[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

1700 results sorted by ID

2025/430 (PDF) Last updated: 2025-03-06
Non-interactive Anonymous Tokens with Private Metadata Bit
Foteini Baldimtsi, Lucjan Hanzlik, Quan Nguyen, Aayush Yadav
Cryptographic protocols

Anonymous tokens with private metadata bit (ATPM) have received increased interest as a method for anonymous client authentication while also embedding trust signals that are only readable by the authority who holds the issuance secret key and nobody else. A drawback of all existing ATPM constructions is that they require client-issuer interaction during the issuance process. In this work, we build the first non-interactive anonymous tokens (NIAT) with private metadata bit, inspired by the...

2025/426 (PDF) Last updated: 2025-03-05
Exploring How to Authenticate Application Messages in MLS: More Efficient, Post-Quantum, and Anonymous Blocklistable
Keitaro Hashimoto, Shuichi Katsumata, Guillermo Pascual-Perez
Cryptographic protocols

The Message Layer Security (MLS) protocol has recently been standardized by the IETF. MLS is a scalable secure group messaging protocol expected to run more efficiently compared to the Signal protocol at scale, while offering a similar level of strong security. Even though MLS has undergone extensive examination by researchers, the majority of the works have focused on confidentiality. In this work, we focus on the authenticity of the application messages exchanged in MLS. Currently, MLS...

2025/404 (PDF) Last updated: 2025-03-03
SNARKs for Stateful Computations on Authenticated Data
Johannes Reinhart, Erik-Oliver Blass, Bjoern Annighoefer
Cryptographic protocols

We present a new generalization of (zk-)SNARKs combining two additional features at the same time. Besides the verification of correct computation, our new SNARKs also allow, first, the verification of input data authenticity. Specifically, a verifier can confirm that the input to the computation originated from a trusted source. Second, our SNARKs support verification of stateful computations across multiple rounds, ensuring that the output of the current round correctly depends on the...

2025/362 (PDF) Last updated: 2025-02-26
Adaptively Secure Fully Homomorphic Message Authentication Code with Pre-processable Verification
Jeongsu Kim, Aaram Yun
Secret-key cryptography

There has been remarkable progress in fully homomorphic encryption, ever since Gentry's first scheme. In contrast, fully homomorphic authentication primitives received relatively less attention, despite existence of some previous constructions. While there exist various schemes with different functionalities for fully homomorphic encryption, there are only a few options for fully homomorphic authentication. Moreover, there are even fewer options when considering two of the most important...

2025/348 (PDF) Last updated: 2025-02-25
Juicebox Protocol: Distributed Storage and Recovery of Secrets Using Simple PIN Authentication
Nora Trapp, Diego Ongaro
Cryptographic protocols

Existing secret management techniques demand users memorize complex passwords, store convoluted recovery phrases, or place their trust in a specific service or hardware provider. We have designed a novel protocol that combines existing cryptographic techniques to eliminate these complications and reduce user complexity to recalling a short PIN. Our protocol specifically focuses on a distributed approach to secret storage that leverages Oblivious Pseudorandom Functions (OPRFs) and a...

2025/321 (PDF) Last updated: 2025-02-26
Differential Cryptanalysis of the Reduced Pointer Authentication Code Function used in Arm’s FEAT_PACQARMA3 Feature
Roberto Avanzi, Orr Dunkelman, Shibam Ghosh
Secret-key cryptography

The Pointer Authentication Code ($\textsf{PAC}$) feature in the Arm architecture is used to enforce the Code Flow Integrity ($\textsf{CFI}$) of running programs. It does so by generating a short $\textsf{MAC}$ - called the $\textsf{PAC}$ - of the return address and some additional context information upon function entry, and checking it upon exit. An attacker that wants to overwrite the stack with manipulated addresses now faces an additional hurdle, as they now have to guess,...

2025/298 (PDF) Last updated: 2025-02-20
Stateless Hash-Based Signatures for Post-Quantum Security Keys
Ruben Gonzalez
Implementation

The U.S. National Institute of Standards and Technology recently standardized the first set of post-quantum cryptography algo- rithms. These algorithms address the quantum threat, but also present new challenges due to their larger memory and computational footprint. Three of the four standardized algorithms are lattice based, offering good performance but posing challenges due to complex implementation and intricate security assumptions. A more conservative choice for quantum- safe...

2025/267 (PDF) Last updated: 2025-02-18
Authentication and sole control at a high level of assurance on widespread smartphones with threshold signatures
Sander Q. Dijkhuis
Applications

How to be assured that a user entered their PIN on their smartphone? The question is especially relevant when deploying remotely secured services such as with mobile wallets for digital identity and banking, which typically deploy a server side backed by a hardware security module (HSM). As long as the server can be trusted, authentication can be performed with high assurance, but it is challenging to guarantee sole control. This report defines an approach in terms of an abstract security...

2025/232 (PDF) Last updated: 2025-02-14
Authenticated BitGC for Actively Secure Rate-One 2PC
Hanlin Liu, Xiao Wang, Kang Yang, Yu Yu
Cryptographic protocols

In this paper, we present a constant-round actively secure two-party computation protocol with small communication based on the ring learning with errors (RLWE) assumption with key-dependent message security. Our result builds on the recent BitGC protocol by Liu, Wang, Yang, and Yu (Eurocrypt 2025) with communication of one bit per gate for semi-honest security. First, we achieve a different manner of distributed garbling, where the global correlation is secret-shared among the two parties....

2025/230 (PDF) Last updated: 2025-02-14
Privately Constrained PRFs from DCR: Puncturing and Bounded Waring Rank
Amik Raj Behera, Pierre Meyer, Claudio Orlandi, Lawrence Roy, Peter Scholl
Public-key cryptography

A privately constrained pseudorandom function (pCPRF) is a PRF with the additional property that one can derive a constrained key that allows evaluating the PRF only on inputs satisfying a constraint predicate $C$, without revealing $C$ itself or leaking information about the PRF’s output on inputs that do not satisfy the constraint. Existing privately constrained PRFs face significant limitations: either (1) they rely on assumptions known to imply fully-homomorphic encryption or...

2025/221 (PDF) Last updated: 2025-02-14
Uniformly Most Powerful Tests for Ad Hoc Transactions in Monero
Brandon Goodell, Rigo Salazar, Freeman Slaughter
Cryptographic protocols

We introduce a general, low-cost, low-power statistical test for transactions in transaction protocols with small anonymity set authentication (TPSASAs), such as Monero. The test classifies transactions as ad hoc (spontaneously constructed to spend a deterministically selected key) or self-churned (constructed from a probability distribution very close to that of the default wallet software, and with the same sender and receiver). The test is a uniformly most powerful (UMP) likelihood ratio...

2025/204 (PDF) Last updated: 2025-02-11
Simpler and Stronger Models for Deniable Authentication
Guilherme Rito, Christopher Portmann, Chen-Da Liu-Zhang

Deniable Authentication is a highly desirable guarantee for secure messaging: it allows Alice to authentically send a message $m$ to a designated receiver Bob in a *Plausibly Deniable* manner. Concretely, while Bob is guaranteed Alice sent $m$, he cannot convince a judge Judy that Alice really sent this message---even if he gives Judy his secret keys. This is because Judy knows Bob *can* make things up. This paper models the security of Multi-Designated Verifier Signatures (MDVS) and...

2025/177 (PDF) Last updated: 2025-02-16
On the Power of Sumcheck in Secure Multiparty Computation
Zhe Li, Chaoping Xing, Yizhou Yao, Chen Yuan
Cryptographic protocols

Lund et al. (JACM 1992) invented the powerful Sumcheck protocol that has been extensively used in complexity theory and in designing concretely efficient (zero-knowledge) arguments. In this work, we systematically study Sumcheck in the context of secure multi-party computation (MPC). Our main result is a new generic framework for lifting semi-honest MPC protocols to maliciously secure ones, with a {\em constant} multiplicative overhead in {\em both} computation and communication, and in the...

2025/161 (PDF) Last updated: 2025-02-05
Secure Showing of Partial Attributes
Foteini Baldimtsi, Julia Kastner, Julian Loss, Omar Renawi
Public-key cryptography

Anonymous Attribute-Based Credentials (ABCs) allow users to prove possession of attributes while adhering to various authentication policies and without revealing unnecessary information. Single-use ABCs are particularly appealing for their lightweight nature and practical efficiency. These credentials are typically built using blind signatures, with Anonymous Credentials Light (ACL) being one of the most prominent schemes in the literature. However, the security properties of single-use...

2025/142 (PDF) Last updated: 2025-01-29
hax: Verifying Security-Critical Rust Software using Multiple Provers
Karthikeyan Bhargavan, Maxime Buyse, Lucas Franceschino, Lasse Letager Hansen, Franziskus Kiefer, Jonas Schneider-Bensch, Bas Spitters
Implementation

We present hax, a verification toolchain for Rust targeted at security-critical software such as cryptographic libraries, protocol imple- mentations, authentication and authorization mechanisms, and parsing and sanitization code. The key idea behind hax is the pragmatic observation that different verification tools are better at handling different kinds of verification goals. Consequently, hax supports multiple proof backends, including domain-specific security analysis tools like ProVerif...

2025/140 (PDF) Last updated: 2025-01-29
HELP: Everlasting Privacy through Server-Aided Randomness
Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin
Foundations

Everlasting (EL) privacy offers an attractive solution to the Store-Now-Decrypt-Later (SNDL) problem, where future increases in the attacker's capability could break systems which are believed to be secure today. Instead of requiring full information-theoretic security, everlasting privacy allows computationally-secure transmissions of ephemeral secrets, which are only "effective" for a limited periods of time, after which their compromise is provably useless for the SNDL attacker. In...

2025/136 (PDF) Last updated: 2025-01-29
Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces
Pierrick Gaudry, Julien Soumier, Pierre-Jean Spaenlehauer
Public-key cryptography

We investigate the algorithmic problem of computing isomorphisms between products of supersingular elliptic curves, given their endomorphism rings. This computational problem seems to be difficult when the domain and codomain are fixed, whereas we provide efficient algorithms to compute isomorphisms when part of the codomain is built during the construction. We propose an authentication protocol whose security relies on this asymmetry. Its most prominent feature is that the endomorphism...

2025/126 (PDF) Last updated: 2025-01-27
Always by Your Side: Constructing Traceable Anonymous Credentials with Hardware-Binding
Chang Chen, Guoyu Yang, Qi Chen, Wei Wang, Jin Li
Applications

With the development of decentralized identity (DID), anonymous credential (AC) technology, as well as its traceability, is receiving more and more attention. Most works introduce a trusted party (regulator) that holds a decryption key or backdoor to directly deanonymize the user identity of anonymous authentication. While some cryptographic primitives can help regulators handle complex tracing tasks among large amounts of user profiles (stored by the issuer) and authentication records...

2025/119 (PDF) Last updated: 2025-02-15
SoK: PQC PAKEs - Cryptographic Primitives, Design and Security
Nouri Alnahawi, David Haas, Erik Mauß, Alexander Wiesmaier
Cryptographic protocols

PAKE protocols are used to establish secure communication channels using a relatively short, often human memorable, password for authentication. The currently standardized PAKEs however rely on classical asymmetric (public key) cryptography. Thus, these classical PAKEs may no longer maintain their security, should the expected quantum threat become a reality. Unlike prominent security protocols such as TLS, IKEv2 and VPN, quantum-safe PAKEs did not receive much attention from the ongoing PQC...

2025/054 (PDF) Last updated: 2025-01-14
Doubly Efficient Fuzzy Private Set Intersection for High-dimensional Data with Cosine Similarity
Hyunjung Son, Seunghun Paik, Yunki Kim, Sunpill Kim, Heewon Chung, Jae Hong Seo
Cryptographic protocols

Fuzzy private set intersection (Fuzzy PSI) is a cryptographic protocol for privacy-preserving similarity matching, which is one of the essential operations in various real-world applications such as facial authentication, information retrieval, or recommendation systems. Despite recent advancements in fuzzy PSI protocols, still a huge barrier remains in deploying them for these applications. The main obstacle is the high dimensionality, e.g., from 128 to 512, of data; lots of existing...

2025/041 (PDF) Last updated: 2025-01-10
Keyed-Verification Anonymous Credentials with Highly Efficient Partial Disclosure
Omid Mirzamohammadi, Jan Bobolz, Mahdi Sedaghat, Emad Heydari Beni, Aysajan Abidin, Dave Singelee, Bart Preneel
Cryptographic protocols

An anonymous credential (AC) system with partial disclosure allows users to prove possession of a credential issued by an issuer while selectively disclosing a subset of their attributes to a verifier in a privacy-preserving manner. In keyed-verification AC (KVAC) systems, the issuer and verifier share a secret key. Existing KVAC schemes rely on computationally expensive zero-knowledge proofs during credential presentation, with the presentation size growing linearly with the number of...

2025/021 (PDF) Last updated: 2025-01-06
Efficient Authentication Protocols from the Restricted Syndrome Decoding Problem
Thomas Johansson, Mustafa Khairallah, Vu Nguyen
Cryptographic protocols

In this paper, we introduce an oracle version of the Restricted Syndrome Decoding Problem (RSDP) and propose novel authentication protocols based on the hardness of this problem. They follow the basic structure of the HB-family of authentication protocols and later improvements but demonstrate several advantages. An appropriate choice of multiplicative subgroup and ring structure gives rise to a very efficient hardware implementation compared to other \emph{Learning Parity with Noise} based...

2024/2083 (PDF) Last updated: 2024-12-27
Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani
Cryptographic protocols

To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...

2024/2066 (PDF) Last updated: 2024-12-23
COCO: Coconuts and Oblivious Computations for Orthogonal Authentication
Yamya Reiki
Cryptographic protocols

Authentication often bridges real-world individuals and their virtual public identities, like usernames, user IDs and e-mails, exposing vulnerabilities that threaten user privacy. This research introduces COCO (Coconuts and Oblivious Computations for Orthogonal Authentication), a framework that segregates roles among Verifiers, Authenticators, and Clients to achieve privacy-preserving authentication. COCO eliminates the need for Authenticators to directly access virtual public identifiers...

2024/2047 (PDF) Last updated: 2025-03-07
Breaking and Provably Restoring Authentication: A Formal Analysis of SPDM 1.2 including Cross-Protocol Attacks
Cas Cremers, Alexander Dax, Aurora Naska
Cryptographic protocols

The SPDM (Security Protocol and Data Model) protocol is a standard under development by the DMTF consortium, and supported by major industry players including Broadcom, Cisco, Dell, Google, HP, IBM, Intel, and NVIDIA. SPDM 1.2 is a complex protocol that aims to provide platform security, for example for communicating hardware components or cloud computing scenarios. In this work, we provide the first holistic, formal analysis of SPDM 1.2: we model the full protocol flow of SPDM considering...

2024/2010 (PDF) Last updated: 2024-12-20
Anonymous credentials from ECDSA
Matteo Frigo, abhi shelat
Cryptographic protocols

Anonymous digital credentials allow a user to prove possession of an attribute that has been asserted by an identity issuer without revealing any extra information about themselves. For example, a user who has received a digital passport credential can prove their “age is $>18$” without revealing any other attributes such as their name or date of birth. Despite inherent value for privacy-preserving authentication, anonymous credential schemes have been difficult to deploy at scale. ...

2024/1983 (PDF) Last updated: 2025-01-11
UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption
Jaehwan Park, Hyeonbum Lee, Junbeom Hur, Jae Hong Seo, Doowon Kim
Public-key cryptography

As dataset sizes grow, users increasingly rely on encrypted data and secure range queries on cloud servers, raising privacy concerns about potential data leakage. Order-revealing encryption (ORE) enables efficient operations on numerical datasets, and Delegatable ORE (DORE) extends this functionality to multi-client environments, but it faces risks of token forgery. Secure DORE (SEDORE) and Efficient DORE (EDORE) address some vulnerabilities, with EDORE improving speed and storage...

2024/1980 (PDF) Last updated: 2024-12-06
Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs
Amit Singh Bhati, Elena Andreeva, Simon Müller, Damian Vizar
Secret-key cryptography

A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications. A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various...

2024/1957 (PDF) Last updated: 2025-02-15
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Gareth T. Davies, Alexander Wiesmaier
Cryptographic protocols

Password Authenticated Key Exchange (PAKE) is a fundamental cryptographic component that allows two parties to establish a shared key using only (potentially low-entropy) passwords. The interest in realizing generic KEM-based PAKEs has increased significantly in the last few years as part of the global migration effort to quantum-resistant cryptography. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the...

2024/1942 (PDF) Last updated: 2024-12-06
DGMT: A Fully Dynamic Group Signature From Symmetric-key Primitives
Mojtaba Fadavi, Sabyasachi Karati, Aylar Erfanian, Reihaneh Safavi-Naini
Foundations

A group signatures allows a user to sign a message anonymously on behalf of a group and provides accountability by using an opening authority who can ``open'' a signature and reveal the signer's identity. Group signatures have been widely used in privacy-preserving applications including anonymous attestation and anonymous authentication. Fully dynamic group signatures allow new members to join the group and existing members to be revoked if needed. Symmetric-key based group signature...

2024/1941 (PDF) Last updated: 2024-11-29
Universally Composable Server-Supported Signatures for Smartphones
Nikita Snetkov, Jelizaveta Vakarjuk, Peeter Laud
Cryptographic protocols

Smart-ID is an application for signing and authentication provided as a service to residents of Belgium, Estonia, Latvia and Lithuania. Its security relies on multi-prime server-supported RSA, password-authenticated key shares and clone detection mechanism. Unfortunately, the security properties of the underlying protocol have been specified only in ``game-based'' manner. There is no corresponding ideal functionality that the actual protocol is shown to securely realize in the universal...

2024/1912 (PDF) Last updated: 2024-12-03
Universally Composable and Reliable Password Hardening Services
Shaoqiang Wu, Ding Wang
Cryptographic protocols

The password-hardening service (PH) is a crypto service that armors canonical password authentication with an external key against offline password guessing in case the password file is somehow compromised/leaked. The game-based formal treatment of PH was brought by Everspaugh et al. at USENIX Security'15. Their work is followed by efficiency-enhancing PO-COM (CCS'16), security-patching Phoenix (USENIX Security'17), and functionality-refining PW-Hero (SRDS'22). However, the issue of single...

2024/1874 (PDF) Last updated: 2024-11-16
Multi-Holder Anonymous Credentials from BBS Signatures
Andrea Flamini, Eysa Lee, Anna Lysyanskaya
Cryptographic protocols

The eIDAS 2.0 regulation aims to develop interoperable digital identities for European citizens, and it has recently become law. One of its requirements is that credentials be unlinkable. Anonymous credentials (AC) allow holders to prove statements about their identity in a way that does not require to reveal their identity and does not enable linking different usages of the same credential. As a result, they are likely to become the technology that provides digital identity for...

2024/1839 (PDF) Last updated: 2024-11-08
Cryptographically Secure Digital Consent
F. Betül Durak, Abdullah Talayhan, Serge Vaudenay
Cryptographic protocols

In the digital age, the concept of consent for online actions executed by third parties is crucial for maintaining trust and security in third-party services. This work introduces the notion of cryptographically secure digital consent, which aims to replicate the traditional consent process in the online world. We provide a flexible digital consent solution that accommodates different use cases and ensures the integrity of the consent process. The proposed framework involves a client...

2024/1816 (PDF) Last updated: 2024-11-10
Attacking Automotive RKE Security: How Smart are your ‘Smart’ Keys?
Ritul Satish, Alfred Daimari, Argha Chakrabarty, Kahaan Shah, Debayan Gupta
Attacks and cryptanalysis

Remote Keyless Entry (RKE) systems are ubiqui- tous in modern day automobiles, providing convenience for vehicle owners - occasionally at the cost of security. Most automobile companies have proprietary implementations of RKE; these are sometimes built on insecure algorithms and authentication mechanisms. This paper presents a compre- hensive study conducted on the RKE systems of multiple cars from four automobile manufacturers not previously explored. Specifically, we analyze the...

2024/1813 (PDF) Last updated: 2025-02-21
Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD: More Applications of Pseudo-Random Injections
Mustafa Khairallah
Secret-key cryptography

Pseudo-Random Injections (PRIs) have been used in several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committing scheme by encrypting part of the plaintext...

2024/1811 (PDF) Last updated: 2024-11-05
Pseudorandom Function-like States from Common Haar Unitary
Minki Hhan, Shogo Yamada
Foundations

Recent active studies have demonstrated that cryptography without one-way functions (OWFs) could be possible in the quantum world. Many fundamental primitives that are natural quantum analogs of OWFs or pseudorandom generators (PRGs) have been introduced, and their mutual relations and applications have been studied. Among them, pseudorandom function-like state generators (PRFSGs) [Ananth, Qian, and Yuen, Crypto 2022] are one of the most important primitives. PRFSGs are a natural quantum...

2024/1798 (PDF) Last updated: 2024-12-29
Quantum One-Time Protection of any Randomized Algorithm
Sam Gunn, Ramis Movassagh
Foundations

The meteoric rise in power and popularity of machine learning models dependent on valuable training data has reignited a basic tension between the power of running a program locally and the risk of exposing details of that program to the user. At the same time, fundamental properties of quantum states offer new solutions to data and program security that can require strikingly few quantum resources to exploit, and offer advantages outside of mere computational run time. In this work, we...

2024/1783 (PDF) Last updated: 2024-11-01
PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless Communications
Yang Yang, Robert H. Deng, Guomin Yang, Yingjiu Li, HweeHwa Pang, Minming Huang, Rui Shi, Jian Weng
Cryptographic protocols

Service discovery is essential in wireless communications. However, existing service discovery protocols provide no or very limited privacy protection for service providers and clients, and they often leak sensitive information (e.g., service type, client’s identity and mobility pattern), which leads to various network-based attacks (e.g., spoofing, man-in-the-middle, identification and tracking). In this paper, we propose a private service discovery protocol, called PriSrv, which allows a...

2024/1674 (PDF) Last updated: 2024-10-15
Provable Security Analysis of Butterfly Key Mechanism Protocol in IEEE 1609.2.1 Standard
Alexandra Boldyreva, Virendra Kumar, Jiahao Sun
Cryptographic protocols

The paper provides the first provable security analysis of the Butterfly Key Mechanism (BKM) protocol from IEEE 1609.2.1 standard. The BKM protocol specifies a novel approach for efficiently requesting multiple certificates for use in vehicle-to-everything (V2X) communication. We define the main security goals of BKM, such as vehicle privacy and communication authenticity. We prove that the BKM protocol, with small modifications, meets those security goals. We also propose a way to...

2024/1673 (PDF) Last updated: 2024-10-15
Proteus: A Fully Homomorphic Authenticated Transciphering Protocol
Lars Wolfgang Folkerts, Nektarios Georgios Tsoutsos
Cryptographic protocols

Fully Homomorphic Encryption (FHE) is a powerful technology that allows a cloud server to perform computations directly on ciphertexts. To overcome the overhead of sending and storing large FHE ciphertexts, the concept of FHE transciphering was introduced, allowing symmetric key encrypted ciphertexts to be transformed into FHE ciphertexts by deploying symmetric key decryption homomorphically. However, existing FHE transciphering schemes remain unauthenticated and malleable, allowing...

2024/1641 (PDF) Last updated: 2024-10-12
Simplification Issues of An Authentication and Key Agreement Scheme for Smart Grid
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

Key agreement and public key encryption are two elementary cryptographic primitives, suitable for different scenarios. But their differences are still not familiar to some researchers. In this note, we show that the Safkhani et al.'s key agreement scheme [Peer-to-Peer Netw. Appl. 15(3), 1595-1616, 2022] is a public key encryption in disguise. We stress that the ultimate use of key agreement is to establish a shared key for some symmetric key encryption. We also present a simplification of...

2024/1640 (PDF) Last updated: 2024-10-22
Maximizing the Utility of Cryptographic Setups: Secure PAKEs, with either functional RO or CRS
Yuting Xiao, Rui Zhang, Hong-Sheng Zhou
Cryptographic protocols

For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup). However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...

2024/1630 (PDF) Last updated: 2025-03-08
Hybrid Password Authentication Key Exchange in the UC Framework
You Lyu, Shengli Liu
Cryptographic protocols

A hybrid cryptosystem combines two systems that fulfill the same cryptographic functionality, and its security enjoys the security of the harder one. There are many proposals for hybrid public-key encryption (hybrid PKE), hybrid signature (hybrid SIG) and hybrid authenticated key exchange (hybrid AKE). In this paper, we fill the blank of Hybrid Password Authentication Key Exchange (hybrid PAKE). For constructing hybrid PAKE, we first define an important class of PAKE -- full DH-type...

2024/1566 (PDF) Last updated: 2025-02-14
Dynamic zk-SNARKs
Weijie Wang, Charalampos Papamanthou, Shravan Srinivasan, Dimitrios Papadopoulos
Cryptographic protocols

In this work, we put forth the notion of dynamic zk-SNARKs. A dynamic zk-SNARK is a zk-SNARK that has an additional update algorithm. The update algorithm takes as input a valid source statement-witness pair $(x,w)\in R$ along with a verifying proof $\pi$, and a valid target statement-witness pair $(x',w')\in R$. It outputs a verifying proof $\pi'$ for $(x',w')$ in sublinear time (for $(x,w)$ and $(x',w')$ with small Hamming distance) potentially with the help of a data structure. To the...

2024/1539 (PDF) Last updated: 2024-10-02
Quantum Cryptography from Meta-Complexity
Taiga Hiroka, Tomoyuki Morimae
Foundations

In classical cryptography, one-way functions (OWFs) are the minimal assumption, while recent active studies have demonstrated that OWFs are not necessarily the minimum assumption in quantum cryptography. Several new primitives have been introduced such as pseudorandom unitaries (PRUs), pseudorandom function-like state generators (PRFSGs), pseudorandom state generators (PRSGs), one-way state generators (OWSGs), one-way puzzles (OWPuzzs), and EFI pairs. They are believed to be weaker than...

2024/1491 (PDF) Last updated: 2024-09-24
On the Anonymity of One Authentication and Key Agreement Scheme for Peer-to-Peer Cloud
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

Peer-to-peer communication systems can provide many functions, including anonymized routing of network traffic, massive parallel computing environments, and distributed storage. Anonymity refers to the state of being completely nameless, with no attached identifiers. Pseudonymity involves the use of a fictitious name that can be consistently linked to a particular user, though not necessarily to the real identity. Both provide a layer of privacy, shielding the user's true identity from...

2024/1474 (PDF) Last updated: 2024-09-20
Mystrium: Wide Block Encryption Efficient on Entry-Level Processors
Parisa Amiri Eliasi, Koustabh Ghosh, Joan Daemen
Secret-key cryptography

We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7. Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function. We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...

2024/1469 (PDF) Last updated: 2024-09-22
Password-Protected Threshold Signatures
Stefan Dziembowski, Stanislaw Jarecki, Paweł Kędzior, Hugo Krawczyk, Chan Nam Ngo, Jiayu Xu
Cryptographic protocols

We witness an increase in applications like cryptocurrency wallets, which involve users issuing signatures using private keys. To protect these keys from loss or compromise, users commonly outsource them to a custodial server. This creates a new point of failure, because compromise of such a server leaks the user’s key, and if user authentication is implemented with a password then this password becomes open to an offline dictionary attack (ODA). A better solution is to secret-share the key...

2024/1443 (PDF) Last updated: 2024-10-01
32-bit and 64-bit CDC-7-XPUF Implementations on a Zynq-7020 SoC
Oğuz Yayla, Yunus Emre Yılmaz
Implementation

Physically (or Physical) Unclonable Functions (PUFs) are basic and useful primitives in designing cryptographic systems. PUFs are designed to facilitate device authentication, secure boot, firmware integrity, and secure communications. To achieve these objectives, PUFs must exhibit both consistent repeatability and instance-specific randomness. The Arbiter PUF (APUF), recognized as the first silicon PUF, is capable of generating a substantial number of secret keys instantaneously based on...

2024/1438 (PDF) Last updated: 2024-09-14
Anamorphic Authenticated Key Exchange: Double Key Distribution under Surveillance
Weihao Wang, Shuai Han, Shengli Liu
Public-key cryptography

Anamorphic encryptions and anamorphic signatures assume a double key pre-shared between two parties so as to enable the transmission of covert messages. How to securely and efficiently distribute a double key under the dictator's surveillance is a central problem for anamorphic cryptography, especially when the users are forced to surrender their long-term secret keys or even the randomness used in the algorithms to the dictator. In this paper, we propose Anamorphic Authentication Key...

2024/1436 (PDF) Last updated: 2024-09-13
Eva: Efficient IVC-Based Authentication of Lossy-Encoded Videos
Chengru Zhang, Xiao Yang, David Oswald, Mark Ryan, Philipp Jovanovic
Applications

With the increasing spread of fake videos for misinformation, proving the provenance of an edited video (without revealing the original one) becomes critical. To this end, we introduce Eva, the first cryptographic protocol for authenticating lossy-encoded videos. Compared to previous cryptographic methods for image authentication, Eva supports significantly larger amounts of data that undergo complex transformations during encoding. We achieve this by decomposing repetitive and manageable...

2024/1411 (PDF) Last updated: 2024-09-10
Design issues of ``an anonymous authentication and key agreement protocol in smart living''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

The Li et al.'s scheme [Computer Communications, 186 (2022), 110-120)] uses XOR operation to realize the private transmission of sensitive information, under the assumption that if only one parameter in the expression $ a= b\oplus c $ is known, an adversary cannot retrieve the other two. The assumption neglects that the operands $b$ and $c$ must be of the same bit-length, which leads to the exposure of a substring in the longer operand. The scheme wrongly treats timestamps as random...

2024/1384 (PDF) Last updated: 2024-09-03
Password-Protected Key Retrieval with(out) HSM Protection
Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, Anja Lehmann
Cryptographic protocols

Password-protected key retrieval (PPKR) enables users to store and retrieve high-entropy keys from a server securely. The process is bootstrapped from a human-memorizable password only, addressing the challenge of how end-users can manage cryptographic key material. The core security requirement is protection against a corrupt server, which should not be able to learn the key or offline- attack it through the password protection. PPKR is deployed at a large scale with the WhatsApp Backup...

2024/1380 (PDF) Last updated: 2024-09-03
EUCLEAK
Thomas Roche
Attacks and cryptanalysis

Secure elements are small microcontrollers whose main purpose is to generate/store secrets and then execute cryptographic operations. They undergo the highest level of security evaluations that exists (Common Criteria) and are often considered inviolable, even in the worst-case attack scenarios. Hence, complex secure systems build their security upon them. FIDO hardware tokens are strong authentication factors to sign in to applications (any web service supporting FIDO); they often embed...

2024/1377 (PDF) Last updated: 2024-09-02
Security Strengthening of Threshold Symmetric Schemes
Ehsan Ebrahimi
Secret-key cryptography

In this paper, we study the security definitions of various threshold symmetric primitives. Namely, we analyze the security definitions for threshold pseudorandom functions, threshold message authentication codes and threshold symmetric encryption. In each case, we strengthen the existing security definition, and we present a scheme that satisfies our stronger notion of security. In particular, we propose indifferentiability definition and IND-CCA2 definition for a threshold pseudorandom...

2024/1375 (PDF) Last updated: 2024-09-02
ALGAES: An Authenticated Lattice-based Generic Asymmetric Encryption Scheme
Aravind Vishnu S S, M Sethumadhavan, Lakshmy K V
Public-key cryptography

In this article, we propose a generic hybrid encryption scheme providing entity authentication. The scheme is based on lossy trapdoor functions relying on the hardness of the Learning With Errors problem. The construction can be used on a number of different security requirements with minimal reconfiguration. It ensures entity authentication and ciphertext integrity while providing security against adaptive chosen ciphertext attacks in the standard model. As a desired characteristic of...

2024/1326 (PDF) Last updated: 2024-08-24
On the anonymity of one authenticated key agreement scheme for mobile vehicles-assisted precision agricultural IoT networks
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

Smart farming uses different vehicles to manage all the operations on the farm. These vehicles should be put to good use for secure data transmission. The Vangala et al.'s key agreement scheme [IEEE TIFS, 18 (2023), 904-9193] is designed for agricultural IoT networks. In this note, we show that the scheme fails to keep anonymity, instead pseudonymity. The scheme simply thinks that anonymity is equivalent to preventing the real identity from being recovered. But the true anonymity means...

2024/1325 (PDF) Last updated: 2024-08-23
Authenticity in the Presence of Leakage using a Forkcipher
Francesco Berti, François-Xavier Standaert, Itamar Levi
Secret-key cryptography

Robust message authentication codes (MACs) and authenticated encryption (AE) schemes that provide authenticity in the presence of side-channel leakage are essential primitives. These constructions often rely on primitives designed for strong leakage protection, among others including the use of strong-unpredictable (tweakable) block-ciphers. This paper extends the strong-unpredictability security definition to the versatile and new forkcipher primitive. We show how to construct secure and...

2024/1301 (PDF) Last updated: 2024-08-20
Kalos: Hierarchical-auditable and Human-binding Authentication Scheme for Clinical Trial
Chang Chen, Zelong Wu, Guoyu Yang, Qi Chen, Wei Wang, Jin Li
Public-key cryptography

Clinical trials are crucial in the development of new medical treatment methods. To ensure the correctness of clinical trial results, medical institutes need to collect and process large volumes of participant data, which has prompted research on privacy preservation and data reliability. However, existing solutions struggle to resolve the trade-off between them due to the trust gap between the physical and digital worlds, limiting their practicality. To tackle the issues above, we present...

2024/1289 (PDF) Last updated: 2025-02-07
Improved Lattice Blind Signatures from Recycled Entropy
Corentin Jeudy, Olivier Sanders
Public-key cryptography

Blind signatures represent a class of cryptographic primitives enabling privacy-preserving authentication with several applications such as e-cash or e-voting. It is still a very active area of research, in particular in the post-quantum setting where the history of blind signatures has been hectic. Although it started to shift very recently with the introduction of a few lattice-based constructions, all of the latter give up an important characteristic of blind signatures (size, efficiency,...

2024/1283 (PDF) Last updated: 2024-08-14
Password-authenticated Cryptography from Consumable Tokens
Ghada Almashaqbeh
Cryptographic protocols

Passwords are widely adopted for user authentication in practice, which led to the question of whether we can bootstrap a strongly-secure setting based on them. Historically, this has been extensively studied for key exchange; bootstrap from a low-entropy password to a high entropy key securing the communication. Other instances include digital lockers, signatures, secret sharing, and encryption. Motivated by a recent work on consumable tokens (Almashaqbeh et al., Eurocrypt 2022), we...

2024/1244 (PDF) Last updated: 2024-08-06
A Note on ``Three-Factor Anonymous Authentication and Key Agreement Based on Fuzzy Biological Extraction for Industrial Internet of Things''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the key agreement scheme [IEEE Trans. Serv. Comput. 16(4): 3000-3013, 2023] fails to keep user anonymity, not as claimed. The scheme simply acknowledges that user anonymity is equivalent to preventing user's identity from being recovered. But the true anonymity means that the adversary cannot attribute different sessions to target users. It relates to entity-distinguishable, not just identity-revealable. To the best of our knowledge, it is the first time to clarify the...

2024/1205 (PDF) Last updated: 2024-07-25
Analysis of One Scheme for User Authentication and Session Key Agreement in Wireless Sensor Network Using Smart Card
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the Chunka-Banerjee-Goswami authentication and key agreement scheme [Wirel. Pers. Commun., 117, 1361-1385, 2021] fails to keep user anonymity, not as claimed. It only keeps pseudonymity. Anonymous actions are designed to be unlinkable to any entity, but pseudonymous actions can be traced back to a certain entity. We also find the scheme is insecure against offline dictionary attack.

2024/1191 (PDF) Last updated: 2024-07-23
A note on ``a novel authentication protocol for IoT-enabled devices''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the authentication protocol [IEEE Internet Things J., 2023, 10(1), 867-876] is not correctly specified, because the server cannot complete its computations. To revise, the embedded device needs to compute an extra point multiplication over the underlying elliptic curve. We also find the protocol cannot provide anonymity, not as claimed. It can only provide pseudonymity.

2024/1186 (PDF) Last updated: 2024-07-25
MATTER: A Wide-Block Tweakable Block Cipher
Roberto Avanzi, Orr Dunkelman, Kazuhiko Minematsu
Secret-key cryptography

In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software. MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function. The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key. Key and tweak are...

2024/1178 (PDF) Last updated: 2024-07-21
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications

Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...

2024/1177 (PDF) Last updated: 2024-07-21
Cryptanalysis of two post-quantum authenticated key agreement protocols
Mehdi Abri, Hamid Mala
Attacks and cryptanalysis

As the use of the internet and digital devices has grown rapidly, keeping digital communications secure has become very important. Authenticated Key Agreement (AKA) protocols play a vital role in securing digital communications. These protocols enable the communicating parties to mutually authenticate and securely establish a shared secret key. The emergence of quantum computers makes many existing AKA protocols vulnerable to their immense computational power. Consequently, designing new...

2024/1158 (PDF) Last updated: 2024-07-17
A Note on `` Provably Secure and Lightweight Authentication Key Agreement Scheme for Smart Meters''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the authentication key agreement scheme [IEEE Trans. Smart Grid, 2023, 14(5), 3816-3827] is flawed due to its inconsistent computations. We also show that the scheme fails to keep anonymity, not as claimed.

2024/1145 (PDF) Last updated: 2024-07-14
A Practical and Scalable Implementation of the Vernam Cipher, under Shannon Conditions, using Quantum Noise
Adrian Neal
Secret-key cryptography

The one-time pad cipher is renowned for its theoretical perfect security, yet its practical deployment is primarily hindered by the key-size and distribution challenge. This paper introduces a novel approach to key distribution called q-stream, designed to make symmetric-key cryptography, and the one-time pad cipher in particular, a viable option for contemporary secure communications, and specifically, post-quantum cryptography, leveraging quantum noise and combinatorics to ensure secure...

2024/1124 (PDF) Last updated: 2025-02-24
OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms
Maximilian Kroschewski, Anja Lehmann, Cavit Özbay
Cryptographic protocols

Single Sign-On (SSO) allows users to conveniently authenticate to many Relying Parties (RPs) through a central Identity Provider (IdP). SSO supports unlinkable authentication towards the RPs via pairwise pseudonyms, where the IdP assigns the user an RP-specific pseudonym. This feature has been rolled out prominently within Apple's SSO service. While establishing unlinkable identities provides privacy towards RPs, it actually emphasizes the main privacy problem of SSO: with every...

2024/1118 (PDF) Last updated: 2024-07-19
Shared-Custodial Password-Authenticated Deterministic Wallets
Poulami Das, Andreas Erwig, Sebastian Faust
Cryptographic protocols

Cryptographic wallets are an essential tool in Blockchain networks to ensure the secure storage and maintenance of an user's cryptographic keys. Broadly, wallets can be divided into three categories, namely custodial, non-custodial, and shared-custodial wallets. The first two are centralized solutions, i.e., the wallet is operated by a single entity, which inherently introduces a single point of failure. Shared-custodial wallets, on the other hand, are maintained by two independent parties,...

2024/1096 (PDF) Last updated: 2024-07-05
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt, Christian Martin, Nils Maeurer
Cryptographic protocols

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion. We initiate the study of the...

2024/1086 (PDF) Last updated: 2024-10-31
Obfuscated Key Exchange
Felix Günther, Douglas Stebila, Shannon Veitch
Cryptographic protocols

Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...

2024/1074 (PDF) Last updated: 2024-07-05
Trust Nobody: Privacy-Preserving Proofs for Edited Photos with Your Laptop
Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, Marco Zecchini
Applications

The Internet has plenty of images that are transformations (e.g., resize, blur) of confidential original images. Several scenarios (e.g., selling images over the Internet, fighting disinformation, detecting deep fakes) would highly benefit from systems allowing to verify that an image is the result of a transformation applied to a confidential authentic image. In this paper, we focus on systems for proving and verifying the correctness of transformations of authentic images guaranteeing: 1)...

2024/1031 (PDF) Last updated: 2024-06-26
SACfe: Secure Access Control in Functional Encryption with Unbounded Data
Uddipana Dowerah, Subhranil Dutta, Frank Hartmann, Aikaterini Mitrokotsa, Sayantan Mukherjee, Tapas Pal
Cryptographic protocols

Privacy is a major concern in large-scale digital applications, such as cloud-computing, machine learning services, and access control. Users want to protect not only their plain data but also their associated attributes (e.g., age, location, etc). Functional encryption (FE) is a cryptographic tool that allows fine-grained access control over encrypted data. However, existing FE fall short as they are either inefficient and far from reality or they leak sensitive user-specific...

2024/945 (PDF) Last updated: 2024-06-12
Quantum-Safe Public Key Blinding from MPC-in-the-Head Signature Schemes
Sathvika Balumuri, Edward Eaton, Philippe Lamontagne
Public-key cryptography

Key blinding produces pseudonymous digital identities by rerandomizing public keys of a digital signature scheme. It is used in anonymous networks to provide the seemingly contradictory goals of anonymity and authentication. Current key blinding schemes are based on the discrete log assumption. Eaton, Stebila and Stracovsky (LATINCRYPT 2021) proposed the first key blinding schemes from lattice assumptions. However, the large public keys and lack of QROM security means they are not ready to...

2024/935 (PDF) Last updated: 2024-07-26
MFKDF: Multiple Factors Knocked Down Flat
Matteo Scarlata, Matilda Backendal, Miro Haller
Attacks and cryptanalysis

Nair and Song (USENIX 2023) introduce the concept of a Multi-Factor Key Derivation Function (MFKDF), along with constructions and a security analysis. MFKDF integrates dynamic authentication factors, such as HOTP and hardware tokens, into password-based key derivation. The aim is to improve the security of password-derived keys, which can then be used for encryption or as an alternative to multi-factor authentication. The authors claim an exponential security improvement compared to...

2024/928 (PDF) Last updated: 2024-06-12
The Committing Security of MACs with Applications to Generic Composition
Ritam Bhaumik, Bishwajit Chakraborty, Wonseok Choi, Avijit Dutta, Jérôme Govinden, Yaobin Shen
Secret-key cryptography

Message Authentication Codes (MACs) are ubiquitous primitives deployed in multiple flavors through standards such as HMAC, CMAC, GMAC, LightMAC, and many others. Its versatility makes it an essential building block in applications necessitating message authentication and integrity checks, in authentication protocols, authenticated encryption schemes, or as a pseudorandom or key derivation function. Its usage in this variety of settings makes it susceptible to a broad range of attack...

2024/882 (PDF) Last updated: 2024-06-03
Lattice-based Fault Attacks against ECMQV
Weiqiong Cao, Hua Chen, Jingyi Feng, Linmin Fan, Wenling Wu
Attacks and cryptanalysis

ECMQV is a standardized key agreement protocol based on ECC with an additional implicit signature authentication. In this paper we investigate the vulnerability of ECMQV against fault attacks and propose two efficient lattice-based fault attacks. In our attacks, by inducing a storage fault to the ECC parameter $a$ before the execution of ECMQV, we can construct two kinds of weak curves and successfully pass the public-key validation step in the protocol. Then, by solving ECDLP and using a...

2024/874 (PDF) Last updated: 2024-10-17
Fake It till You Make It: Enhancing Security of Bluetooth Secure Connections via Deferrable Authentication
Marc Fischlin, Olga Sanina
Cryptographic protocols

The Bluetooth protocol for wireless connection between devices comes with several security measures to protect confidentiality and integrity of data. At the heart of these security protocols lies the Secure Simple Pairing, wherewith the devices can negotiate a shared key before communicating sensitive data. Despite the good intentions, the Bluetooth security protocol has repeatedly been shown to be vulnerable, especially with regard to active attacks on the Secure Simple Pairing. We...

2024/756 (PDF) Last updated: 2024-05-17
(Strong) aPAKE Revisited: Capturing Multi-User Security and Salting
Dennis Dayanikli, Anja Lehmann
Cryptographic protocols

Asymmetric Password-Authenticated Key Exchange (aPAKE) protocols, particularly Strong aPAKE (saPAKE) have enjoyed significant attention, both from academia and industry, with the well-known OPAQUE protocol currently undergoing standardization. In (s)aPAKE, a client and a server collaboratively establish a high-entropy key, relying on a previously exchanged password for authentication. A main feature is its resilience against offline and precomputation (for saPAKE) attacks. OPAQUE, as well as...

2024/731 (PDF) Last updated: 2024-09-09
Toward Full $n$-bit Security and Nonce Misuse Resistance of Block Cipher-based MACs
Wonseok Choi, Jooyoung Lee, Yeongmin Lee
Secret-key cryptography

In this paper, we study the security of MAC constructions among those classified by Chen et al. in ASIACRYPT '21. Precisely, $F^{\text{EDM}}_{B_2}$ (or $\mathsf{EWCDM}$ as named by Cogliati and Seurin in CRYPTO '16), $F^{\text{EDM}}_{B_3}$, $F^{\text{SoP}}_{B_2}$, $F^{\text{SoP}}_{B_3}$ (all as named by Chen et al.) are proved to be fully secure up to $2^n$ MAC queries in the nonce-respecting setting, improving the previous bound of $\frac{3n}{4}$-bit security. In particular,...

2024/701 (PDF) Last updated: 2024-05-07
Quantum Unpredictability
Tomoyuki Morimae, Shogo Yamada, Takashi Yamakawa
Foundations

Unpredictable functions (UPFs) play essential roles in classical cryptography, including message authentication codes (MACs) and digital signatures. In this paper, we introduce a quantum analog of UPFs, which we call unpredictable state generators (UPSGs). UPSGs are implied by pseudorandom function-like states generators (PRFSs), which are a quantum analog of pseudorandom functions (PRFs), and therefore UPSGs could exist even if one-way functions do not exist, similar to other recently...

2024/683 (PDF) Last updated: 2024-05-04
A note on ``a new password-authenticated module learning with rounding-based key exchange protocol: Saber.PAKE''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show the Seyhan-Akleylek key exchange protocol [J. Supercomput., 2023, 79:17859-17896] cannot resist offline dictionary attack and impersonation attack, not as claimed.

2024/678 (PDF) Last updated: 2024-05-09
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila, Spencer Wilson
Cryptographic protocols

WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication. WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...

2024/662 (PDF) Last updated: 2024-07-17
Faster Private Decision Tree Evaluation for Batched Input from Homomorphic Encryption
Kelong Cong, Jiayi Kang, Georgio Nicolas, Jeongeun Park
Applications

Privacy-preserving decision tree evaluation (PDTE) allows a client that holds feature vectors to perform inferences against a decision tree model on the server side without revealing feature vectors to the server. Our work focuses on the non-interactive batched setting where the client sends a batch of encrypted feature vectors and then obtains classifications, without any additional interaction. This is useful in privacy-preserving credit scoring, biometric authentication, and many more...

2024/649 (PDF) Last updated: 2024-04-28
Sphinx-in-the-Head: Group Signatures from Symmetric Primitives
Liqun Chen, Changyu Dong, Christopher J. P. Newton, Yalan Wang
Cryptographic protocols

Group signatures and their variants have been widely used in privacy-sensitive scenarios such as anonymous authentication and attestation. In this paper, we present a new post-quantum group signature scheme from symmetric primitives. Using only symmetric primitives makes the scheme less prone to unknown attacks than basing the design on newly proposed hard problems whose security is less well-understood. However, symmetric primitives do not have rich algebraic properties, and this makes it...

2024/638 (PDF) Last updated: 2024-04-26
A note on ``a lightweight mutual and transitive authentication mechanism for IoT network''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show the authentication mechanism [Ad Hoc Networks, 2023, 103003] fails to keep user anonymity, not as claimed.

2024/628 (PDF) Last updated: 2024-07-08
MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
Bernardo David, Rafael Dowsley, Anders Konring, Mario Larangeira
Cryptographic protocols

A Verifiable Random Function (VRF) can be evaluated on an input by a prover who holds a secret key, generating a pseudorandom output and a proof of output validity that can be verified using the corresponding public key. VRFs are a central building block of committee election mechanisms that sample parties to execute tasks in cryptographic protocols, e.g. generating blocks in a Proof-of-Stake (PoS) blockchain or executing a round of MPC protocols. We propose the notion, and a matching...

2024/597 (PDF) Last updated: 2024-09-11
Blockchain-based decentralized identity system: Design and security analysis
Gewu BU, Serge Fdida, Maria Potop-Butucaru, Bilel Zaghdoudi
Applications

This paper presents a novel blockchain-based decentralized identity system (DID), tailored for enhanced digital identity management in Internet of Things (IoT) and device-to-device (D2D) networks. The proposed system features a hierarchical structure that effectively merges a distributed ledger with a mobile D2D network, ensuring robust security while streamlining communication. Central to this design are the gateway nodes, which serve as intermediaries, facilitating DID registration and...

2024/557 (PDF) Last updated: 2024-11-27
Permutation-Based Hash Chains with Application to Password Hashing
Charlotte Lefevre, Bart Mennink
Secret-key cryptography

Hash chain based password systems are a useful way to guarantee authentication with one-time passwords. The core idea is specified in RFC 1760 as S/Key. At CCS 2017, Kogan et al. introduced T/Key, an improved password system where one-time passwords are only valid for a limited time period. They proved security of their construction in the random oracle model under a basic modeling of the adversary. In this work, we make various advances in the analysis and instantiation of hash chain based...

2024/525 (PDF) Last updated: 2024-08-03
Privacy Preserving Biometric Authentication for Fingerprints and Beyond
Marina Blanton, Dennis Murphy
Cryptographic protocols

Biometric authentication eliminates the need for users to remember secrets and serves as a convenient mechanism for user authentication. Traditional implementations of biometric-based authentication store sensitive user biometry on the server and the server becomes an attractive target of attack and a source of large-scale unintended disclosure of biometric data. To mitigate the problem, we can resort to privacy-preserving computation and store only protected biometrics on the server. While...

2024/522 (PDF) Last updated: 2024-04-02
Cryptanalysis of Secure and Lightweight Conditional Privacy-Preserving Authentication for Securing Traffic Emergency Messages in VANETs
Mahender Kumar
Cryptographic protocols

In their paper, Wei et al. proposed a lightweight protocol for conditional privacy-preserving authentication in VANET. The protocol aims to achieve ultra-low transmission delay and efficient system secret key (SSK) updating. Their protocol uses a signature scheme with message recovery to authenticate messages. This scheme provides security against adaptively chosen message attacks. However, our analysis reveals a critical vulnerability in the scheme. It is susceptible to replay attacks,...

2024/450 (PDF) Last updated: 2025-03-09
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...

2024/447 (PDF) Last updated: 2024-12-15
ORIGO: Proving Provenance of Sensitive Data with Constant Communication
Jens Ernstberger, Jan Lauinger, Yinnan Wu, Arthur Gervais, Sebastian Steinhorst
Applications

Transport Layer Security ( TLS ) is foundational for safeguarding client-server communication. However, it does not extend integrity guarantees to third-party verification of data authenticity. If a client wants to present data obtained from a server, it cannot convince any other party that the data has not been tampered with. TLS oracles ensure data authenticity beyond the client-server TLS connection, such that clients can obtain data from a server and ensure provenance to any third...

2024/433 (PDF) Last updated: 2024-03-13
UniHand: Privacy-preserving Universal Handover for Small-Cell Networks in 5G-enabled Mobile Communication with KCI Resilience
Rabiah Alnashwan, Prosanta Gope, Benjamin Dowling
Cryptographic protocols

Introducing Small Cell Networks (SCN) has significantly improved wireless link quality, spectrum efficiency and network capacity, which has been viewed as one of the key technologies in the fifth-generation (5G) mobile network. However, this technology increases the frequency of handover (HO) procedures caused by the dense deployment of cells in the network with reduced cell coverage, bringing new security and privacy issues. The current 5G-AKA and HO protocols are vulnerable to security...

2024/394 (PDF) Last updated: 2024-03-04
A Deniably Authenticated Searchable Public Key Encryption Scheme in Mobile Electronic Mail System
Shuhan Zeng, Yongjian Liao, Chuanhao Zhou, Jinlin He, Hongwei Wang
Public-key cryptography

Confidentiality and authentication are two main security goals in secure electronic mail (e-mail). Furthermore, deniability is also a significant security property for some e-mail applications to protect the privacy of the sender. Although searchable encryption solves the keyword searching problem in a secure e-mail system, it also breaks the deniability of the system. Because the adversary can obtain the information of the data sender and data user from the trapdoor as well as ciphertext...

2024/361 (PDF) Last updated: 2024-02-28
Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation
Jiaxin Pan, Doreen Riepel, Runzhi Zeng
Public-key cryptography

Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if...

2024/358 (PDF) Last updated: 2025-02-23
Stateless Deterministic Multi-Party EdDSA Signatures with Low Communication
Qi Feng, Kang Yang, Kaiyi Zhang, Xiao Wang, Yu Yu, Xiang Xie
Cryptographic protocols

EdDSA is a standardized signing algorithm, by both the IRTF and NIST, that is widely used in blockchain, e.g., Hyperledger, Cardano, Zcash, etc. It is a variant of the well-known Schnorr signature scheme that leverages Edwards curves. It features stateless and deterministic nonce generation, meaning it does not rely on a reliable source of randomness or state continuity. Recently, NIST issued a call for multi-party threshold EdDSA signatures, with one approach verifying nonce generation...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.