31 results sorted by ID
Optimizing Rectangle and Boomerang Attacks: A Unified and Generic Framework for Key Recovery
Qianqian Yang, Ling Song, Nana Zhang, Danping Shi, Libo Wang, Jiahao Zhao, Lei Hu, Jian Weng
Secret-key cryptography
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance varies from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we delve into the rectangle key recovery and propose a unified and...
New Approaches for Estimating the Bias of Differential-Linear Distinguishers (Full Version)
Ting Peng, Wentao Zhang, Jingsui Weng, Tianyou Ding
Secret-key cryptography
Differential-linear cryptanalysis was introduced by Langford and Hellman in 1994 and has been extensively studied since then. In 2019, Bar-On et al. presented the Differential-Linear Connectivity Table (DLCT), which connects the differential part and the linear part, thus an attacked cipher is divided to 3 subciphers: the differential part, the DLCT part, and the linear part.
In this paper, we firstly present an accurate mathematical formula which establishes a relation between...
Revisiting Differential-Linear Attacks via a Boomerang Perspective With Application to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP, LBlock, Simeck, and SERPENT
Hosein Hadipour, Patrick Derbez, Maria Eichlseder
Attacks and cryptanalysis
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT...
Improving Linear Key Recovery Attacks using Walsh Spectrum Puncturing
Antonio Flórez-Gutiérrez, Yosuke Todo
Secret-key cryptography
In some linear key recovery attacks, the function which determines the value of the linear approximation from the plaintext, ciphertext and key is replaced by a similar map in order to improve the time or memory complexity at the cost of a data complexity increase. We propose a general framework for key recovery map substitution, and introduce Walsh spectrum puncturing, which consists of removing carefully-chosen coefficients from the Walsh spectrum of this map. The capabilities of this...
Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery
Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei Hu, Jian Weng
Secret-key cryptography
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery
in depth and propose a...
Key Guessing Strategies for Linear Key-Schedule Algorithms in Rectangle Attacks
Xiaoyang Dong, Lingyue Qin, Siwei Sun, Xiaoyun Wang
Secret-key cryptography
When generating quartets for the rectangle attacks on ciphers with linear key-schedule, we find the right quartets which may suggest key candidates have to satisfy some nonlinear relations. However, some quartets generated always violate these relations, so that they will never suggest any key candidates. Inspired by previous rectangle frameworks, we find that guessing certain key cells before generating quartets may reduce the number of invalid quartets. However, guessing a lot of
key cells...
Further Improving Differential-Linear Attacks: Applications to Chaskey and Serpent
Marek Broll, Federico Canale, Nicolas David, Antonio Florez-Gutierrez, Gregor Leander, María Naya-Plasencia, Yosuke Todo
Secret-key cryptography
Differential-linear attacks are a cryptanalysis family that has recently benefited from various technical improvements, mainly in the context of ARX constructions. In this paper we push further this refinement, proposing several new improvements. In particular, we develop a better understanding of the related correlations, improve upon the statistics by using the LLR, and finally use ideas from conditional differentials for finding many right pairs.
We illustrate the usefulness of these...
DLCT: A New Tool for Differential-Linear Cryptanalysis
Achiya Bar-On, Orr Dunkelman, Nathan Keller, Ariel Weizman
Differential cryptanalysis and linear cryptanalysis are the two best-known techniques for cryptanalysis of block ciphers. In 1994, Langford and Hellman introduced the differential-linear (DL) attack based on dividing the attacked cipher $E$ into two subciphers $E_0$ and $E_1$ and combining a differential characteristic for $E_0$ with a linear approximation for $E_1$ into an attack on the entire cipher $E$. The DL technique was used to mount the best known attacks against numerous ciphers,...
Linear Cryptanalysis of DES with Asymmetries
Andrey Bogdanov, Philip S. Vejre
Linear cryptanalysis of DES, proposed by Matsui in 1993, has had a seminal impact on symmetric-key cryptography, having seen massive research efforts over the past two decades. It has spawned many variants, including multidimensional and zero-correlation linear cryptanalysis. These variants can claim best attacks on several ciphers, including PRESENT, Serpent, and CLEFIA. For DES, none of these variants have improved upon Matsui's original linear cryptanalysis, which has been the best...
MILP-Aided Bit-Based Division Property for Primitives with Non-Bit-Permutation Linear Layers
Ling Sun, Wei Wang, Meiqin Wang
Division property is a general integral property introduced by Todo at EUROCRYPT 2015. Recently, at ASIACRYPT 2016, Xiang et al. applied the Mixed Integer Linear Programming (MILP) method to search bit-based division property, and handled the complexity which restricted the application of bit-based division property proposed by Todo and Morii at FSE 2016.
However, their MILP-aided search was only applied to some lightweight block ciphers whose linear layers were limited to bit-permutations,...
Multivariate Profiling of Hulls for Linear Cryptanalysis
Andrey Bogdanov, Elmar Tischhauser, Philip S. Vejre
Extensions of linear cryptanalysis making use of multiple approximations, such as multiple and multidimensional linear cryptanalysis, are an important tool in symmetric-key cryptanalysis, among others being responsible for the best known attacks on ciphers such as Serpent and PRESENT. At CRYPTO 2015, Huang et al. provided a refined analysis of the key-dependent capacity leading to a refined key equivalence hypothesis, however at the cost of additional assumptions. Their analysis was...
Solving Polynomial Systems with Noise over F_2: Revisited
Zhenyu Huang, Dongdai Lin
Solving polynomial systems with noise over F_2 is a fundamental problem in computer science, especially in cryptanalysis. ISBS is a new method for solving this problem based on the idea of incrementally solving the noisy polynomial systems and backtracking all the possible noises, and it has better performance than other methods in solving the some problems generated from cryptanalysis. In this paper, some further researches on ISBS are presented. The structure and size of the search tree of...
Differential Factors: Improved Attacks on SERPENT
Cihangir Tezcan, Ferruh Özbudak
Secret-key cryptography
A differential attack tries to capture the round keys corresponding to the S-boxes activated by a differential. In this work, we show that for a fixed output difference of an S-box, it may not be possible to distinguish the guessed keys that have a specific difference. We introduce these differences as differential factors. Existence of differential factors can reduce the time complexity of differential attacks and as an example we show that the 10, 11, and 12-round differential-linear...
Towards Finding the Best Characteristics of Some Bit-oriented Block Ciphers and Automatic Enumeration of (Related-key) Differential and Linear Characteristics with Predefined Properties
Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Danping Shi, Ling Song, Kai Fu
In this paper, we investigate the Mixed-integer Linear Programming (MILP) modelling of the differential and linear behavior of a wide range of block ciphers. We point out that the differential behavior of an arbitrary S-box can be exactly described by a small system of linear inequalities.
~~~~~Based on this observation and MILP technique, we propose an automatic method for finding high probability (related-key) differential or linear characteristics of block ciphers. Compared with Sun {\it...
Three Snakes in One Hole: The First Systematic Hardware Accelerator Design for SOSEMANUK with Optional Serpent and SNOW 2.0 Modes
Goutam Paul, Anupam Chattopadhyay
With increasing usage of hardware accelerators in modern heterogeneous
System-on-Chips (SoCs), the distinction between hardware and software is no longer rigid. The domain of cryptography is no exception and efficient hardware design of so-called software ciphers are becoming increasingly popular. In this paper, for the first time we propose an efficient hardware accelerator design for SOSEMANUK, one of the finalists of the eSTREAM stream cipher competition in the software category. Since...
Filtered nonlinear cryptanalysis of reduced-round Serpent, and the Wrong-Key Randomization Hypothesis.
James McLaughlin, John A. Clark
Secret-key cryptography
We present a deterministic algorithm to find nonlinear S-box approximations, and a new nonlinear cryptanalytic technique; the “filtered” nonlinear attack, which achieves the lowest data complexity of any known-plaintext attack on reduced-round Serpent so far. We demonstrate that the Wrong-Key Randomization Hypothesis is not entirely valid for attacks on reduced-round Serpent which rely on linear cryptanalysis or a variant thereof, and survey the effects of this on existing attacks (including...
Nonlinear cryptanalysis of reduced-round Serpent and metaheuristic search for S-box approximations.
James McLaughlin, John A. Clark
Secret-key cryptography
We utilise a simulated annealing algorithm to find several nonlinear approximations to various S-boxes which can be used to replace the linear approximations in the outer rounds of existing attacks. We propose three variants of a new nonlinear cryptanalytic algorithm which overcomes the main issues that prevented the use of nonlinear approximations in previous research, and we present the statistical frameworks for calculating the complexity of each version. We present new attacks on...
Enabling 3-share Threshold Implementations for any 4-bit S-box
Sebastian Kutzner, Phuong Ha Nguyen, Axel Poschmann
Secret-key cryptography
Threshold Implementation (TI) is an elegant and widely accepted countermeasure against
1-st order Differential Power Analysis (DPA) in Side Channel
Attacks. The 3-share TI is the most efficient version of TI,
but so far, it can only be applied to 50\% of all 4-bit S-boxes.
In this paper, we study the limitations of decomposition and introduce factorization
to enable the 3-share TI for any optimal 4-bit
S-box. We propose an algorithm which can decompose any optimal 4-bit
S-box to quadratic...
Some Words About Cryptographic Key Recognition In Data Streams
Alexey Chilikov, Evgeny Alekseev
Search for cryptographic keys in RAM is a new and prospective technology which can be used, primarily, in the computer forensics. In order to use it, a cryptanalyst must solve, at least, two problems: to create a memory dump from target machine and to distinguish target cryptographic keys from other data. The latter leads to a new mathematical task: <<recognition of cryptographic keys in the (random) data stream>>. The complexity of this task significantly depends on target cryptoalgorithm....
Cold Boot Key Recovery by Solving Polynomial Systems with Noise
Martin Albrecht, Carlos Cid
Secret-key cryptography
A method for extracting cryptographic key material from DRAM used in modern computers has been recently proposed in [9]; the technique was called Cold Boot attacks. When considering block ciphers, such as the AES and DES, simple algorithms were also proposed in [9] to recover the cryptographic key from the observed set of round subkeys in memory (computed via the cipher’s key schedule operation), which were however subject to errors due to memory bits decay. In this work we extend this...
Corrigendum to: The Cube Attack on Stream Cipher Trivium and Quadraticity Tests
Piotr Mroczkowski, Janusz Szmidt
Secret-key cryptography
In 2008 I. Dinur and A. Shamir presented a new type of algebraic
attack on symmetric ciphers named cube attack. The method has
been applied to reduced variants of stream ciphers Trivium and Grain-
128, reduced variants of the block ciphers Serpent and CTC and to a
reduced version of the keyed hash function MD6. Independently a very
similar attack named AIDA was introduced by M. Vielhaber. In this
paper we develop quadraticity tests within the cube attack and apply
them to a variant of stream...
The Cube Attack on Stream Cipher Trivium and Quadraticity Tests
Piotr Mroczkowski, Janusz Szmidt
Secret-key cryptography
In 2008 I. Dinur and A. Shamir presented a new type of algebraic
attack on symmetric ciphers named cube attack. The method has
been applied to reduced variants of stream ciphers Trivium and Grain-
128, reduced variants of the block ciphers Serpent and CTC and to a
reduced version of the keyed hash function MD6. Independently a very
similar attack named AIDA was introduced by M. Vielhaber. In this
paper we develop quadraticity tests within the cube attack and apply
them to a variant of stream...
The Eris hybrid cipher
Sandy Harris
Secret-key cryptography
An earlier paper by the same author (IACR Eprint 2008/473) suggested combining a block cipher and a stream cipher to get a strong hybrid cipher. This paper proposes a specific cipher based on those ideas, using the HC-128 stream cipher and a tweakable block cipher based on Serpent.
Cube Attack on Courtois Toy Cipher
Piotr Mroczkowski, Janusz Szmidt
Secret-key cryptography
Abstract. The cube attack has been introduced by Itai Dinur and Adi
Shamir [8] as a known plaintext attack on symmetric primitives. The
attack has been applied to reduced variants of the stream ciphers Trivium
[3, 8] and Grain-128 [2], reduced to three rounds variant of the block
cipher Serpent [9] and reduced version of the hash function MD6 [3].
In the special case the attack has appeared in the M. Vielhaber ePrint
articles [13, 14], where it has been named AIDA (Algebraic Initial...
A Simple Power Analysis Attack on the Serpent Key Schedule
Kevin J. Compton, Brian Timm, Joel VanLaven
Secret-key cryptography
We describe an SPA attack on an 8-bit smart card implementation of the Serpent block cipher. Our attack uses measurements taken during an on-the-fly key expansion together with linearity in the cipher's key schedule algorithm to drastically reduce the search time for an initial key. An implementation finds 256-bit keys in 3.736 ms on average. Our work shows that linearity in key schedule design and other cryptographic applications should be carefully evaluated for susceptibility to...
Side Channel Cube Attacks on Block Ciphers
Itai Dinur, Adi Shamir
Secret-key cryptography
In this paper we formalize the notion of {\it leakage attacks} on
iterated block ciphers, in which the attacker can find (via
physical probing, power measurement, or any other type of side
channel) one bit of information about the intermediate state of
the encryption after each round. Since bits computed during the
early rounds can be typically represented by low degree
multivariate polynomials, cube attacks seem to be an ideal generic
key recovery technique in these situations. However, the...
On Algebraic Relations of Serpent S-Boxes
Bhupendra Singh, Lexy Alexander, Sanjay Burman
Secret-key cryptography
Serpent is a 128-bit block cipher designed by Ross Anderson, Eli Biham and Lars Knudsen as a candidate for the Advanced Encryption Standard (AES). It was a finalist in the AES competition. The winner, Rijndael, got 86 votes at the last AES conference while Serpent got 59 votes [1]. The designers of Serpent claim that Serpent is more secure than Rijndael.In this paper we have observed that the nonlinear order of all output bits of serpent S-boxes are not 3 as it is claimed by the designers.
How Fast can be Algebraic Attacks on Block Ciphers ?
Nicolas T. Courtois
Secret-key cryptography
In this paper we give a specification of a new block cipher
that can be called the Courtois Toy Cipher (CTC).
It is quite simple, and yet very much like any other known block cipher. If the parameters are large enough, it should evidently be
secure against all known attack methods.
However, we are not proposing a new method for encrypting sensitive data, but rather a research tool that should allow us (and other researchers) to experiment with algebraic attacks on block ciphers
and obtain...
Cryptanalysis of Block Ciphers with Overdefined Systems of Equations
Nicolas Courtois, Josef Pieprzyk
Secret-key cryptography
Several recently proposed ciphers are built with layers of small S-boxes, interconnected by linear key-dependent layers. Their security relies on the fact, that the classical methods of cryptanalysis (e.g. linear or differential attacks) are based on probabilistic characteristics, which makes their security grow exponentially with the number of rounds Nr.
In this paper we study the security of such ciphers under an additional hypothesis: the S-box can be described by an overdefined system...
New Results on Boomerang and Rectangle Attack
Eli Biham, Orr Dunkelman, Nathan Keller
Secret-key cryptography
The boomerang attack is a new and very powerful cryptanalytic
technique. However, due to the adaptive chosen plaintext and
ciphertext nature of the attack, boomerang
key recovery attacks
that retrieve key material on both sides of the
boomerang distinguisher are hard to mount.
We also present
a method for using a boomerang distinguisher,
which enables retrieving subkey bits on both sides of the boomerang
distinguisher.
The rectangle attack evolved from the boomerang attack.In this paper we...
The Rectangle Attack - Rectangling the Serpent
Biham Eli, Orr Dunkelman, Nathan Keller
Secret-key cryptography
Serpent is one of the 5 AES finalists. The best attack published so far
analyzes up to 9 rounds. In this paper we present attacks on 7-round,
8-round, and 10-round variants of Serpent. We attack 7-round variant of
Serpent with all key lengths, and 8- and 10-round variants wih 256-bit keys.
The 10-roun attack on the 256-bit keys variants is the best published
attack on the cipher. The attack enhances the amplified boomerang attack
and uses better differentials. We also present the best...
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance varies from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we delve into the rectangle key recovery and propose a unified and...
Differential-linear cryptanalysis was introduced by Langford and Hellman in 1994 and has been extensively studied since then. In 2019, Bar-On et al. presented the Differential-Linear Connectivity Table (DLCT), which connects the differential part and the linear part, thus an attacked cipher is divided to 3 subciphers: the differential part, the DLCT part, and the linear part. In this paper, we firstly present an accurate mathematical formula which establishes a relation between...
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT...
In some linear key recovery attacks, the function which determines the value of the linear approximation from the plaintext, ciphertext and key is replaced by a similar map in order to improve the time or memory complexity at the cost of a data complexity increase. We propose a general framework for key recovery map substitution, and introduce Walsh spectrum puncturing, which consists of removing carefully-chosen coefficients from the Walsh spectrum of this map. The capabilities of this...
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery in depth and propose a...
When generating quartets for the rectangle attacks on ciphers with linear key-schedule, we find the right quartets which may suggest key candidates have to satisfy some nonlinear relations. However, some quartets generated always violate these relations, so that they will never suggest any key candidates. Inspired by previous rectangle frameworks, we find that guessing certain key cells before generating quartets may reduce the number of invalid quartets. However, guessing a lot of key cells...
Differential-linear attacks are a cryptanalysis family that has recently benefited from various technical improvements, mainly in the context of ARX constructions. In this paper we push further this refinement, proposing several new improvements. In particular, we develop a better understanding of the related correlations, improve upon the statistics by using the LLR, and finally use ideas from conditional differentials for finding many right pairs. We illustrate the usefulness of these...
Differential cryptanalysis and linear cryptanalysis are the two best-known techniques for cryptanalysis of block ciphers. In 1994, Langford and Hellman introduced the differential-linear (DL) attack based on dividing the attacked cipher $E$ into two subciphers $E_0$ and $E_1$ and combining a differential characteristic for $E_0$ with a linear approximation for $E_1$ into an attack on the entire cipher $E$. The DL technique was used to mount the best known attacks against numerous ciphers,...
Linear cryptanalysis of DES, proposed by Matsui in 1993, has had a seminal impact on symmetric-key cryptography, having seen massive research efforts over the past two decades. It has spawned many variants, including multidimensional and zero-correlation linear cryptanalysis. These variants can claim best attacks on several ciphers, including PRESENT, Serpent, and CLEFIA. For DES, none of these variants have improved upon Matsui's original linear cryptanalysis, which has been the best...
Division property is a general integral property introduced by Todo at EUROCRYPT 2015. Recently, at ASIACRYPT 2016, Xiang et al. applied the Mixed Integer Linear Programming (MILP) method to search bit-based division property, and handled the complexity which restricted the application of bit-based division property proposed by Todo and Morii at FSE 2016. However, their MILP-aided search was only applied to some lightweight block ciphers whose linear layers were limited to bit-permutations,...
Extensions of linear cryptanalysis making use of multiple approximations, such as multiple and multidimensional linear cryptanalysis, are an important tool in symmetric-key cryptanalysis, among others being responsible for the best known attacks on ciphers such as Serpent and PRESENT. At CRYPTO 2015, Huang et al. provided a refined analysis of the key-dependent capacity leading to a refined key equivalence hypothesis, however at the cost of additional assumptions. Their analysis was...
Solving polynomial systems with noise over F_2 is a fundamental problem in computer science, especially in cryptanalysis. ISBS is a new method for solving this problem based on the idea of incrementally solving the noisy polynomial systems and backtracking all the possible noises, and it has better performance than other methods in solving the some problems generated from cryptanalysis. In this paper, some further researches on ISBS are presented. The structure and size of the search tree of...
A differential attack tries to capture the round keys corresponding to the S-boxes activated by a differential. In this work, we show that for a fixed output difference of an S-box, it may not be possible to distinguish the guessed keys that have a specific difference. We introduce these differences as differential factors. Existence of differential factors can reduce the time complexity of differential attacks and as an example we show that the 10, 11, and 12-round differential-linear...
In this paper, we investigate the Mixed-integer Linear Programming (MILP) modelling of the differential and linear behavior of a wide range of block ciphers. We point out that the differential behavior of an arbitrary S-box can be exactly described by a small system of linear inequalities. ~~~~~Based on this observation and MILP technique, we propose an automatic method for finding high probability (related-key) differential or linear characteristics of block ciphers. Compared with Sun {\it...
With increasing usage of hardware accelerators in modern heterogeneous System-on-Chips (SoCs), the distinction between hardware and software is no longer rigid. The domain of cryptography is no exception and efficient hardware design of so-called software ciphers are becoming increasingly popular. In this paper, for the first time we propose an efficient hardware accelerator design for SOSEMANUK, one of the finalists of the eSTREAM stream cipher competition in the software category. Since...
We present a deterministic algorithm to find nonlinear S-box approximations, and a new nonlinear cryptanalytic technique; the “filtered” nonlinear attack, which achieves the lowest data complexity of any known-plaintext attack on reduced-round Serpent so far. We demonstrate that the Wrong-Key Randomization Hypothesis is not entirely valid for attacks on reduced-round Serpent which rely on linear cryptanalysis or a variant thereof, and survey the effects of this on existing attacks (including...
We utilise a simulated annealing algorithm to find several nonlinear approximations to various S-boxes which can be used to replace the linear approximations in the outer rounds of existing attacks. We propose three variants of a new nonlinear cryptanalytic algorithm which overcomes the main issues that prevented the use of nonlinear approximations in previous research, and we present the statistical frameworks for calculating the complexity of each version. We present new attacks on...
Threshold Implementation (TI) is an elegant and widely accepted countermeasure against 1-st order Differential Power Analysis (DPA) in Side Channel Attacks. The 3-share TI is the most efficient version of TI, but so far, it can only be applied to 50\% of all 4-bit S-boxes. In this paper, we study the limitations of decomposition and introduce factorization to enable the 3-share TI for any optimal 4-bit S-box. We propose an algorithm which can decompose any optimal 4-bit S-box to quadratic...
Search for cryptographic keys in RAM is a new and prospective technology which can be used, primarily, in the computer forensics. In order to use it, a cryptanalyst must solve, at least, two problems: to create a memory dump from target machine and to distinguish target cryptographic keys from other data. The latter leads to a new mathematical task: <<recognition of cryptographic keys in the (random) data stream>>. The complexity of this task significantly depends on target cryptoalgorithm....
A method for extracting cryptographic key material from DRAM used in modern computers has been recently proposed in [9]; the technique was called Cold Boot attacks. When considering block ciphers, such as the AES and DES, simple algorithms were also proposed in [9] to recover the cryptographic key from the observed set of round subkeys in memory (computed via the cipher’s key schedule operation), which were however subject to errors due to memory bits decay. In this work we extend this...
In 2008 I. Dinur and A. Shamir presented a new type of algebraic attack on symmetric ciphers named cube attack. The method has been applied to reduced variants of stream ciphers Trivium and Grain- 128, reduced variants of the block ciphers Serpent and CTC and to a reduced version of the keyed hash function MD6. Independently a very similar attack named AIDA was introduced by M. Vielhaber. In this paper we develop quadraticity tests within the cube attack and apply them to a variant of stream...
In 2008 I. Dinur and A. Shamir presented a new type of algebraic attack on symmetric ciphers named cube attack. The method has been applied to reduced variants of stream ciphers Trivium and Grain- 128, reduced variants of the block ciphers Serpent and CTC and to a reduced version of the keyed hash function MD6. Independently a very similar attack named AIDA was introduced by M. Vielhaber. In this paper we develop quadraticity tests within the cube attack and apply them to a variant of stream...
An earlier paper by the same author (IACR Eprint 2008/473) suggested combining a block cipher and a stream cipher to get a strong hybrid cipher. This paper proposes a specific cipher based on those ideas, using the HC-128 stream cipher and a tweakable block cipher based on Serpent.
Abstract. The cube attack has been introduced by Itai Dinur and Adi Shamir [8] as a known plaintext attack on symmetric primitives. The attack has been applied to reduced variants of the stream ciphers Trivium [3, 8] and Grain-128 [2], reduced to three rounds variant of the block cipher Serpent [9] and reduced version of the hash function MD6 [3]. In the special case the attack has appeared in the M. Vielhaber ePrint articles [13, 14], where it has been named AIDA (Algebraic Initial...
We describe an SPA attack on an 8-bit smart card implementation of the Serpent block cipher. Our attack uses measurements taken during an on-the-fly key expansion together with linearity in the cipher's key schedule algorithm to drastically reduce the search time for an initial key. An implementation finds 256-bit keys in 3.736 ms on average. Our work shows that linearity in key schedule design and other cryptographic applications should be carefully evaluated for susceptibility to...
In this paper we formalize the notion of {\it leakage attacks} on iterated block ciphers, in which the attacker can find (via physical probing, power measurement, or any other type of side channel) one bit of information about the intermediate state of the encryption after each round. Since bits computed during the early rounds can be typically represented by low degree multivariate polynomials, cube attacks seem to be an ideal generic key recovery technique in these situations. However, the...
Serpent is a 128-bit block cipher designed by Ross Anderson, Eli Biham and Lars Knudsen as a candidate for the Advanced Encryption Standard (AES). It was a finalist in the AES competition. The winner, Rijndael, got 86 votes at the last AES conference while Serpent got 59 votes [1]. The designers of Serpent claim that Serpent is more secure than Rijndael.In this paper we have observed that the nonlinear order of all output bits of serpent S-boxes are not 3 as it is claimed by the designers.
In this paper we give a specification of a new block cipher that can be called the Courtois Toy Cipher (CTC). It is quite simple, and yet very much like any other known block cipher. If the parameters are large enough, it should evidently be secure against all known attack methods. However, we are not proposing a new method for encrypting sensitive data, but rather a research tool that should allow us (and other researchers) to experiment with algebraic attacks on block ciphers and obtain...
Several recently proposed ciphers are built with layers of small S-boxes, interconnected by linear key-dependent layers. Their security relies on the fact, that the classical methods of cryptanalysis (e.g. linear or differential attacks) are based on probabilistic characteristics, which makes their security grow exponentially with the number of rounds Nr. In this paper we study the security of such ciphers under an additional hypothesis: the S-box can be described by an overdefined system...
The boomerang attack is a new and very powerful cryptanalytic technique. However, due to the adaptive chosen plaintext and ciphertext nature of the attack, boomerang key recovery attacks that retrieve key material on both sides of the boomerang distinguisher are hard to mount. We also present a method for using a boomerang distinguisher, which enables retrieving subkey bits on both sides of the boomerang distinguisher. The rectangle attack evolved from the boomerang attack.In this paper we...
Serpent is one of the 5 AES finalists. The best attack published so far analyzes up to 9 rounds. In this paper we present attacks on 7-round, 8-round, and 10-round variants of Serpent. We attack 7-round variant of Serpent with all key lengths, and 8- and 10-round variants wih 256-bit keys. The 10-roun attack on the 256-bit keys variants is the best published attack on the cipher. The attack enhances the amplified boomerang attack and uses better differentials. We also present the best...