[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

130 results sorted by ID

Possible spell-corrected query: automated search
2024/2003 (PDF) Last updated: 2024-12-12
Exploring the Optimal Differential Characteristics of SM4 (Full Version): Improving Automatic Search by Including Human Insights
Bingqing Li, Ling Sun
Attacks and cryptanalysis

This study aims to determine the complete and precise differential properties of SM4, which have remained unknown for over twenty years after the cipher was initially released. A Boolean Satisfiability Problem (SAT) based automatic search approach is employed to achieve the objective. To improve the limited efficiency of the search focused on differential probabilities, we want to investigate the feasibility of integrating human expertise into an automatic approach to enhance the search...

2024/1998 (PDF) Last updated: 2024-12-11
Impossible Differential Automation: Model Generation and New Techniques
Emanuele Bellini, Paul Huynh, David Gerault, Andrea Visconti, Alessandro De Piccoli, Simone Pelizzola
Secret-key cryptography

In this paper, we aim to enhance and automate advanced techniques for impossible differential attacks. To demonstrate these advancements, we present improved attacks on the LBlock and HIGHT block ciphers. More precisely, we (a) introduce a methodology to automatically invert symmetric ciphers when represented as directed acyclic graphs, a fundamental step in the search for impossible differential trails and in key recovery techniques; (b) automate the search for impossible differential...

2024/1508 (PDF) Last updated: 2024-09-26
Key Collisions on AES and Its Applications
Kodai Taiyama, Kosei Sakamoto, Ryoma Ito, Kazuma Taka, Takanori Isobe
Secret-key cryptography

In this paper, we explore a new type of key collisions called target-plaintext key collisions of AES, which emerge as an open problem in the key committing security and are directly converted into single-block collision attacks on Davies-Meyer (DM) hashing mode. For this key collision, a ciphertext collision is uniquely observed when a specific plaintext is encrypted under two distinct keys. We introduce an efficient automatic search tool designed to find target-plaintext key collisions....

2024/1310 (PDF) Last updated: 2024-08-22
On the Effects of Neural Network-based Output Prediction Attacks on the Design of Symmetric-key Ciphers
Hayato Watanabe, Ryoma Ito, Toshihiro Ohigashi
Attacks and cryptanalysis

Proving resistance to conventional attacks, e.g., differential, linear, and integral attacks, is essential for designing a secure symmetric-key cipher. Recent advances in automatic search and deep learning-based methods have made this time-consuming task relatively easy, yet concerns persist over expertise requirements and potential oversights. To overcome these concerns, Kimura et al. proposed neural network-based output prediction (NN) attacks, offering simplicity, generality, and reduced...

2024/1008 (PDF) Last updated: 2024-10-17
A Deep Study of The Impossible Boomerang Distinguishers: New Construction Theory and Automatic Search Methods
Xichao Hu, Lin Jiao, Dengguo Feng, Yonglin Hao, Xinxin Gong, Yongqiang Li
Attacks and cryptanalysis

The impossible boomerang attack (IBA) is a combination of the impossible differential attack and boomerang attack, which has demonstrated remarkable power in the security evaluation of AES and other block ciphers. However, this method has not received sufficient attention in the field of symmetric cipher analysis. The only existing search method for impossible boomerang distinguishers (IBD), the core of IBAs, is the $\mathcal{UB}\text{-method}$, but it is considered rather rudimentary given...

2024/352 (PDF) Last updated: 2024-02-27
Improved Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing
Xiaoyang Dong, Jian Guo, Shun Li, Phuong Pham, Tianyu Zhang
Attacks and cryptanalysis

The Nostradamus attack was originally proposed as a security vulnerability for a hash function by Kelsey and Kohno at EUROCRYPT 2006. It requires the attacker to commit to a hash value y of an iterated hash function H. Subsequently, upon being provided with a message prefix P, the adversary’s task is to identify a suffix S such that H(P||S) equals y. Kelsey and Kohno demonstrated a herding attack requiring $O(\sqrt{n}\cdot 2^{2n/3})$ evaluations of the compression function of H, where n...

2024/300 (PDF) Last updated: 2024-03-11
Diving Deep into the Preimage Security of AES-like Hashing
Shiyao Chen, Jian Guo, Eik List, Danping Shi, Tianyu Zhang
Attacks and cryptanalysis

Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic...

2024/298 (PDF) Last updated: 2024-02-21
New Models for the Cryptanalysis of ASCON
Mathieu Degré, Patrick Derbez, Lucie Lahaye, André Schrottenloher
Attacks and cryptanalysis

This paper focuses on the cryptanalysis of the ASCON family using automatic tools. We analyze two different problems with the goal to obtain new modelings, both simpler and less computationally heavy than previous works (all our models require only a small amount of code and run on regular desktop computers). The first problem is the search for Meet-in-the-middle attacks on reduced-round ASCON-Hash. Starting from the MILP modeling of Qin et al. (EUROCRYPT 2023 & ePrint 2023), we rephrase...

2024/126 (PDF) Last updated: 2024-01-29
Monte Carlo Tree Search for automatic differential characteristics search: application to SPECK
Emanuele Bellini, David Gerault, Matteo Protopapa, Matteo Rossi
Secret-key cryptography

The search for differential characteristics on block ciphers is a difficult combinatorial problem. In this paper, we investigate the performances of an AI-originated technique, Single Player Monte-Carlo Tree Search (SP-MCTS), in finding good differential characteristics on ARX ciphers, with an application to the block cipher SPECK. In order to make this approach competitive, we include several heuristics, such as the combination of forward and backward searches, and achieve significantly...

2023/1701 (PDF) Last updated: 2024-06-13
Improved Search for Integral, Impossible-Differential and Zero-Correlation Attacks: Application to Ascon, ForkSKINNY, SKINNY, MANTIS, PRESENT and QARMAv2
Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, Maria Eichlseder
Attacks and cryptanalysis

Integral, impossible-differential (ID), and zero-correlation (ZC) attacks are three of the most important attacks on block ciphers. However, manually finding these attacks can be a daunting task, which is why automated methods are becoming increasingly important. Most automatic tools regarding integral, ZC, and ID attacks have focused only on finding distinguishers rather than complete attacks. At EUROCRYPT 2023, Hadipour et al. proposed a generic and efficient constraint programming (CP)...

2023/1353 (PDF) Last updated: 2023-09-11
Automatic Search Model for Related-Tweakey Impossible Differential Cryptanalysis
Huiqin Chen, Yongqiang Li, Xichao Hu, Zhengbin Liu, Lin Jiao, Mingsheng Wang
Secret-key cryptography

The design and analysis of dedicated tweakable block ciphers constitute a dynamic and relatively recent research field in symmetric cryptanalysis. The assessment of security in the related-tweakey model is of utmost importance owing to the existence of a public tweak. This paper proposes an automatic search model for identifying related-tweakey impossible differentials based on the propagation of states under specific constraints, which is inspired by the research of Hu et al. in ASIACRYPT...

2023/1266 (PDF) Last updated: 2023-08-22
Automatic Preimage Attack Framework on \ascon Using a Linearize-and-Guess Approach
Huina Li, Le He, Shiyao Chen, Jian Guo, Weidong Qiu
Attacks and cryptanalysis

\ascon is the final winner of the lightweight cryptography standardization competition $(2018-2023)$. In this paper, we focus on preimage attacks against round-reduced \ascon. The preimage attack framework, utilizing the linear structure with the allocating model, was initially proposed by Guo \textit{et al.} at ASIACRYPT 2016 and subsequently improved by Li \textit{et al.} at EUROCRYPT 2019, demonstrating high effectiveness in breaking the preimage resistance of \keccak. In this...

2023/1227 (PDF) Last updated: 2023-08-13
Parallel SAT Framework to Find Clustering of Differential Characteristics and Its Applications
Kosei Sakamoto, Ryoma Ito, Takanori Isobe
Secret-key cryptography

The most crucial but time-consuming task for differential cryptanalysis is to find a differential with a high probability. To tackle this task, we propose a new SAT-based automatic search framework to efficiently figure out a differential with the highest probability under a specified condition. As the previous SAT methods (e.g., the Sun et al’s method proposed at ToSC 2021(1)) focused on accelerating the search for an optimal single differential characteristic, these are not optimized for...

2023/1095 (PDF) Last updated: 2023-07-17
Chosen-Key Distinguishing Attacks on Full AES-192, AES-256, Kiasu-BC, and More
Xiaoyang Dong, Shun Li, Phuong Pham
Attacks and cryptanalysis

At CRYPTO 2020, Liu et al. find that many differentials on Gimli are actually incompatible. On the related-key differential of AES, the incompatibilities also exist and are handled in different ad-hoc ways by adding respective constraints into the searching models. However, such an ad-hoc method is insufficient to rule out all the incompatibilities and may still output false positive related-key differentials. At CRYPTO 2022, a new approach combining a Constraint Programming (CP) tool and a...

2023/816 (PDF) Last updated: 2023-09-22
Simplified Modeling of MITM Attacks for Block Ciphers: new (Quantum) Attacks
André Schrottenloher, Marc Stevens
Attacks and cryptanalysis

The meet-in-the-middle (MITM) technique has led to many key-recovery attacks on block ciphers and preimage attacks on hash functions. Nowadays, cryptographers use automatic tools that reduce the search of MITM attacks to an optimization problem. Bao et al. (EUROCRYPT 2021) introduced a low-level modeling based on Mixed Integer Linear Programming (MILP) for MITM attacks on hash functions, which was extended to key-recovery attacks by Dong et al. (CRYPTO 2021). However, the modeling only...

2023/772 (PDF) Last updated: 2023-05-27
Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing
Zhiyu Zhang, Siwei Sun, Caibing Wang, Lei Hu
Attacks and cryptanalysis

At EUROCRYPT 2006, Kelsey and Kohno proposed the so-called chosen target forced-prefix (CTFP) preimage attack, where for any challenge prefix $P$, the attacker can generate a suffix $S$ such that $H(P\|S) = y$ for some hash value $y$ published in advance by the attacker. Consequently, the attacker can pretend to predict some event represented by $P$ she did not know before, and thus this type of attack is also known as the Nostradamus attack. At ASIACRYPT 2022, Benedikt et al. convert...

2023/674 (PDF) Last updated: 2023-05-12
An Efficient Strategy to Construct a Better Differential on Multiple-Branch-Based Designs: Application to Orthros
Kazuma Taka, Tatusya Ishikawa, Kosei Sakamoto, Takanori Isobe
Attacks and cryptanalysis

As low-latency designs tend to have a small number of rounds to decrease latency, the differential-type cryptanalysis can become a significant threat to them. In particular, since a multiple-branch-based design, such as Orthros can have the strong clustering effect on differential attacks due to its large internal state, it is crucial to investigate the impact of the clustering effect in such a design. In this paper, we present a new SAT-based automatic search method for evaluating the...

2023/622 (PDF) Last updated: 2023-06-01
CLAASP: a Cryptographic Library for the Automated Analysis of Symmetric Primitives
Emanuele Bellini, David Gerault, Juan Grados, Yun Ju Huang, Mohamed Rachidi, Sharwan Tiwari, Rusydi H. Makarim
Secret-key cryptography

This paper introduces CLAASP, a Cryptographic Library for the Automated Analysis of Symmetric Primitives. The library is designed to be modular, extendable, easy to use, generic, efficient and fully automated. It is an extensive toolbox gathering state-of-the-art techniques aimed at simplifying the manual tasks of symmetric primitive designers and analysts. CLAASP is built on top of Sagemath and is open-source under the GPLv3 license. The central input of CLAASP is the description of a...

2023/518 Last updated: 2024-01-18
Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-based Hashing Revisited
Lingyue Qin, Boxin Zhao, Jialiang Hua, Xiaoyang Dong, Xiaoyun Wang
Secret-key cryptography

Besides the U.S. NIST standard SHA-3(Keccak), another sponge-based primitive Ascon was selected as the NIST standard for lightweight applications, recently. Exploring the security against attacks on the sponge-based hash functions is very important. At EUROCRYPT 2023, Qin et al. introduced the MitM preimage attack framework and the automatic tools for Keccak, Ascon, and Xoodyak. In this paper, we extend Qin et al.'s MitM attack framework into collision attack and also develop various...

2023/496 (PDF) Last updated: 2023-04-05
Evaluating the Security of Block Ciphers Against Zero-correlation Linear Attack in the Distinguishers Aspect
Xichao Hu, Yongqiang Li, Lin Jiao, Zhengbin Liu, Mingsheng Wang
Secret-key cryptography

Zero-correlation linear attack is a powerful attack of block ciphers, the lower number of rounds (LNR) which no its distinguisher (named zero-correlation linear approximation, ZCLA) exists reflects the ability of a block cipher against the zero-correlation linear attack. However, due to the large search space, showing there are no ZCLAs exist for a given block cipher under a certain number of rounds is a very hard task. Thus, present works can only prove there no ZCLAs exist in a small...

2023/300 (PDF) Last updated: 2023-02-28
CNF Characterization of Sets over $\mathbb{Z}_2^n$ and Its Applications in Cryptography
Hu Xiaobo, Xu Shengyuan, Tu Yinzi, Feng Xiutao
Attacks and cryptanalysis

In recent years, the automatic search has been widely used to search differential characteristics and linear approximations with high probability/correlation. Among these methods, the automatic search with the Boolean Satisfiability Problem (SAT, in short) gradually becomes a powerful cryptanalysis tool in symmetric ciphers. A key problem in the automatic search method is how to fully characterize a set $S \subseteq \{0,1\}^n$ with as few Conjunctive Normal Form (CNF, in short) clauses as...

2023/288 (PDF) Last updated: 2023-02-26
Efficient Detection of High Probability Statistical Properties of Cryptosystems via Surrogate Differentiation
Itai Dinur, Orr Dunkelman, Nathan Keller, Eyal Ronen, Adi Shamir
Secret-key cryptography

A central problem in cryptanalysis is to find all the significant deviations from randomness in a given $n$-bit cryptographic primitive. When $n$ is small (e.g., an $8$-bit S-box), this is easy to do, but for large $n$, the only practical way to find such statistical properties was to exploit the internal structure of the primitive and to speed up the search with a variety of heuristic rules of thumb. However, such bottom-up techniques can miss many properties, especially in cryptosystems...

2023/277 (PDF) Last updated: 2023-02-24
Analysis of RIPEMD-160: New Collision Attacks and Finding Characteristics with MILP
Fukang Liu, Gaoli Wang, Santanu Sarkar, Ravi Anand, Willi Meier, Yingxin Li, Takanori Isobe
Attacks and cryptanalysis

The hash function RIPEMD-160 is an ISO/IEC standard and is being used to generate the bitcoin address together with SHA-256. Despite the fact that many hash functions in the MD-SHA hash family have been broken, RIPEMD-160 remains secure and the best collision attack could only reach up to 34 out of 80 rounds, which was published at CRYPTO 2019. In this paper, we propose a new collision attack on RIPEMD-160 that can reach up to 36 rounds with time complexity $2^{64.5}$. This new attack is...

2023/259 (PDF) Last updated: 2023-02-23
A MIQCP-Based Automatic Search Algorithm for Differential-Linear Trails of ARX Ciphers(Long Paper)
Guangqiu Lv, Chenhui Jin, Ting Cui
Attacks and cryptanalysis

Differential-linear (DL) cryptanalysis has undergone remarkable advancements since it was first proposed by Langford and Hellman \cite{langford1994differential} in 1994. At CRYPTO 2022, Niu et al. studied the (rotational) DL cryptanalysis of $n$-bit modulo additions with 2 inputs, i.e., $\boxplus_2$, and presented a technique for evaluating the (rotational) DL correlation of ARX ciphers. However, the problem of how to automatically search for good DL trails on ARX with solvers was left open,...

2023/255 (PDF) Last updated: 2023-02-23
Exploiting Non-Full Key Additions: Full-Fledged Automatic Demirci-Selcuk Meet-in-the-Middle Cryptanalysis of SKINNY
Danping Shi, Siwei Sun, Ling Song, Lei Hu, Qianqian Yang
Attacks and cryptanalysis

The Demirci-Sel{\c{c}}uk meet-in-the-middle (DS-MITM) attack is a sophisticated variant of differential attacks. Due to its sophistication, it is hard to efficiently find the best DS-MITM attacks on most ciphers \emph{except} for AES. Moreover, the current automatic tools only capture the most basic version of DS-MITM attacks, and the critical techniques developed for enhancing the attacks (e.g., differential enumeration and key-dependent-sieve) still rely on manual work. In...

2023/227 (PDF) Last updated: 2023-02-20
A Novel Automatic Technique Based on MILP to Search for Impossible Differentials
Yong Liu, Zejun Xiang, Siwei Chen, Shasha Zhang, Xiangyong Zeng
Attacks and cryptanalysis

The Mixed Integer Linear Programming (MILP) is a common method of searching for impossible differentials (IDs). However, the optimality of the distinguisher should be confirmed by an exhaustive search of all input and output differences, which is clearly computationally infeasible due to the huge search space. In this paper, we propose a new technique that uses two-dimensional binary variables to model the input and output differences and characterize contradictions with constraints. In...

2023/202 (PDF) Last updated: 2023-02-15
SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers (Long Paper)
Dachao Wang, Baocang Wang, Siwei Sun
Attacks and cryptanalysis

In Addition-Rotation-Xor (ARX) ciphers, the large domain size obstructs the application of the boomerang connectivity table. In this paper, we explore the problem of computing this table for a modular addition and the automatic search of boomerang characteristics for ARX ciphers. We provide dynamic programming algorithms to efficiently compute this table and its variants. These algorithms are the most efficient up to now. For the boomerang connectivity table, the execution time is $4^2(n −...

2023/109 (PDF) Last updated: 2023-01-28
SoK: Modeling for Large S-boxes Oriented to Differential Probabilities and Linear Correlations (Long Paper)
Ling Sun, Meiqin Wang
Attacks and cryptanalysis

Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three...

2023/093 (PDF) Last updated: 2024-01-14
Automated Side-Channel Attacks using Black-Box Neural Architecture Search
Pritha Gupta, Jan Peter Drees, Eyke Hüllermeier
Attacks and cryptanalysis

The usage of convolutional neural networks (CNNs) to break cryptographic systems through hardware side-channels has enabled fast and adaptable attacks on devices like smart cards and TPMs. Current literature proposes fixed CNN architectures designed by domain experts to break such systems, which is time-consuming and unsuitable for attacking a new system. Recently, an approach using neural architecture search (NAS), which is able to acquire a suitable architecture automatically, has been...

2022/1641 (PDF) Last updated: 2023-03-13
AlgSAT --- a SAT Method for Search and Verification of Differential Characteristics from Algebraic Perspective
Huina Li, Haochen Zhang, Guozhen Liu, Kai Hu, Jian Guo, Weidong Qiu
Attacks and cryptanalysis

A good differential is a start for a successful differential attack. However, a differential might be invalid, i.e., there is no right pair following the differential, due to some contradictions in the conditions imposed by the differential. This paper presents a novel and handy method for searching and verifying differential trails from an algebraic perspective. From this algebraic perspective, exact Boolean expressions of differentials over a cryptographic primitive can be conveniently...

2022/1549 (PDF) Last updated: 2023-02-11
The SAT-Based Automatic Searching and Experimental Verification for Differential Characteristics with Application to Midori64
Yingying Li, Qichun Wang
Attacks and cryptanalysis

In this paper, we show that it is inaccurate to apply the hypothesis of independent round keys to search for differential characteristics of a block cipher with a simple key schedule. Therefore, the derived differential characteristics may be invalid. We develop a SAT-based algorithm to verify the validity of differential characteristics. Furthermore, we take the key schedule into account and thus put forward an algorithm to directly find the valid differential characteristics. All...

2022/1444 (PDF) Last updated: 2022-10-23
Finding Three-Subset Division Property for Ciphers with Complex Linear Layers (Full Version)
Debasmita Chakraborty
Attacks and cryptanalysis

Conventional bit-based division property (CBDP) and bit- based division property using three subsets (BDPT) introduced by Todo et al. at FSE 2016 are the most effective techniques for finding integral characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang et al. proposed the idea of modeling the propagation of BDPT, and recently Liu et al. described a model set method that characterized the BDPT propagation. However, the linear layers of the block ciphers which are analyzed...

2022/1057 (PDF) Last updated: 2023-01-09
Rebound Attacks on SKINNY Hashing with Automatic Tools
Shun Li, Guozhen Liu, Phuong Pham
Attacks and cryptanalysis

In ToSC'20, a new approach combining Mix-Integer Linear Programming (MILP) tool and Constraint Programming (CP) tool to search for boomerang distinguishers is proposed and later used for rebound attack in ASIACRYPT'21 and CRYPTO'22. In this work, we extend these techniques to mount collision attacks on SKINNY-128-256 MMO hashing mode in classical and quantum settings. The first results of 17-round (and 15-round) free-start collision attack on this variant of SKINNY hashing mode are...

2022/782 (PDF) Last updated: 2022-06-17
Simon’s Algorithm and Symmetric Crypto: Generalizations and Automatized Applications
Federico Canale, Gregor Leander, Lukas Stennes
Secret-key cryptography

In this paper we deepen our understanding of how to apply Simon’s algorithm to break symmetric cryptographic primitives. On the one hand, we automate the search for new attacks. Using this approach we automatically find the first efficient key-recovery attacks against constructions like 5-round MISTY L-FK or 5-round Feistel-FK (with internal permutation) using Simon’s algorithm. On the other hand, we study generalizations of Simon’s algorithm using non-standard Hadamard matrices, with...

2022/745 (PDF) Last updated: 2024-06-17
Throwing Boomerangs into Feistel Structures: Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE
Hosein Hadipour, Marcel Nageler, Maria Eichlseder
Attacks and cryptanalysis

Automatic tools to search for boomerang distinguishers have seen significant advances over the past few years. However, most previous work has focused on ciphers based on a Substitution Permutation Network (SPN), while analyzing the Feistel structure is of great significance. Boukerrou et al. recently provided a theoretical framework to formulate the boomerang switch over multiple Feistel rounds, but they did not provide an automatic tool to find distinguishers. In this paper, by enhancing...

2022/725 (PDF) Last updated: 2023-03-07
Revisiting Related-Key Boomerang attacks on AES using computer-aided tool
Patrick Derbez, Marie Euler, Pierre-Alain Fouque, Phuong Hoa Nguyen
Attacks and cryptanalysis

In recent years, several MILP models were introduced to search automatically for boomerang distinguishers and boomerang attacks on block ciphers. However, they can only be used when the key schedule is linear. Here, a new model is introduced to deal with nonlinear key schedules as it is the case for AES. This model is more complex and actually it is too slow for exhaustive search. However, when some hints are added to the solver, it found the current best related-key boomerang attack on...

2022/720 (PDF) Last updated: 2023-08-14
A Model Set Method to Search Integral Distinguishers Based on Division Property for Block Ciphers
Liu Zhang, Huawei Liu, Zilong Wang
Secret-key cryptography

In this paper, we focus on constructing an automatic search model that greatly improves efficiency with little loss of accuracy and obtains some better results in the construction of integral distinguishers for block ciphers. First, we define a new notion named BDPT Trail, which divides BDPT propagation into three parts: the division trail for K, division trail for L, and Key-Xor operation. Secondly, we improve the insufficiency of the previous methods of calculating division trails and...

2022/626 (PDF) Last updated: 2023-07-14
New method for combining Matsui’s bounding conditions with sequential encoding method
Senpeng Wang, Dengguo Feng, Bin Hu, Jie Guan, Kai Zhang, Tairong Shi
Secret-key cryptography

As the first generic method for finding the optimal differential and linear characteristics, Matsui's branch and bound search algorithm has played an important role in evaluating the security of symmetric ciphers. By combining Matsui's bounding conditions with automatic search models, search efficiency can be improved. In this paper, by studying the properties of Matsui's bounding conditions, we give the general form of bounding conditions that can eliminate all the impossible solutions...

2022/299 (PDF) Last updated: 2022-03-07
Related-Tweakey Impossible Differential Attack on Reduced-Round SKINNY-AEAD M1/M3
Yanhong Fan,Muzhou Li,Chao Niu,Zhenyu Lu,Meiqin Wang
Secret-key cryptography

SKINNY-AEAD is one of the second-round candidates of the Lightweight Cryptography Standardization project held by NIST. SKINNY-AEAD M1 is the primary member of six SKINNY-AEAD schemes, while SKINNY-AEAD M3 is another member with a small tag. In the design document, only security analyses of their underlying primitive SKINNY-128-384 are provided. Besides, there are no valid third-party analyses on SKINNY-AEAD M1/M3 according to our knowledge. Therefore, this paper focuses on constructing the...

2022/243 (PDF) Last updated: 2022-03-02
A Greater GIFT: Strengthening GIFT against Statistical Cryptanalysis
Ling Sun, Bart Preneel, Wei Wang, Meiqin Wang
Secret-key cryptography

GIFT-64 is a 64-bit block cipher with a 128-bit key that is more lightweight than PRESENT. This paper provides a detailed analysis of GIFT-64 against differential and linear attacks. Our work complements automatic search methods for the best differential and linear characteristics with a careful manual analysis. This hybrid approach leads to new insights. In the differential setting, we theoretically explain the existence of differential characteristics with two active S-boxes per round and...

2022/189 (PDF) Last updated: 2022-06-10
Simplified MITM Modeling for Permutations: New (Quantum) Attacks
André Schrottenloher, Marc Stevens
Secret-key cryptography

Meet-in-the-middle (MITM) is a general paradigm where internal states are computed along two independent paths ('forwards' and 'backwards') that are then matched. Over time, MITM attacks improved using more refined techniques and exploiting additional freedoms and structure, which makes it more involved to find and optimize such attacks. This has led to the use of detailed attack models for generic solvers to automatically search for improved attacks, notably a MILP model developed by Bao et...

2022/184 (PDF) Last updated: 2022-09-20
Exploring SAT for Cryptanalysis: (Quantum) Collision Attacks against 6-Round SHA-3 (Full Version)
Jian Guo, Guozhen Liu, Ling Song, Yi Tu
Secret-key cryptography

In this work, we focus on collision attacks against instances of SHA-3 hash family in both classical and quantum settings. Since the 5-round collision attacks on SHA3-256 and other variants proposed by Guo et al. at JoC~2020, no other essential progress has been published. With a thorough investigation, we identify that the challenges of extending such collision attacks on SHA-3 to more rounds lie in the inefficiency of differential trail search. To overcome this obstacle, we develop a...

2022/151 (PDF) Last updated: 2022-02-12
Addendum to Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives
Ling Sun, Wei Wang, Meiqin Wang
Secret-key cryptography

In ToSC 2021(2), Sun et al. implemented an automatic search with the Boolean satisfiability problem (SAT) method on GIFT-128 and identified a 19-round linear approximation with the expected linear potential being $2^{-117.43}$, which is utilised to launch a 24-round attack on the cipher. In this addendum, we discover a new 19-round linear approximation with a lower expected linear potential. However, in the attack, one more round can be appended after the distinguisher. As a result, we...

2022/135 (PDF) Last updated: 2022-02-09
Do NOT Misuse the Markov Cipher Assumption - Automatic Search for Differential and Impossible Differential Characteristics in ARX Ciphers
Zheng Xu, Yongqiang Li, Lin Jiao, Mingsheng Wang, Willi Meier
Secret-key cryptography

Firstly, we improve the evaluation theory of differential propagation for modular additions and XORs, respectively. By introducing the concept of $additive$ $sums$ and using signed differences, we can add more information of value propagation to XOR differential propagation to calculate the probabilities of differential characteristics more precisely. Based on our theory, we propose the first modeling method to describe the general ARX differential propagation, which is not based on the...

2022/053 (PDF) Last updated: 2022-01-18
Brute Force Cryptanalysis
Aron Gohr
Secret-key cryptography

The topic of this contribution is the cryptanalytic use of spurious keys, i.e. non-target keys returned by exhaustive key search. We show that the counting of spurious keys allows the construction of distinguishing attacks against block ciphers that are generically expected to start working at (marginally) lower computational cost than is required to find the target key by exhaustive search. We further show that if a brute force distinguisher does return a strong distinguishing signal,...

2021/1641 (PDF) Last updated: 2022-09-10
Differential Cryptanalysis of WARP
Je Sen Teh, Alex Biryukov
Secret-key cryptography

WARP is an energy-efficient lightweight block cipher that is currently the smallest 128-bit block cipher in terms of hardware. It was proposed by Banik et al. in SAC 2020 as a lightweight replacement for AES-128 without changing the mode of operation. This paper proposes key-recovery attacks on WARP based on differential cryptanalysis in single and related-key settings. We searched for differential trails for up to 20 rounds of WARP, with the first 19 having optimal differential...

2021/1607 (PDF) Last updated: 2021-12-09
Efficient and Extensive Search Linear Approximations with High for Precise Correlations of Full SNOW-V
ZhaoCun Zhou, DengGuo Feng, Bin Zhang
Secret-key cryptography

SNOW-V is a stream cipher recently designed for 5G communication system. In this paper, we propose two efficient algorithms to evaluate the precise correlation of SNOW-V's two main nonlinear components with linear hull effects fully considered. Based on these algorithms, we could efficiently and extensively search much more linear masks than before. The ideas of these algorithms can be generalized to other similar nonlinear components in symmetric cipher. We apply our algorithms to full...

2021/1179 (PDF) Last updated: 2021-09-14
Improved Attacks on GIFT-64
Ling Sun, Wei Wang, Meiqin Wang
Secret-key cryptography

One of the well-known superiorities of GIFT-64 over PRESENT lies in the correction of the strong linear hull effect. However, apart from the investigation of the 9-round linear hull effect in the design document, we find no linear attack result on GIFT-64. Although we do not doubt the security of GIFT-64 regarding the linear cryptanalysis, the actual resistance of the cipher to the linear attack should be evaluated since it promotes a comprehensive perception of the soundness of GIFT-64....

2021/1119 (PDF) Last updated: 2021-09-03
Automatic Classical and Quantum Rebound Attacks on AES-like Hashing by Exploiting Related-key Differentials
Xiaoyang Dong, Zhiyu Zhang, Siwei Sun, Congming Wei, Xiaoyun Wang, Lei Hu
Secret-key cryptography

Collision attacks on AES-like hashing (hash functions constructed by plugging AES-like ciphers or permutations into the famous PGV modes or their variants) can be reduced to the problem of finding a pair of inputs respecting a differential of the underlying AES-like primitive whose input and output differences are the same. The rebound attack due to Mendel et al. is a powerful tool for achieving this goal, whose quantum version was first considered by Hosoyamada and Sasaki at EUROCRYPT 2020....

2021/1105 (PDF) Last updated: 2021-08-31
Improved Linear Approximations of SNOW-V and SNOW-Vi
Zhen Shi, Chenhui Jin, Yu Jin
Secret-key cryptography

Abstract. in this paper, we improve the results of linear approximation of SNOW-V and SNOW-Vi.We optimized the automatic search program by replacing the S-box part with accurate characterizations of the Walsh spectral of S-boxes, which results in a series of trails with higher correlations. On the basis of existing results, we investigate the common features of linear approximation trails with high correlation, and search for more trails by exhausting free masks. By summing up the...

2021/1047 (PDF) Last updated: 2022-02-09
A Correlation Attack on Full SNOW-V and SNOW-Vi
Zhen Shi, Chenhui Jin, Jiyan Zhang, Ting Cui, Lin Ding, Yu Jin
Secret-key cryptography

In this paper, a method for searching correlations between the binary stream of Linear Feedback Shift Register (LFSR) and the keystream of SNOW-V and SNOW-Vi is presented based on the technique of approximation to composite functions. With the aid of the linear relationship between the four taps of LFSR input into Finite State Machine (FSM) at three consecutive clocks, we present an automatic search model based on the SAT/SMT technique and search out a series of linear approximation trails...

2021/965 (PDF) Last updated: 2021-07-22
Automatic Search for Bit-based Division Property
Shibam Ghosh, Orr Dunkelman
Secret-key cryptography

Division properties, introduced by Todo at Eurocrypt 2015, are extremely useful in cryptanalysis, are an extension of square attack (also called saturation attack or integral cryptanalysis). Given their im- portance, a large number of works tried to offer automatic tools to find division properties, primarily based on MILP or SAT/SMT. This paper studies better modeling techniques for finding division properties using the Constraint Programming and SAT/SMT-based automatic tools. We use the...

2021/856 (PDF) Last updated: 2022-02-22
Key Guessing Strategies for Linear Key-Schedule Algorithms in Rectangle Attacks
Xiaoyang Dong, Lingyue Qin, Siwei Sun, Xiaoyun Wang
Secret-key cryptography

When generating quartets for the rectangle attacks on ciphers with linear key-schedule, we find the right quartets which may suggest key candidates have to satisfy some nonlinear relations. However, some quartets generated always violate these relations, so that they will never suggest any key candidates. Inspired by previous rectangle frameworks, we find that guessing certain key cells before generating quartets may reduce the number of invalid quartets. However, guessing a lot of key cells...

2021/703 (PDF) Last updated: 2024-08-16
Automatic Quantum Multi-collision Distinguishers and Rebound Attacks with Triangulation Algorithm
Zhenzhen Bao, Jian Guo, Shun Li, Phuong Pham
Secret-key cryptography

In EUROCRYPT 2020, Hosoyamada and Sasaki found that differential paths with probability $2^{-2n/3}$ can be useful in quantum collision attacks, v.s. $2^{-n/2}$ for classical collision attacks. This observation led to attacks for more rounds on some AES-like hash functions. In this paper, we quantize the multi-collision distinguisher proposed by Biryukov, Khovratovich, and Nikoli{\'c} at CRYPTO 2009, and propose quantum multi-collision distinguishers. We use CP-tool to automatically search...

2021/661 (PDF) Last updated: 2021-05-25
Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives
Ling Sun, Wei Wang, Meiqin Wang
Secret-key cryptography

This paper considers the linear cryptanalyses of Authenticated Encryptions with Associated Data (AEADs) GIFT-COFB, SUNDAE-GIFT, and HyENA. All of these proposals take GIFT-128 as underlying primitives. The automatic search with the Boolean satisfiability problem (SAT) method is implemented to search for linear approximations that match the attack settings concerning these primitives. With the newly identified approximations, we launch key-recovery attacks on GIFT-COFB, SUNDAE-GIFT, and HyENA...

2021/656 (PDF) Last updated: 2021-05-27
Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule: Applications to Boomerangs in SKINNY and ForkSkinny
Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, Yunwen Liu
Secret-key cryptography

Automatic modelling to search distinguishers with high probability covering as many rounds as possible, such as MILP, SAT/SMT, CP models, has become a very popular cryptanalysis topic today. In those models, the optimizing objective is usually the probability or the number of rounds of the distinguishers. If we want to recover the secret key for a round-reduced block cipher, there are usually two phases, i.e., finding an efficient distinguisher and performing key-recovery attack by...

2021/643 (PDF) Last updated: 2021-05-17
On MILP-based Automatic Search for Bit-Based Division Property for Ciphers with (large) Linear Layers
Muhammad ElSheikh, Amr M. Youssef
Secret-key cryptography

With the introduction of the division trail, the bit-based division property (BDP) has become the most efficient method to search for integral distinguishers. The notation of the division trail allows us to automate the search process by modelling the propagation of the DBP as a set of constraints that can be solved using generic Mixed-integer linear programming (MILP) and SMT/SAT solvers. The current models for the basic operations and Sboxes are efficient and accurate. In contrast, the two...

2021/452 Last updated: 2021-08-02
SAT-based Method to Improve Neural Distinguisher and Applications to SIMON
Zezhou Hou, Jiongjiong Ren, Shaozhen Chen

Cryptanalysis based on deep learning has become a hotspot in the international cryptography community since it was proposed. The key point of differential cryptanalysis based on deep learning is to find a neural differential distinguisher with longer rounds or higher probability. Therefore it is important to research how to improve the accuracy and the rounds of neural differential distinguisher. In this paper, we design SAT-based algorithms to find a good input difference so that the...

2021/213 (PDF) Last updated: 2021-03-02
Accelerating the Search of Differential and Linear Characteristics with the SAT Method
Ling Sun, Wei Wang, Meiqin Wang
Secret-key cryptography

The introduction of the automatic search boosts the cryptanalysis of symmetric-key primitives to some degree. However, the performance of the automatic search is not always satisfactory for the search of long trails or ciphers with large state sizes. Compared with the extensive attention on the enhancement for the search with the mixed integer linear programming (MILP) method, few works care for the acceleration of the automatic search with the Boolean satisfiability problem (SAT) or...

2021/020 (PDF) Last updated: 2021-01-06
Catching the Fastest Boomerangs - Application to SKINNY
Stéphanie Delaune, Patrick Derbez, Mathieu Vavrille
Secret-key cryptography

In this paper we describe a new tool to search for boomerang distinguishers. One limitation of the MILP model of Liu et al. is that it handles only one round for the middle part while Song et al. have shown that dependencies could affect much more rounds, for instance up to 6 rounds for SKINNY. Thus we describe a new approach to turn an MILP model to search for truncated characteristics into an MILP model to search for truncated boomerang characteristics automatically handling the middle...

2020/1560 (PDF) Last updated: 2020-12-17
Modified Cache Template Attack on AES
Mahdi Esfahani, Hadi Soleimany, Mohammad Reza Aref
Implementation

CPU caches are a powerful source of information leakage. To develop practical cache-based attacks, there is an increasingly need to automate the process of finding exploitable cache-based side-channels in computer systems. Cache template attack is a generic technique that utilizes Flush+Reload attack in order to automatically exploit cache vulnerability of Intel platforms. Cache template attack on T-table-based AES implementation consists of two phases including the profiling phase and the...

2020/1485 (PDF) Last updated: 2020-12-09
Quantum Search for Lightweight Block Ciphers: GIFT, SKINNY, SATURNIN
Subodh Bijwe, Amit Kumar Chauhan, Somitra Kumar Sanadhya
Secret-key cryptography

Grover's search algorithm gives a quantum attack against block ciphers with query complexity $O(\sqrt{N})$ to search a keyspace of size $N$, when given a sufficient number of plaintext-ciphertext pairs. A recent result by Jaques et al. (EUROCRYPT 2020) presented the cost estimates of quantum key search attacks against AES under different security categories as defined in NIST's PQC standardization process. In this work, we extend their approach to lightweight block ciphers for the cost...

2020/1402 (PDF) Last updated: 2020-11-15
SKINNY with Scalpel - Comparing Tools for Differential Analysis
Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier, Victor Mollimard, Charles Prud'homme
Secret-key cryptography

Evaluating resistance of ciphers against differential cryptanalysis is essential to define the number of rounds of new designs and to mount attacks derived from differential cryptanalysis. In this paper, we compare existing automatic tools to find the best differential characteristic on the SKINNY block cipher. As usually done in the literature, we split this search in two stages denoted by Step 1 and Step 2. In Step 1, each difference variable is abstracted with a Boolean variable and we...

2020/1242 (PDF) Last updated: 2020-10-30
Improved (Related-key) Differential Cryptanalysis on GIFT
Fulei Ji, Wentao Zhang, Chunning Zhou, Tianyou Ding
Secret-key cryptography

In this paper, we reevaluate the security of GIFT against differential cryptanalysis under both single-key scenario and related-key scenario. Firstly, we apply Matsui's algorithm to search related-key differential trails of GIFT. We add three constraints to limit the search space and search the optimal related-key differential trails on the limited search space. We obtain related-key differential trails of GIFT-64/128 for up to 15/14 rounds, which are the best results on related-key...

2020/1152 (PDF) Last updated: 2020-09-25
An Automatic Search Tool for Iterative Trails and its Application to estimation of differentials and linear hulls
Tianyou Ding, Wentao Zhang, Chunning Zhou, Fulei Ji
Secret-key cryptography

The design and cryptanalysis are the both sides from which we look at symmetric-key primitives. If a symmetric-key primitive is broken by a kind of cryptanalysis, it's definitely insecure. If a designer claims a symmetric-key primitive to be secure, one should demonstrate that the primitive resists against all known attacks. Differential and linear cryptanalysis are two of the most important kinds of cryptanalysis. To conduct a successful differential (linear) cryptanalysis, a differential...

2020/1093 (PDF) Last updated: 2024-09-30
Mind the Propagation of States New Automatic Search Tool for Impossible Differentials and Impossible Polytopic Transitions (Full Version)
Xichao Hu, Yongqiang Li, Lin Jiao, Shizhu Tian, Mingsheng Wang
Secret-key cryptography

Impossible differentials cryptanalysis and impossible polytopic cryptanalysis are the most effective approaches to estimate the security of block ciphers. However, the previous automatic search methods of their distinguishers, impossible differentials and impossible polytopic transitions, neither consider the impact of key schedule in the single-key setting and the differential property of large S-boxes, nor apply to the block ciphers with variable rotations. Thus, unlike previous methods...

2020/1056 (PDF) Last updated: 2022-01-20
Automated enumeration of block cipher differentials: An optimized branch-and-bound GPU framework
Wei-Zhu Yeoh, Je Sen Teh, Jiageng Chen
Secret-key cryptography

Block ciphers are prevalent in various security protocols used daily such as TLS, OpenPGP, and SSH. Their primary purpose is the protection of user data, both in transit and at rest. One of the de facto methods to evaluate block cipher security is differential cryptanalysis. Differential cryptanalysis observes the propagation of input patterns (input differences) through the cipher to produce output patterns (output differences). This probabilistic propagation is known as a differential; the...

2020/881 (PDF) Last updated: 2020-07-16
Deep Learning Side-Channel Analysis on Large-Scale Traces - A Case Study on a Polymorphic AES
Loïc Masure, Nicolas Belleville, Eleonora Cagli, Marie-Angela Cornelie, Damien Couroussé, Cécile Dumas, Laurent Maingault
Implementation

Code polymorphism is a way to efficiently address the challenge of automatically applying the hiding of sensitive information leakage, as a way to protect cryptographic primitives against side-channel attacks (SCA) involving layman adversaries. Yet, recent improvements in SCA, involving more powerful threat models, e.g., using deep learning, emphasized the weaknesses of some hiding counter-measures. This raises two questions. On the one hand, the security of code polymorphism against more...

2020/727 (PDF) Last updated: 2020-06-17
An Easy-to-Use Tool for Rotational-XOR Cryptanalysis of ARX Block Ciphers
Adrian Ranea, Yunwen Liu, Tomer Ashur
Secret-key cryptography

An increasing number of lightweight cryptographic primitives have been published recently. Some of these proposals are ARX primitives, which have shown a great performance in software. Rotational-XOR cryptanalysis is a statistical technique to attack ARX primitives. In this paper, a computer tool to speed up and make easier the security evaluation of ARX block ciphers against rotational-XOR cryptanalysis is shown. Our tool takes a Python implementation of an ARX block cipher and...

2020/591 (PDF) Last updated: 2020-09-22
Automatic Verification of Differential Characteristics: Application to Reduced Gimli (Full Version)
Fukang Liu, Takanori Isobe, Willi Meier
Secret-key cryptography

Since Keccak was selected as the SHA-3 standard, more and more permutation-based primitives have been proposed. Different from block ciphers, there is no round key in the underlying permutation for permutation-based primitives. Therefore, there is a higher risk for a differential characteristic of the underlying permutation to become incompatible when considering the dependency of difference transitions over different rounds. However, in most of the MILP or SAT based models to search for...

2020/547 (PDF) Last updated: 2020-05-15
Finding Bit-Based Division Property for Ciphers with Complex Linear Layer
Kai Hu, Qingju Wang, Meiqin Wang
Secret-key cryptography

The bit-based division property (BDP) is the most effective technique for finding integral characteristics of symmetric ciphers. Recently, automatic search tools have become one of the most popular approaches to evaluating the security of designs against many attacks. Constraint-aided automatic tools for the BDP have been applied to many ciphers with simple linear layers like bit-permutation. Constructing models of complex linear layers accurately and efficiently remains hard. A...

2020/467 (PDF) Last updated: 2021-03-17
Automatic Search of Meet-in-the-Middle Preimage Attacks on AES-like Hashing
Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun, Xiaoyun Wang
Secret-key cryptography

The Meet-in-the-Middle (MITM) preimage attack is highly effective in breaking the preimage resistance of many hash functions, including but not limited to the full MD5, HAVAL, and Tiger, and reduced SHA-0/1/2. It was also shown to be a threat to hash functions built on block ciphers like AES by Sasaki in 2011. Recently, such attacks on AES hashing modes evolved from merely using the freedom of choosing the internal state to also exploiting the freedom of choosing the message state. However,...

2020/441 (PDF) Last updated: 2020-04-19
Modeling for Three-Subset Division Property without Unknown Subset
Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, Qingju Wang
Secret-key cryptography

A division property is a generic tool to search for integral distinguishers, and automatic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently. In the application to stream ciphers, it enables us to estimate the security of cube attacks theoretically, and it leads to the best key-recovery attacks against well-known stream ciphers. However, it was reported that some of the key-recovery attacks based on the division property degenerate to distinguishing attacks due...

2020/050 (PDF) Last updated: 2020-05-07
Delphi: A Cryptographic Inference Service for Neural Networks
Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, Raluca Ada Popa
Cryptographic protocols

Many companies provide neural network prediction services to users for a wide range of applications. However, current prediction systems compromise one party's privacy: either the user has to send sensitive inputs to the service provider for classification, or the service provider must store its proprietary neural networks on the user's device. The former harms the personal privacy of the user, while the latter reveals the service provider's proprietary model. We design, implement, and...

2019/1438 (PDF) Last updated: 2020-11-30
A new method for Searching Optimal Differential and Linear Trails in ARX Ciphers
Zhengbin Liu, Yongqiang Li, Lin Jiao, Mingsheng Wang
Secret-key cryptography

In this paper, we propose an automatic tool to search for optimal differential and linear trails in ARX ciphers. It's shown that a modulo addition can be divided into sequential small modulo additions with carry bit, which turns an ARX cipher into an S-box-like cipher. From this insight, we introduce the concepts of carry-bit-dependent difference distribution table (CDDT) and carry-bit-dependent linear approximation table (CLAT). Based on them, we give efficient methods to trace all possible...

2019/1319 (PDF) Last updated: 2020-01-08
Automatic Search for the Linear (hull) Characteristics of ARX Ciphers: Applied to SPECK, SPARX, Chaskey and CHAM-64 (Full Version)
Mingjiang Huang, Liming Wang
Secret-key cryptography

Linear cryptanalysis is an important evaluation method for cryptographic primitives against key recovery attack. In this paper, we revisit the Walsh transformation for linear correlation calculation of modular addition, and an efficient algorithm is proposed to construct the input-output mask space of specified correlation weight. By filtering out the impossible large correlation weights in the first round, the search space of the first round can be substantially reduced. We introduce a new...

2019/1318 (PDF) Last updated: 2020-01-08
Automatic Tool for Searching for Differential Characteristics in ARX Ciphers and Applications (Full Version)
Mingjiang Huang, Liming Wang
Secret-key cryptography

Motivated by the algorithm of differential probability calculation of Lipmaa and Moriai, we revisit the differential properties of modular addition. We propose an efficient approach to generate the input-output difference tuples with non-zero probabilities. A novel construction of combinational DDT, which makes it possible to obtain all valid output differences for fixed input differences. According to the upper bound of differential probability of modular addition, combining the...

2019/1190 (PDF) Last updated: 2020-09-23
Improving Matsui's Search Algorithm for the Best Differential/Linear Trails and its Applications for DES, DESL and GIFT
Fulei Ji, Wentao Zhang, Tianyou Ding
Secret-key cryptography

Automatic search methods have been widely used for cryptanalysis of block ciphers, especially for the most classic cryptanalysis methods -- differential and linear cryptanalysis. However, the automatic search methods, no matter based on MILP, SMT/SAT or CP techniques, can be inefficient when the search space is too large. In this paper, we improve Matsui's branch-and-bound search algorithm which is known as the first generic algorithm for finding the best differential and linear trails by...

2019/1146 (PDF) Last updated: 2023-06-07
Implementing Grover oracles for quantum key search on AES and LowMC
Samuel Jaques, Michael Naehrig, Martin Roetteler, Fernando Virdia
Secret-key cryptography

Grover's search algorithm gives a quantum attack against block ciphers by searching for a key that matches a small number of plaintext-ciphertext pairs. This attack uses $O(\sqrt{N})$ calls to the cipher to search a key space of size $N$. Previous work in the specific case of AES derived the full gate cost by analyzing quantum circuits for the cipher, but focused on minimizing the number of qubits. In contrast, we study the cost of quantum key search attacks under a depth restriction and...

2019/1037 (PDF) Last updated: 2019-11-22
Card-based Cryptography Meets Formal Verification
Alexander Koch, Michael Schrempp, Michael Kirsten
Cryptographic protocols

Card-based cryptography provides simple and practicable protocols for performing secure multi-party computation (MPC) with just a deck of cards. For the sake of simplicity, this is often done using cards with only two symbols, e.g., clubs and hearts. Within this paper, we target the setting where all cards carry distinct symbols, catering for use-cases with commonly available standard decks and a weaker indistinguishability assumption. As of yet, the literature provides for only three...

2019/935 Last updated: 2019-08-22
Interpretable Encrypted Searchable Neural Networks
Kai Chen, Zhongrui Lin, Jian Wan, Chungen Xu
Applications

In cloud security, traditional searchable encryption (SE) requires high computation and communication overhead for dynamic search and update. The clever combination of machine learning (ML) and SE may be a new way to solve this problem. This paper proposes interpretable encrypted searchable neural networks (IESNN) to explore probabilistic query, balanced index tree construction and automatic weight update in an encrypted cloud environment. In IESNN, probabilistic learning is used to obtain...

2019/669 (PDF) Last updated: 2019-06-06
Related-Key Boomerang Attacks on GIFT with Automated Trail Search Including BCT Effect
Yunwen Liu, Yu Sasaki
Secret-key cryptography

In Eurocrypt 2018, Cid et al. proposed a novel notion called the boomerang connectivity table, which formalised the switch property in the middle round of boomerang distinguishers in a unified approach. In this paper, we present a generic model of the boomerang connectivity table with automatic search technique for the first time, and search for (related-key) boomerang distinguishers directly by combining with the search of (related-key) differential characteristics. With the technique, we...

2019/476 (PDF) Last updated: 2019-05-10
On MILP-Based Automatic Search for Differential Trails Through Modular Additions with Application to Bel-T
Muhammad ElSheikh, Ahmed Abdelkhalek, Amr M. Youssef
Secret-key cryptography

Using modular addition as a source of nonlinearity is frequently used in many symmetric-key structures such as ARX and Lai--Massey schemes. At FSE'16, Fu \etal proposed a Mixed Integer Linear Programming (MILP)-based method to handle the propagation of differential trails through modular additions assuming that the two inputs to the modular addition and the consecutive rounds are independent. However, this assumption does not necessarily hold. In this paper, we study the propagation of the...

2019/208 (PDF) Last updated: 2019-02-27
Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA
Muzhou Li, Kai Hu, Meiqin Wang

Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by...

2019/126 (PDF) Last updated: 2019-06-09
New Automatic search method for Truncated-differential characteristics: Application to Midori, SKINNY and CRAFT
AmirHossein E. Moghaddam, Zahra Ahmadian
Secret-key cryptography

In this paper, using Mixed Integer Linear Programming, a new automatic search tool for truncated differential characteristic is presented. Our method models the problem of finding a maximal probability truncated differential characteristic, which is able to distinguish the cipher from a pseudo random permutation. Using this method, we analyse Midori64, SKINNY64/X and CRAFT block ciphers, for all of which the existing results are improved. In all cases, the truncated differential...

2019/049 (PDF) Last updated: 2019-01-25
The Relationship between the Construction and Solution of the MILP Models and Applications
Lingchen Li, Wenling Wu, Yafei Zheng, Lei Zhang
Secret-key cryptography

The automatic search method based on Mix-integer Linear Programming (MILP) is one of the most common tools to search the distinguishers of block ciphers. For differential analysis, the byte-oriented MILP model is usually used to count the number of differential active s-boxes and the bit-oriented MILP model is used to search the optimal differential characteristic. In this paper, we present the influences between the construction and solution of MILP models solved by Gurobi : 1). the number...

2019/025 (PDF) Last updated: 2019-01-15
STP Models of Optimal Differential and Linear Trail for S-box Based Ciphers
Yu Liu, Huicong Liang, Muzhou Li, Luning Huang, Kai Hu, Chenhe Yang, Meiqin Wang

Automatic tools have played an important role in designing new cryptographic primitives and evaluating the security of ciphers. Simple Theorem Prover constraint solver (STP) has been used to search for differential/linear trails of ciphers. This paper proposes general STP-based models searching for differential and linear trails with the optimal probability and correlation for S-box based ciphers. In order to get trails with the best probability or correlation for ciphers with arbitrary...

2018/1187 (PDF) Last updated: 2018-12-10
Automatic Search for A Variant of Division Property Using Three Subsets (Full Version)
Kai Hu, Meiqin Wang
Secret-key cryptography

The division property proposed at Eurocrypt'15 is a novel technique to find integral distinguishers, which has been applied to most kinds of symmetric ciphers such as block ciphers, stream ciphers, and authenticated encryption,~\textit{etc}. The original division property is word-oriented, and later the bit-based one was proposed at FSE'16 to get better integral property, which is composed of conventional bit-based division property (two-subset division property) and bit-based division...

2018/948 (PDF) Last updated: 2018-10-09
MILP-Based Automatic Differential Searches for LEA and HIGHT
Elnaz Bagherzadeh, Zahra Ahmadian
Secret-key cryptography

In this paper we use MILP technique for automatic search for differential characteristics of ARX ciphers LEA and HIGHT. We show that the MILP model of the differential property of modular addition with one constant input can be represented with a much less number of linear inequalities compared to the general case. Benefiting from this new developed model for HIGHT block cipher, we can achieve a reduction of 112r out of 480r in the total number of linear constraints for MILP model of r-round...

2018/813 (PDF) Last updated: 2018-09-11
Programming the Demirci-Sel{ç}uk Meet-in-the-Middle Attack with Constraints
Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, Lei Hu

Cryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanalysis. However, the Demirci-Selcuk meet-in-the-middle (DS-MITM) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on DS-MITM...

2018/142 (PDF) Last updated: 2019-09-24
MILP-Aided Related-Tweak/Key Impossible Differential Attack and Its applications to QARMA, Joltik-BC
Rui Zong, Xiaoyang Dong
Secret-key cryptography

In this paper, we study the relation of single-key impossible differentials with the related-tweakey/key ones and propose an interesting algorithm that can efficiently derive longer related-tweakey/key impossible differentials from single-key ones. With application of the MILP technique, the algorithm can be converted an automatic tool for searching related-tweakey/key impossible differentials. We use this automatic tool to analyze QARMA-64 and give a 11-round key recovery attack, which...

2017/1209 (PDF) Last updated: 2017-12-25
Improvements for Finding Impossible Differentials of Block Cipher Structures
Yiyuan Luo, Xuejia Lai

In this paper we improve Wu and Wang's method for finding impossible differentials of block cipher structures. This improvement is more general than Wu and Wang's method that it can find more impossible differentials with less time. We apply it on Gen-CAST256, Misty, Gen-Skipjack, Four-Cell, Gen-MARS, SMS4, MIBS, Camellia*, LBlock, E2 and SNAKE block ciphers. All impossible differentials discovered by the algorithm are the same as Wu's method. Besides, for the 8-round MIBS block cipher, we...

2017/860 (PDF) Last updated: 2017-09-09
Automatic Search of Bit-Based Division Property for ARX Ciphers and Word-Based Division Property
Ling Sun, Wei Wang, Meiqin Wang

Division property is a generalized integral property proposed by Todo at Eurocrypt 2015. Previous tools for automatic searching are mainly based on the Mixed Integer Linear Programming (MILP) method and trace the division property propagation at the bit level. In this paper, we propose automatic tools to detect ARX ciphers' division property at the bit level and some specific ciphers' division property at the word level. For ARX ciphers, we construct the automatic searching tool relying on...

2017/851 (PDF) Last updated: 2017-12-20
How to Use Metaheuristics for Design of Symmetric-Key Primitives
Ivica Nikolić
Secret-key cryptography

The ultimate goal of designing a symmetric-key cryptographic primitive often can be formulated as an optimization problem. So far, these problems mainly have been solved with trivial algorithms such as brute force or random search. We show that a more advanced and equally versatile class of search algorithms, called metaheuristics, can help to tackle optimization problems related to design of symmetric-key primitives. We use two nature-inspired metaheuristics, simulated annealing and...

2017/576 (PDF) Last updated: 2017-06-20
The Security of SIMON-like Ciphers Against Linear Cryptanalysis
Zhengbin Liu, Yongqiang Li, Mingsheng Wang
Secret-key cryptography

In the present paper, we analyze the security of SIMON-like ciphers against linear cryptanalysis. First, an upper bound is derived on the squared correlation of SIMON-like round function. It is shown that the upper bound on the squared correlation of SIMON-like round function decreases with the Hamming weight of output mask increasing. Based on this, we derive an upper bound on the squared correlation of linear trails for SIMON and SIMECK, which is $2^{-2R+2}$ for any $R$-round linear trail....

2017/447 (PDF) Last updated: 2017-05-23
Block Chain based Searchable Symmetric Encryption
Huige Li, Haibo Tian, Fangguo Zhang
Applications

The mechanism for traditional Searchable Symmetric Encryption is pay-then-use. That is to say, if a user wants to search some documents that contain special keywords, he needs to pay to the server firstly, then he can enjoy search service. Under this situation, these kinds of things will happen: After the user paying the service fees, the server may either disappear because of the poor management or returning nothing. As a result, the money that the user paid cannot be brought back quickly....

2017/178 (PDF) Last updated: 2017-02-27
Optimal Differential Trails in SIMON-like Ciphers
Zhengbin Liu, Yongqiang Li, Mingsheng Wang

In the present paper, we propose an automatic search algorithm for optimal differential trails in SIMON-like ciphers. First, we give a more accurate upper bound on the differential probability of SIMON-like round function. It is shown that when the Hamming weight of the input difference $\alpha$, which is denoted by $wt(\alpha)$, is less than one half of the input size, the corresponding maximum differential probability of SIMON-like round function is less than or equal to...

2017/071 (PDF) Last updated: 2017-02-03
Efficient Differential Trail Searching Algorithm for ARX Block Ciphers
Seojin Kim, HyungChul Kang, Deukjo Hong, Jaechul Sung, Seokhie Hong
Secret-key cryptography

In this paper, we suggest an advanced method searching for differential trails of block cipher with ARX structure. We use two techniques to optimize the automatic search algorithm of differential trails suggested by Biryukov et al. and obtain 2~3 times faster results than the previous one when implemented in block cipher SPECK.

2016/689 (PDF) Last updated: 2018-11-21
New Automatic Search Tool for Impossible Differentials and Zero-Correlation Linear Approximations
Tingting Cui, Shiyao Chen, Keting Jia, Kai Fu, Meiqin Wang

Impossible differential and zero-correlation linear cryptanalysis are two of the most powerful cryptanalysis methods in the field of symmetric key cryptography. There are several automatic tools to search such trails for ciphers with S-boxes. These tools focus on the properties of linear layers, and idealize the underlying S-boxes, i.e., assume any input and output difference pairs are possible. In reality, such S-box never exists, and the possible output differences with any fixed input...

2016/676 (PDF) Last updated: 2016-07-09
Cryptanalysis of Reduced-Round Midori64 Block Cipher
Xiaoyang Dong, Yanzhao Shen

Midori is a hardware-oriented lightweight block cipher designed by Banik \emph{et al.} in ASIACRYPT 2015. It has two versions according to the state sizes, i.e. Midori64 and Midori128. In this paper, we explore the security of Midori64 against truncated differential and related-key differential attacks. By studying the compact representation of Midori64, we get the branching distribution properties of almost MDS matrix used by Midori64. By applying an automatic truncated differential search...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.