Zambonin, Martins, Custodio, and Martina (PZMCM) at ISCC 2018, that changes the XMSS signing algorithm to search for fast verifiable signatures. We improve the method, ensuring that the added signing cost for the search is independent of the message length. We provide a statistical analysis of the...
Fast, Small, and Area-Time Efficient Architectures for Key-Exchange on Curve25519
Mojtaba Bisheh Niasar, Rami El Khatib, Reza Azarderakhsh, Mehran Mozaffari-Kermani
Implementation
Abstract--- This paper demonstrates fast and compact implementations of Elliptic Curve Cryptography (ECC) for efficient key agreement over Curve25519. Curve25519 has been recently adopted as a key exchange method for several applications such as connected small devices as well as cloud, and included in the National Institute of Standards and Technology (NIST) recommendations for public key cryptography. This paper presents three different performance level designs including lightweight,...
The uncertainty of Side-Channel Analysis: A way to leverage from heuristics
Unai Rioja, Servio Paguada, Lejla Batina, Igor Armendariz
Applications
Performing a comprehensive side-channel analysis evaluation of small embedded devices is a process known for its variability and complexity. In real-world experimental setups, the results are largely influenced by a huge amount of parameters that are not easily adjusted without trial and error and are heavily relying on the experience of professional security analysts. In this paper, we advocate the use of an existing statistical methodology called Six Sigma (6σ) for side-channel...
POWER-SUPPLaY: Leaking Data from Air-Gapped Systems by Turning the Power-Supplies Into Speakers
Mordechai Guri
It is known that attackers can exfiltrate data from air-gapped computers through their speakers via sonic and ultrasonic waves. To eliminate the threat of such acoustic covert channels in sensitive systems, audio hardware can be disabled and the use of loudspeakers can be strictly forbidden. Such audio-less systems are considered to be \textit{audio-gapped}, and hence immune to acoustic covert channels.
In this paper, we introduce a technique that enable attackers leak data acoustically...
The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs
David Knichel, Thorben Moos, Amir Moradi
Implementation
Side-channel analysis (SCA) attacks – especially
power analysis – are powerful ways to extract the secrets stored
in and processed by cryptographic devices. In recent years,
researchers have shown interest in utilizing on-chip measurement
facilities to perform such SCA attacks remotely. It was shown
that simple voltage-monitoring sensors can be constructed from
digital elements and put on multi-tenant FPGAs to perform
remote attacks on neighbouring cryptographic co-processors. A
similar...
Physical Time-Varying Transfer Functions as Generic Low-Overhead Power-SCA Countermeasure
Archisman Ghosh, Debayan Das, Shreyas Sen
Implementation
Mathematically-secure cryptographic algorithms leak significant side-channel information through their power
supplies when implemented on a physical platform. These side-channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on the power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either
from the...
Post-Quantum TLS on Embedded Systems
Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen, Michael Schneider
Implementation
We present our integration of post-quantum cryptography (PQC), more specifically of the post-quantum KEM scheme Kyber for key establishment and the post-quantum signature scheme SPHINCS$^+$, into the embedded TLS library mbed TLS. We measure the performance of these post-quantum primitives on four different embedded platforms with three different ARM processors and an Xtensa LX6 processor. Furthermore, we compare the performance of our experimental PQC cipher suite to a classical TLS variant...
Biometric and Physical Identifiers with Correlated Noise for Controllable Private Authentication
Onur Gunlu, Rafael F. Schaefer, H. Vincent Poor
Foundations
The problem of secret-key based authentication under privacy and storage constraints on the source sequence is considered. The identifier measurement channels during authentication are assumed to be controllable via a cost-constrained action sequence. Single-letter inner and outer bounds for the key-leakage-storage-cost regions are derived for a generalization of a classic two-terminal key agreement model with an eavesdropper that observes a sequence that is correlated with the sequences...
Novel Deception Techniques for Malware Detection on Industrial Control Systems
Takanori Machida, Dai Yamamoto, Yuki Unno, Hisashi Kojima
Applications
To maintain the availability of industrial control systems (ICS), it is important to robustly detect malware infection that spreads within the ICS network. In ICS, a host often communicates with the determined hosts; for instance, a supervisory control host observes and controls the same devices routinely via the network. Therefore, a communication request to the unused internet protocol (IP) address space, i.e. darknet, in the ICS network is likely to be caused by malware in the compromised...
Design Space Exploration for Ultra-Low Energy and Secure IoT MCUs
Ehsan Aerabi, Milad Bohlouli, MohammadHasan Ahmadi Livany, Mahdi Fazeli, Athanasios Papadimitriou, David Hely
Applications
This paper explores the design space of secure communication in ultra-low-energy IoT devices based on Micro-Controller Units (MCUs). It tries to identify, evaluate and compare security-related design choices in a Commercial-Off-The-Shelf (COTS) embedded IoT system which contribute in the energy consumption. We conduct a study over a large group of software-implemented crypto algorithms: symmetric, stream, hash, AEAD, MAC, digital signature and key exchange. A comprehensive report of the...
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography: A Practical Guide Through the Leakage-Resistance Jungle
Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo, Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert
Implementation
Triggered by the increasing deployment of embedded cryptographic devices (e.g., for the IoT), the design of authentication, encryption and authenticated encryption schemes enabling improved security against side-channel attacks has become an important research direction. Over the last decade, a number of modes of operation have been proposed and analyzed under different abstractions. In this paper, we investigate the practical consequences of these findings. For this purpose, we first...
Machine learning (ML) has been widely deployed in various applications, with many applications being in critical infrastructures. One recent paradigm is edge ML, an implementation of ML on embedded devices for Internet-of-Things (IoT) applications. In this work, we have conducted a practical experiment on Intel Neural Compute Stick (NCS) 2, an edge ML device, with regard to fault injection (FI) attacks. More precisely, we have employed electromagnetic fault injection (EMFI) on NCS 2 to...
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
The transition to Post-Quantum (PQ) cryptography is increasingly mandated by national agencies and organizations, often involving a phase where classical and PQ primitives are combined into hybrid solutions. In this context, existing protocols must be adapted to ensure quantum resistance while maintaining their security goals. These adaptations can significantly impact performance, particularly on embedded devices. In this article, we focus on standardized protocols which support...
A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications. A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various...
Voltage fault injection attacks are a particularly powerful threat to secure embedded devices because they exploit brief, hard-to-detect power fluctuations causing errors or bypassing security mechanisms. To counter these attacks, various detectors are employed, but as defenses strengthen, increasingly elusive glitches continue to emerge. Artificial intelligence, with its inherent ability to learn and adapt to complex patterns, presents a promising solution. This research presents an...
CROSS is a code-based post-quantum digital signature scheme based on a zero-knowledge (ZK) framework. It is a second-round candidate of the National Institute of Standards and Technology’s additional call for standardizing post-quantum digital signatures. The memory footprint of this scheme is prohibitively large, especially for small embedded devices. In this work, we propose various techniques to reduce the memory footprint of the key generation, signature generation, and verification by...
Large polynomial multiplication is one of the computational bottlenecks in fully homomorphic encryption implementations. Usually, these multiplications are implemented using the number-theoretic transformation to speed up the computation. State-of-the-art GPU-based implementation of fully homomorphic encryption computes the number theoretic transformation in two different kernels, due to the necessary synchronization between GPU blocks to ensure correctness in computation. This can be a...
ML-KEM and ML-DSA are NIST-standardized lattice-based post-quantum cryptographic algorithms. In both algorithms, Keccak is the designated hash algorithm extensively used for deriving sensitive information, making it a valuable target for attackers. In the field of fault injection attacks, few works targeted Keccak, and they have not fully explored its impact on the security of ML-KEM and ML-DSA. Consequently, many attacks remain undiscovered. In this article, we first identify various fault...
Embedded systems are flexible and cost-effective and thus have found a use case in almost every part of our daily lives. Due to their widespread use, they have also become valuable targets for cyber attacks. However, translating cutting-edge cyber security from servers and desktops to the embedded realm can be challenging due to the limited computational power and memory of embedded devices. Although quantum computing is still in early research and development, it threatens to break...
Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space. In recent years, physical...
Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...
We show that the authentication protocol [IEEE Internet Things J., 2023, 10(1), 867-876] is not correctly specified, because the server cannot complete its computations. To revise, the embedded device needs to compute an extra point multiplication over the underlying elliptic curve. We also find the protocol cannot provide anonymity, not as claimed. It can only provide pseudonymity.
Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...
Physical attacks, and among them fault injection attacks, are a significant threat to the security of embedded systems. Among the means of fault injection, laser has the significant advantage of being extremely spatially accurate. Numerous state-of-the-art studies have investigated the use of lasers to inject faults into a target at run-time. However, the high precision of laser fault injection comes with requirements on the knowledge of the implementation and exact execution time of the...
The use of Internet of Things (IoT) devices in embedded systems has become increasingly popular with advancing technologies. These devices become vulnerable to cyber attacks as they gain popularity. The cryptographic operations performed for the purpose of protection against cyber attacks are crucial to yield fast results in open networks and not slow down network traffic. Therefore, to enhance communication security, studies have been conducted in the literature on using asymmetric...
Software solutions to address computational challenges are ubiquitous in our daily lives. One specific application area where software is often used is in embedded systems, which, like other digital electronic devices, are vulnerable to side-channel analysis attacks. Although masking is the most common countermeasure and provides a solid theoretical foundation for ensuring security, recent research has revealed a crucial gap between theoretical and real-world security. This shortcoming stems...
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Imagine being able to deploy a small, battery-powered device nearly anywhere on earth that humans frequent and having it be able to send data to the cloud without needing to provision a network—without buying a physical gateway, setting up WiFi credentials, or acquiring a cellular SIM. Such a capability would address one of the greatest bottlenecks to deploying the long-tail of small, embedded, and power-constrained IoT devices in nearly any setting. Unfortunately, decoupling the device...
Battery-operated applications have been ubiquitous all over the world ranging from power-intensive electric cars down to low-power smart terminals and embedded devices. Meanwhile, serious incidents around batteries such as swelling, fire, and explosion have been witnessed, which resulted in horribly huge financial and even life loss. People used to attribute such aftermaths to unintentional design mistakes or insufficient quality inspection of original battery manufacturers. However, this is...
Embedded Multimedia Cards (eMMCs) provide a protected memory area called the Replay Protected Memory Block (RPMB). eMMCs are commonly used as storage media in modern smartphones. In order to protect these devices from unauthorized access, important data is stored in the RPMB area in an authenticated manner. Modification of the RPMB data requires a pre-shared authentication key. An unauthorized user cannot change the stored data. On modern devices, this pre-shared key is generated and used...
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...
The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge...
We optimize the number-theoretic transforms (NTTs) in Dilithium — a digital signature scheme recently standardized by the National Institute of Standards and Technology (NIST) — on Cortex-M3 and 8-bit AVR. The core novelty is the exploration of micro-architectural insights for modular multiplications. Recent work [Becker, Hwang, Kannwischer, Yang and Yang, Volume 2022 (1), Transactions on Cryptographic Hardware and Embedded Systems, 2022] found a correspondence between Montgomery and Barrett...
In the attacker models of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA), the opponent has access to a noisy version of the internal behavior of the hardware. Since the end of the nineties, many works have shown that this type of attacks constitutes a serious threat to cryptosystems implemented in embedded devices. In the state-of-the-art, there exist several countermeasures to protect symmetric encryption (especially AES-128). Most of them protect only against one of these two...
Ascon is a recently standardized suite of symmetric cryptography for authenticated encryption and hashing algorithms designed to be lightweight. The Ascon scheme has been studied since it was introduced in 2015 for the CAESAR competition, and many efforts have been made to transform this hardware-oriented scheme to work with any embedded device architecture. Ascon is designed with side-channel resistance in mind and can also be protected with countermeasures against side-channel...
IoT devices collect privacy-sensitive data, e.g., in smart grids or in medical devices, and send this data to cloud servers for further processing. In order to ensure confidentiality as well as authenticity of the sensor data in the untrusted cloud environment, we consider a transciphering scenario between embedded IoT devices and multiple cloud servers that perform secure multi-party computation (MPC). Concretely, the IoT devices encrypt their data with a lightweight symmetric cipher and...
Physical side-channel attacks exploit a device's emanations to compromise the security of cryptographic implementations. Many countermeasures have been proposed against these attacks, especially the widely-used and efficient masking countermeasure. While theoretical models offer formal security proofs, they often rest on unrealistic assumptions, leading current approaches to prove the security of masked implementations to primarily rely on empirical verification. Consequently, the...
Efficient power management is critical for embedded devices, both for extending their lifetime and ensuring safety. However, this can be a challenging task due to the unpredictability of the batteries commonly used in such devices. To address this issue, dedicated Integrated Circuits known as "fuel gauges" are often employed outside of the System-On-Chip. These devices provide various metrics about the available energy source and are highly accurate. However, their precision can also be...
The post-quantum digital signature scheme CRYSTALS-Dilithium has been recently selected by the NIST for standardization. Implementing CRYSTALS-Dilithium, and other post-quantum cryptography schemes, on embedded devices raises a new set of challenges, including ones related to performance in terms of speed and memory requirements, but also related to side-channel and fault injection attacks security. In this work, we investigated the latter and describe a differential fault attack on the...
Cryptographic software running on embedded devices requires protection against physical side-channel attacks such as power analysis. Masking is a widely deployed countermeasure against these attacksand is directly implemented on algorithmic level. Many works study the security of masked cryptographic software on CPUs, pointing out potential problems on algorithmic/microarchitecture-level, as well as corresponding solutions, and even show masked software can be implemented efficiently and...
In this work we are interested in evaluating the possibility of extracting information from radio-enabled embedded-systems from a long distance. That is, our focus is capturing information from sources in the micrometer to tens of centimeters scale, such as intra- or inter- device busses, board-level routing traces etc. Moreover, we focus on distances in the range of millimeters to tens of centimeters from the (on-chip or on-board) embedded-system Tx Antenna to the signal source....
Post-Quantum cryptography (PQC), in the past few years, constitutes the main driving force of the quantum resistance transition for security primitives, protocols and tools. TLS is one of the widely used security protocols that needs to be made quantum safe. However, PQC algorithms integration into TLS introduce various implementation overheads compared to traditional TLS that in battery powered embedded devices with constrained resources, cannot be overlooked. While there exist several...
Spiking neural networks gain attention due to low power properties and event-based operation, making them suitable for usage in resource constrained embedded devices. Such edge devices allow physical access opening the door for side-channel analysis. In this work, we reverse engineer the parameters of a feed-forward spiking neural network implementation with correlation power analysis. Localized measurements of electro-magnetic emanations enable our attack, despite inherent parallelism and...
During the last decade, there has been a stunning progress in the domain of AI with adoption in both safety-critical and security-critical applications. A key requirement for this is highly trained Machine Learning (ML) models, which are valuable Intellectual Property (IP) of the respective organizations. Naturally, these models have become targets for model recovery attacks through side-channel leakage. However, majority of the attacks reported in literature are either on simple embedded...
The elliptic curve family of schemes has the lowest computational latency, memory use, energy consumption, and bandwidth requirements, making it the most preferred public key method for adoption into network protocols. Being suitable for embedded devices and applicable for key exchange and authentication, ECC is assuming a prominent position in the field of IoT cryptography. The attractive properties of the relatively new curve Curve448 contribute to its inclusion in the TLS1.3 protocol and...
FrodoKEM is a lattice-based Key Encapsulation Mechanism (KEM) based on unstructured lattices. From a security point of view this makes it a conservative option to achieve post-quantum security, hence why it is favored by several European authorities (e.g., German BSI and French ANSSI). Relying on unstructured instead of structured lattices (e.g., CRYSTALS-Kyber) comes at the cost of additional memory usage, which is particularly critical for embedded security applications such as smart...
Because of the rapid growth of Internet of Things (IoT), embedded systems have become an interesting target for experienced attackers. ESP32~\cite{tech-ref-man} is a low-cost and low-power system on chip (SoC) series created by Espressif Systems. The firmware extraction of such embedded systems is a real threat to the manufacturer as it breaks its intellectual property and raises the risk of creating equivalent systems with less effort and resources. In 2019,...
A decisive contribution to the all-embracing protection of cryptographic software, especially on embedded devices, is the protection against SCA attacks. Masking countermeasures can usually be integrated into the software during the design phase. In theory, this should provide reliable protection against such physical attacks. However, the correct application of masking is a non-trivial task that often causes even experts to make mistakes. In addition to human-caused errors,...
Embedded systems are a cornerstone of the ongoing digitization of our society, ranging from expanding markets around IoT and smart-X devices over to sensors in autonomous driving, medical equipment or critical infrastructures. Since a vast amount of embedded systems are safety-critical (e.g., due to their operation site), security is a necessity for their operation. However, unlike mobile, desktop, and server systems, where adversaries typically only act have remote access, embedded systems...
TLS is ubiquitous in modern computer networks. It secures transport for high-end desktops and low-end embedded devices alike. However, the public key cryptosystems currently used within TLS may soon be obsolete as large-scale quantum computers, once realized, would be able to break them. This threat has led to the development of post-quantum cryptography (PQC). The U.S. standardization body NIST is currently in the process of concluding a multi-year search for promising post-quantum...
While research in post-quantum cryptography (PQC) has gained significant momentum, it is only slowly adopted for real-world products. This is largely due to concerns about practicability and maturity. The secure boot process of embedded devices is one s- cenario where such restraints can result in fundamental security problems. In this work, we present a flexible hardware/software co-design for hash-based signature (HBS) schemes which enables the move to a post-quantum secure boot...
This paper presents results of performance evaluation of NIST Lightweight Cryptography standardization finalists which are implemented by us. Our implementation method puts on the target to reduce RAM consumption on embedded devices. Our target microcontrollers are AVR ATmega 128 and ARM Cortex-M3. We apply our implementation method to five AEAD schemes which include four finalists of the NIST lightweight cryptography standardization and demonstrate the performance evaluation on target...
Consider a computer user who needs to update a piece of software installed on their computing device. To do so securely, a commonly accepted ad-hoc method stipulates that the old software version first retrieves the update information from the vendor's public repository, then checks that a cryptographic signature embedded into it verifies with the vendor's public key, and finally replaces itself with the new version. This updating method seems to be robust and lightweight, and to reliably...
Physical attacks can compromise the security of cryptographic devices. Depending on the attack’s requirements, adversaries might need to (i) place probes in the proximity of the integrated circuits (ICs) package, (ii) create physical connections between their probes/wires and the system’s PCB, or (iii) physically tamper with the PCB’s components, chip’s package, or substitute the entire PCB to prepare the device for the attack. While tamper-proof enclosures prevent and detect physical access...
Over the last years, the side-channel analysis of Post-Quantum Cryptography (PQC) candidates in the NIST standardization initiative has received increased attention. In particular, it has been shown that some post-quantum Key Encapsulation Mechanisms (KEMs) are vulnerable to Chosen-Ciphertext Side-Channel Attacks (CC-SCA). These powerful attacks target the re-encryption step in the Fujisaki-Okamoto (FO) transform, which is commonly used to achieve CCA security in such schemes. To...
Physical characteristics of electronic devices, leaking secret and sensitive information to an adversary with physical access, pose a long-known threat to cryptographic hardware implementations. Among a variety of proposed countermeasures against such Side-Channel Analysis attacks, masking has emerged as a promising, but often costly, candidate. Furthermore, the manual realization of masked implementations has proven error-prone and often introduces flaws, possibly resulting in insecure...
Modular polynomial multiplication is a core and costly operation of ideal lattice-based schemes. In the context of embedded devices, previous works transform the polynomial multiplication to an integer one using Kronecker substitution. Then thanks to this transformation, existing coprocessors which handle large-integer operations can be re-purposed to speed-up lattice-based cryptography. In a nutshell, the Kronecker substitution transforms by evaluation the polynomials to integers,...
Embedded devices used in security applications are natural targets for physical attacks. Thus, enhancing their side-channel resistance is an important research challenge. A standard solution for this purpose is the use of Boolean masking schemes, as they are well adapted to current block ciphers with efficient bitslice representations. Boolean masking guarantees that the security of an implementation grows exponentially in the number of shares under the assumption that leakages are...
Physical side-channel analysis poses a huge threat to post-quantum cryptographic schemes implemented on embedded devices. Still, secure implementations are missing for many schemes. In this paper, we present an efficient solution for masked polynomial inversion, a main component of the key generation of multiple post-quantum KEMs. For this, we introduce a polynomial-multiplicative masking scheme with efficient arbitrary order conversions from and to additive masking. Furthermore, we show how...
Homomorphic encryption (HE), which allows computation over encrypted data, has often been used to preserve privacy. However, the computationally heavy nature and complexity of network topologies make the deployment of HE schemes in the Internet of Things (IoT) scenario difficult. In this work, we propose CARM, the first optimized GPU implementation that covers BGV, BFV and CKKS, targeting for accelerating homomorphic multiplication using GPU in heterogeneous IoT systems. We offer...
Ciphertext-policy attribute-based encryption (CP-ABE) has attracted much interest from the practical community to enforce access control in distributed settings such as the Internet of Things (IoT). In such settings, encryption devices are often constrained, having small memories and little computational power, and the associated networks are lossy. To optimize both the ciphertext sizes and the encryption speed is therefore paramount. In addition, the master public key needs to be small...
Research on the design of masked cryptographic hardware circuits in the past has mostly focused on reducing area and randomness requirements. However, many embedded devices like smart cards and IoT nodes also need to meet certain performance criteria, which is why the latency of masked hardware circuits also represents an important metric for many practical applications. The root cause of latency in masked hardware circuits is the need for additional register stages that synchronize the...
A $t$-private circuit for a function $f$ is a randomized Boolean circuit $C$ that maps a randomized encoding of an input $x$ to an encoding of the output $f(x)$, such that probing $t$ wires anywhere in $C$ reveals nothing about $x$. Private circuits can be used to protect embedded devices against side-channel attacks. Motivated by the high cost of generating fresh randomness in such devices, several works have studied the question of minimizing the randomness complexity of private...
Transport Layer Security (TLS) constitutes one of the most widely used protocols for securing Internet communications and has also found broad acceptance in the Internet of Things (IoT) domain. As we progress toward a security environment resistant to quantum computer attacks, TLS needs to be transformed to support post-quantum cryptography. However, post-quantum TLS is still not standardised, and its overall performance, especially in resource-constrained, IoT-capable, embedded devices, is...
In 2016, the National Institute of Standards and Technology (NIST) initiated a standardization process among the post-quantum secure algorithms. Forming part of the alternate group of candidates after Round 2 of the process is the Supersingular Isogeny Key Encapsulation (SIKE) mechanism which attracts with the smallest key sizes offering post-quantum security in scenarios of limited bandwidth and memory resources. Even further reduction of the exchanged information is offered by the...
The masking countermeasure is widely used to protect cryptographic implementations against side-channel attacks. While many masking schemes are shown to be secure in the widely deployed probing model, the latter raised a number of concerns regarding its relevance in practice. Offering the adversary the knowledge of a fixed number of intermediate variables, it does not capture the so-called horizontal attacks which exploit the repeated manipulation of sensitive variables. Therefore, recent...
Large-scale quantum computers will be able to efficiently solve the underlying mathematical problems of widely deployed public key cryptosystems in the near future. This threat has sparked increased interest in the field of Post-Quantum Cryptography (PQC) and standardization bodies like NIST, IETF, and ETSI are in the process of standardizing PQC schemes as a new generation of cryptography. This raises the question of how to ensure a fast, reliable, and secure transition to upcoming PQC...
This work presents the first full implementation of Wave, a postquantum code-based signature scheme. We define Wavelet, a concrete Wave scheme at the 128-bit classical security level (or NIST postquantum security Level 1) equipped with a fast verification algorithm targeting embedded devices. Wavelet offers 930-byte signatures, with a public key of 3161 kB. We include implementation details using AVX instructions, and on ARM Cortex-M4, including a solution to deal with Wavelet’s large public...
Zero-Knowledge Proofs (ZKPs) are cryptographic primitives allowing a party to prove to another party that the former knows some information while keeping it secret. Such a premise can lead to the development of numerous privacy-preserving protocols in different scenarios, like proving knowledge of some credentials to a server without leaking the identity of the user. Even when the applications of ZKPs were endless, they were not exploited in the wild for a couple of decades due to the fact...
The NIST selection process for standardizing Post-Quantum Cryptography Mechanisms is currently running. Many papers already studied their theoretical security, but the resistance in deployed device has not been much investigated so far. In particular, fault attack is a serious threat for algorithms implemented in embedded devices. One particularly powerful technique is to use safe-error attacks. Such attacks exploit the fact that a specific fault may or may not lead to a faulty output...
Implantable medical devices, sensors and wearables are widely deployed today. However, establishing a secure wireless communication channel to these devices is a major challenge, amongst others due to the constraints on energy consumption and the need to obtain immediate access in emergencies. To address this issue, researchers have proposed various key agreement protocols based on the measurement of physiological signals such as a person's heart signal. At the core of such protocols are...
Evaluating the side-channel resistance of a device in practice is a problematic and arduous process. Current certification schemes require to attack the device under test with an ever-growing number of techniques to validate its security. In addition, the success or failure of these techniques strongly depends on the individual implementing them, due to the fallible and human intrinsic nature of several steps of this path. To alleviate this problem, we propose a battery of automated attacks...
Masking is the main countermeasure against side-channel attacks on embedded devices. For cryptographic algorithms that combine Boolean and arithmetic masking, one must therefore convert between the two types of masking, without leaking additional information to the attacker. In this paper we describe a new high-order conversion algorithm between Boolean and arithmetic masking, based on table recomputation, and provably secure in the ISW probing model. We show that our technique is...
Side-channel attacks represent a realistic and serious threat to the security of embedded devices for almost three decades. The variety of attacks and targets they can be applied to have been introduced, and while the area of side-channel attacks and mitigations is very well-researched, it is yet to be consolidated. Deep learning-based side-channel attacks entered the field in recent years with the promise of more competitive performance and enlarged attackers' capabilities compared to...
We present an implementation of the hash-based post-quantum signature scheme SPHINCS+ that enables heavily memory-restricted devices to sign messages by streaming-out a signature during its computation and to verify messages by streaming-in a signature. We demonstrate our implementation in the context of Trusted Platform Modules (TPMs) by proposing a SPHINCS+ integration and a streaming extension for the TPM specification. We evaluate the overhead of our signature-streaming approach for a...
Physically Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are two highly useful hardware primitives to build up the root-of-trust for an embedded device. PUFs are designed to offer repetitive and instance-specific randomness, whereas TRNGs are expected to be invariably random. In this paper, we present a dual-mode PUF-TRNG design that utilises two different hardware-intrinsic properties, i.e. oscillation frequency of the Transition Effect Ring Oscillator (TERO) cell...
Side-channel analysis (SCA) attacks pose a major threat to embedded systems due to their ease of accessibility. Realising SCA resilient cryptographic algorithms on embedded systems under tight intrinsic constraints, such as low area cost, limited computational ability, etc., is extremely challenging and often not possible. We propose a seamless and effective approach to realise a generic countermeasure against SCA attacks. XDIVINSA, an extended diversifying instruction agent, is introduced...
ChaCha is a high-throughput stream cipher designed with the aim of ensuring high-security margins while achieving high performance on software platforms. RISC-V, an emerging, free, and open Instruction Set Architecture (ISA) is being developed with many instruction set extensions (ISE). ISEs are a native concept in RISC-V to support a relatively small RISC-V ISA to suit different use-cases including cryptographic acceleration via either standard or custom ISEs. This paper proposes a...
In this paper, we introduce Scabbard, a suite of post-quantum key-encapsulation mechanisms. Our suite contains three different schemes Florete, Espada, and Sable based on the hardness of module- or ring-learning with rounding problem. In this work, we first show how the latest advancements on lattice-based cryptography can be utilized to create new better schemes and even improve the state-of-the-art on post-quantum cryptography. We put particular focus on designing schemes that can...
Cryptographic software is particularly vulnerable to side-channel attacks when programmed in embedded devices. Indeed, the leakage is particularly intense compared to the noise level, making it mandatory for the developer to implement side-channel attack protections. Random masking is a customary option, but in this case, the countermeasure must be high-order, meaning that each sensitive variable is splitted into multiple (at least two) shares. Attacks therefore become computationally...
Oblivious Transfer (OT) is a fundamental primitive in cryptography, supporting protocols such as Multi-Party Computation and Private Set Intersection (PSI), that are used in applications like contact discovery, remote diagnosis and contact tracing. Due to its fundamental nature, it is utterly important that its execution is secure even if arbitrarily composed with other instances of the same, or other protocols. This property can be guaranteed by proving its security under the Universal...
Advances in cryptography have enabled the features of confidentiality, security, and integrity on small embedded devices such as IoT devices. While mathematically strong, the platform on which an algorithm is implemented plays a significant role in the security of the final product. Side-channel attacks exploit the variations in the system’s physical characteristics to obtain information about the sensitive data. In our scenario, a software implementation of a cryptographic algorithm is...
Efficient implementation of Boolean masking in terms of low latency has evolved into a hot topic due to the necessity of embedding a physically secure and at-the-same-time fast implementation of cryptographic primitives in e.g., the memory encryption of pervasive devices. Instead of fully minimizing the circuit's area and randomness requirements at the cost of latency, the focus has changed into finding optimal tradeoffs between the circuit area and the execution time. The main latency...
As the Internet of Things (IoT) rolls out today to devices whose lifetime may well exceed a decade, conservative threat models should consider attackers with access to quantum computing power. The SUIT standard (specified by the IETF) defines a security architecture for IoT software updates, standardizing the metadata and the cryptographic tools---namely, digital signatures and hash functions---that guarantee the legitimacy of software updates. While the performance of SUIT has...
While server-only authentication with certificates is the most widely used mode of operation for the Transport Layer Security (TLS) protocol on the world wide web, there are many applications where TLS is used in a different way or with different constraints. For example, embedded Internet-of-Things clients may have a server certificate pre-programmed and be highly constrained in terms of communication bandwidth or computation power. As post-quantum algorithms have a wider range of...
The recent KEMTLS protocol (Schwabe, Stebila and Wiggers,CCS’20) is a promising design for a quantum-safe TLS handshake protocol. Focused on the web setting, wherein clients learn server public-key certificates only during connection establishment, a drawback of KEMTLS compared to TLS 1.3 is that it introduces an additional round trip before the server can send data, and an extra one for the client as well in the case of mutual authentication. In many scenarios, including IoT and embedded...
In recent years machine learning has become increasingly mainstream across industries. Additionally, Graphical Processing Unit (GPU) accelerators are widely deployed in various neural network (NN) applications, including image recognition for autonomous vehicles and natural language processing, among others. Since training a powerful network requires expensive data collection and computing power, its design and parameters are often considered a secret intellectual property of their...
ECIES has been widely used in many cryptographic devices and systems to ensure the confidentiality of communication data. Hence, researching its security of implementation is essential. It is generally considered that the embedded point validation towards the input point $Q$ during decryption is enough to resist most of the existing fault attacks and small subgroup attacks. Even many open source algorithm libraries (e.g., OpenSSL and BouncyCastle) only employ the embedded point validation...
In this paper, we propose a novel concept named Physically Related Function(PReF) which are devices with hardware roots of trust. It enables secure key-exchange with no pre-established/embedded secret keys. This work is motivated by the need to perform key-exchange between lightweight resource-constrained devices. We present a proof-of-concept realization of our contributions in hardware using FPGAs.
Stealing trained machine learning (ML) models is a new and growing concern due to the model's development cost. Existing work on ML model extraction either applies a mathematical attack or exploits hardware vulnerabilities such as side-channel leakage. This paper shows a new style of attack, for the first time, on ML models running on embedded devices by abusing the scan-chain infrastructure. We illustrate that having course-grained scan-chain access to non-linear layer outputs is sufficient...
The Classic McEliece cryptosystem is one of the most trusted quantum-resistant cryptographic schemes. Deploying it in practical applications, however, is challenging due to the size of its public key. In this work, we bridge this gap. We present an implementation of Classic McEliece on an ARM Cortex-M4 processor, optimized to overcome memory constraints. To this end, we present an algorithm to retrieve the public key ad-hoc. This reduces memory and storage requirements and enables the...
Polynomial multiplication is one of the most costly operations of ideal lattice-based cryptosystems. In this work, we study its optimization when one of the operand has coefficients close to 0. We focus on this structure since it is at the core of lattice-based Key Exchange Mechanisms submitted to the NIST call for post-quantum cryptography. In particular, we propose optimization of this operation for embedded devices by using a RSA/ECC coprocessor that provides efficient large-integer...
Due to the constant increase and versatility of IoT devices that should keep sensitive information private, Side-Channel Analysis (SCA) attacks on embedded devices are gaining visibility in the industrial field. The integration and validation of countermeasures against SCA can be an expensive and cumbersome process, especially for the less experienced ones, and current certification procedures require to attack the devices under test using multiple SCA techniques and attack vectors, often...
RSA key generation requires devices to generate large prime numbers. The naïve approach is to generate candidates at random, and then test each one for (probable) primality. However, it is faster to use a sieve method, where the candidates are chosen so as not to be divisible by a list of small prime numbers $\{p_i\}$. Sieve methods can be somewhat complex and time-consuming, at least by the standards of embedded and hardware implementations, and they can be tricky to defend against...
EPID systems are anonymous authentication protocols where a device can be revoked by including one of its signatures in a revocation list. Such protocols are today included in the ISO/IEC 20008-2 standard and are embedded in billions of chips, which make them a flagship of advanced cryptographic tools. Yet, their security analysis is based on a model that suffers from several important limitations, which either questions the security assurances EPID can provide in the real world or prevents...
Point randomization is an important countermeasure to protect Elliptic Curve Cryptography (ECC) implementations against side-channel attacks. In this paper, we revisit its worst-case security in front of advanced side-channel adversaries taking advantage of analytical techniques in order to exploit all the leakage samples of an implementation. Our main contributions in this respect are the following: first, we show that due to the nature of the attacks against the point randomization (which...
Ascon-p is the core building block of Ascon, the winner in the lightweight category of the CAESAR competition. With ISAP, another Ascon-p-based AEAD scheme is currently competing in the 2nd round of the NIST lightweight cryptography standardization project. In contrast to Ascon, ISAP focuses on providing hardening/protection against a large class of implementation attacks, such as DPA, DFA, SFA, and SIFA, entirely on mode-level. Consequently, Ascon-p can be used to realize a wide range of...
The protection of intellectual property (IP) rights of well-trained deep learning (DL) models has become a matter of major concern, especially with the growing trend of deployment of Machine Learning as a Service (MLaaS). In this work, we demonstrate the utilization of a hardware root-of-trust to safeguard the IPs of such DL models which potential attackers have access to. We propose an obfuscation framework called Hardware Protected Neural Network (HPNN) in which a deep neural network is...
This work presents new speed records for XMSS (RFC 8391) signature verification on embedded devices. For this we make use of a probabilistic method recently proposed by Perin, Zambonin, Martins, Custodio, and Martina (PZMCM) at ISCC 2018, that changes the XMSS signing algorithm to search for fast verifiable signatures. We improve the method, ensuring that the added signing cost for the search is independent of the message length. We provide a statistical analysis of the...
Abstract--- This paper demonstrates fast and compact implementations of Elliptic Curve Cryptography (ECC) for efficient key agreement over Curve25519. Curve25519 has been recently adopted as a key exchange method for several applications such as connected small devices as well as cloud, and included in the National Institute of Standards and Technology (NIST) recommendations for public key cryptography. This paper presents three different performance level designs including lightweight,...
Performing a comprehensive side-channel analysis evaluation of small embedded devices is a process known for its variability and complexity. In real-world experimental setups, the results are largely influenced by a huge amount of parameters that are not easily adjusted without trial and error and are heavily relying on the experience of professional security analysts. In this paper, we advocate the use of an existing statistical methodology called Six Sigma (6σ) for side-channel...
It is known that attackers can exfiltrate data from air-gapped computers through their speakers via sonic and ultrasonic waves. To eliminate the threat of such acoustic covert channels in sensitive systems, audio hardware can be disabled and the use of loudspeakers can be strictly forbidden. Such audio-less systems are considered to be \textit{audio-gapped}, and hence immune to acoustic covert channels. In this paper, we introduce a technique that enable attackers leak data acoustically...
Side-channel analysis (SCA) attacks – especially power analysis – are powerful ways to extract the secrets stored in and processed by cryptographic devices. In recent years, researchers have shown interest in utilizing on-chip measurement facilities to perform such SCA attacks remotely. It was shown that simple voltage-monitoring sensors can be constructed from digital elements and put on multi-tenant FPGAs to perform remote attacks on neighbouring cryptographic co-processors. A similar...
Mathematically-secure cryptographic algorithms leak significant side-channel information through their power supplies when implemented on a physical platform. These side-channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on the power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either from the...
We present our integration of post-quantum cryptography (PQC), more specifically of the post-quantum KEM scheme Kyber for key establishment and the post-quantum signature scheme SPHINCS$^+$, into the embedded TLS library mbed TLS. We measure the performance of these post-quantum primitives on four different embedded platforms with three different ARM processors and an Xtensa LX6 processor. Furthermore, we compare the performance of our experimental PQC cipher suite to a classical TLS variant...
The problem of secret-key based authentication under privacy and storage constraints on the source sequence is considered. The identifier measurement channels during authentication are assumed to be controllable via a cost-constrained action sequence. Single-letter inner and outer bounds for the key-leakage-storage-cost regions are derived for a generalization of a classic two-terminal key agreement model with an eavesdropper that observes a sequence that is correlated with the sequences...
To maintain the availability of industrial control systems (ICS), it is important to robustly detect malware infection that spreads within the ICS network. In ICS, a host often communicates with the determined hosts; for instance, a supervisory control host observes and controls the same devices routinely via the network. Therefore, a communication request to the unused internet protocol (IP) address space, i.e. darknet, in the ICS network is likely to be caused by malware in the compromised...
This paper explores the design space of secure communication in ultra-low-energy IoT devices based on Micro-Controller Units (MCUs). It tries to identify, evaluate and compare security-related design choices in a Commercial-Off-The-Shelf (COTS) embedded IoT system which contribute in the energy consumption. We conduct a study over a large group of software-implemented crypto algorithms: symmetric, stream, hash, AEAD, MAC, digital signature and key exchange. A comprehensive report of the...
Triggered by the increasing deployment of embedded cryptographic devices (e.g., for the IoT), the design of authentication, encryption and authenticated encryption schemes enabling improved security against side-channel attacks has become an important research direction. Over the last decade, a number of modes of operation have been proposed and analyzed under different abstractions. In this paper, we investigate the practical consequences of these findings. For this purpose, we first...