216 results sorted by ID
Key-Homomorphic Computations for RAM: Fully Succinct Randomised Encodings and More
Damiano Abram, Giulio Malavolta, Lawrence Roy
Public-key cryptography
We propose a new method to construct a public-key encryption scheme, where one can homomorphically transform a ciphertext encrypted under a key $\mathbf{x}$ into a ciphertext under $(P, P(\mathbf{x}))$, for any polynomial-time RAM program $P: \mathbf{x} \mapsto \mathbf{y}$ with runtime $T$ and memory $L$. Combined with other lattice techniques, this allows us to construct:
1) Succinct-randomised encodings from RAM programs with encoder complexity $(|\mathbf{x}| + |\mathbf{y}|)\cdot...
Succinct Oblivious Tensor Evaluation and Applications: Adaptively-Secure Laconic Function Evaluation and Trapdoor Hashing for All Circuits
Damiano Abram, Giulio Malavolta, Lawrence Roy
Public-key cryptography
We propose the notion of succinct oblivious tensor evaluation (OTE), where two parties compute an additive secret sharing of a tensor product of two vectors $\mathbf{x} \otimes \mathbf{y}$, exchanging two simultaneous messages. Crucially, the size of both messages and of the CRS is independent of the dimension of $\mathbf{x}$.
We present a construction of OTE with optimal complexity from the standard learning with errors (LWE) problem. Then we show how this new technical tool enables a...
Simultaneous-Message and Succinct Secure Computation
Elette Boyle, Abhishek Jain, Sacha Servan-Schreiber, Akshayaram Srinivasan
Cryptographic protocols
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$.
Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
Multi-Key Homomorphic Secret Sharing
Geoffroy Couteau, Lalita Devadas, Aditya Hegde, Abhishek Jain, Sacha Servan-Schreiber
Cryptographic protocols
Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic encryption (FHE) where following an input-sharing phase, two or more parties can locally compute a function over their private inputs to obtain shares of the function output.
Over the last decade, HSS schemes have been constructed from an array of different assumptions. However, all existing HSS schemes, except ones based on assumptions known to imply multi-key FHE, require a public-key infrastructure (PKI) or...
Extending Groth16 for Disjunctive Statements
Xudong Zhu, Xinxuan Zhang, Xuyang Song, Yi Deng, Yuanju Wei, Liuyu Yang
Cryptographic protocols
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
Universal SNARGs for NP from Proofs of Correctness
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Surya Mathialagan
Cryptographic protocols
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness.
Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
Algebraic Zero Knowledge Contingent Payment
Javier Gomez-Martinez, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez, Dario Fiore
Cryptographic protocols
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
Batching Adaptively-Sound SNARGs for NP
Lalita Devadas, Brent Waters, David J. Wu
Foundations
A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that an NP statement $x$ is true with a proof whose size is sublinear in the length of the traditional NP witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants to prove after seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
Multi-party Setup Ceremony for Generating Tokamak zk-SNARK Parameters
Muhammed Ali Bingol
Cryptographic protocols
This document provides a specification guide for the Multi-party Computation (MPC) setup ceremony for the Tokamak zk-SNARK scheme. It begins by revisiting the MMORPG protocol proposed in BGM17 for Groth16 setup generation, which leverages a random beacon to ensure public randomness. Additionally, it explores the alternative design approach presented in the ``Snarky Ceremonies" paper KMSV21, which removes the need for a random beacon. The document includes a detailed pseudocode and workflow...
Maximizing the Utility of Cryptographic Setups: Secure PAKEs, with either functional RO or CRS
Yuting Xiao, Rui Zhang, Hong-Sheng Zhou
Cryptographic protocols
For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup).
However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...
Hybrid Password Authentication Key Exchange in the UC Framework
You Lyu, Shengli Liu
Cryptographic protocols
A hybrid cryptosystem combines two systems that fulfill the same cryptographic functionality, and its security enjoys the security of the harder one. There are many proposals for hybrid public-key encryption (hybrid PKE), hybrid signature (hybrid SIG) and hybrid authenticated key exchange (hybrid AKE). In this paper, we fill the blank of Hybrid Password Authentication Key Exchange (hybrid PAKE).
For constructing hybrid PAKE, we first define an important class of PAKE -- full DH-type...
Boosting SNARKs and Rate-1 Barrier in Arguments of Knowledge
Jiaqi Cheng, Rishab Goyal
Foundations
We design a generic compiler to boost any non-trivial succinct non-interactive argument of knowledge (SNARK) to full succinctness. Our results come in two flavors:
For any constant $\epsilon > 0$, any SNARK with proof size $|\pi| < \frac{|\omega|}{\lambda^\epsilon} + \mathsf{poly}(\lambda, |x|)$ can be upgraded to a fully succinct SNARK, where all system parameters (such as proof/CRS sizes and setup/verifier run-times) grow as fixed polynomials in $\lambda$, independent of witness...
DART: Distributed argument of knowledge for rough terrains
Steve Thakur
Cryptographic protocols
We describe a fully distributed KZG-based Snark instantiable with any pairing-friendly curve with a sufficiently large scalar field. In particular, the proof system is compatible with Cocks-Pinch
or Brezing-Weng outer curves to the the widely used curves such as secp256k1, ED25519, BLS12-381 and BN254.
This allows us to retain the fully parallelizable nature and the O(1) communication complexity of Pianist ([LXZ+23]) in conjunction with circumventing the huge overhead of non-native...
Witness Semantic Security
Paul Lou, Nathan Manohar, Amit Sahai
Foundations
To date, the strongest notions of security achievable for two-round publicly-verifiable cryptographic proofs for $\mathsf{NP}$ are witness indistinguishability (Dwork-Naor 2000, Groth-Ostrovsky-Sahai 2006), witness hiding (Bitansky-Khurana-Paneth 2019, Kuykendall-Zhandry 2020), and super-polynomial simulation (Pass 2003, Khurana-Sahai 2017). On the other hand, zero-knowledge and even weak zero-knowledge (Dwork-Naor-Reingold-Stockmeyer 1999) are impossible in the two-round publicly-verifiable...
New Techniques for Preimage Sampling: Improved NIZKs and More from LWE
Brent Waters, Hoeteck Wee, David J. Wu
Foundations
Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE implicitly solve the following /shifted multi-preimage sampling problem/: given matrices $\mathbf{A}_1, \ldots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and targets $\mathbf{t}_1, \ldots, \mathbf{t}_\ell \in \mathbb{Z}_q^n$, sample a shift $\mathbf{c} \in \mathbb{Z}_q^n$ and short preimages $\boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_\ell \in \mathbb{Z}_q^m$ such that $\mathbf{A}_i...
Practical Traceable Receipt-Free Encryption
Henri Devillez, Olivier Pereira, Thomas Peters
Public-key cryptography
Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...
SNARGs under LWE via Propositional Proofs
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan
Foundations
We construct a succinct non-interactive argument (SNARG) system for every NP language $\mathcal{L}$ that has a propositional proof of non-membership for each $x\notin \mathcal{L}$. The soundness of our SNARG system relies on the hardness of the learning with errors (LWE) problem. The common reference string (CRS) in our construction grows with the space required to verify the propositional proof, and the size of the proof grows poly-logarithmically in the length of the propositional...
A Pure Indistinguishability Obfuscation Approach to Adaptively-Sound SNARGs for NP
Brent Waters, David J. Wu
Foundations
We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS model from sub-exponentially-secure indistinguishability obfuscation ($i\mathcal{O}$) and sub-exponentially-secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional algebraic...
Reducing the CRS Size in Registered ABE Systems
Rachit Garg, George Lu, Brent Waters, David J. Wu
Public-key cryptography
Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes $x$ to users. In turn, ciphertexts are associated with a decryption policy $\mathcal{P}$. Decryption succeeds and recovers the encrypted message whenever $\mathcal{P}(x) = 1$. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced the notion of...
Succinct Functional Commitments for Circuits from k-Lin
Hoeteck Wee, David J. Wu
Foundations
A functional commitment allows a user to commit to an input $\mathbf{x}$ and later, open the commitment to an arbitrary function $\mathbf{y} = f(\mathbf{x})$. The size of the commitment and the opening should be sublinear in $|\mathbf{x}|$ and $|f|$.
In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the commitment and the size of the opening consist of a constant number of group elements. Security relies on the standard bilateral...
HW-token-based Common Random String Setup
István Vajda
Applications
In the common random string model, the parties executing a protocol have access to a uniformly random bit string. It is known that under standard intractability assumptions, we can realize any ideal functionality with universally composable (UC) security if a trusted common random string (CrS) setup is available. It was always a question of where this CrS should come from since the parties provably could not compute it themselves. Trust assumptions are required, so minimizing the level of...
Unbiasable Verifiable Random Functions
Emanuele Giunta, Alistair Stewart
Public-key cryptography
Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances.
To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...
Mangrove: A Scalable Framework for Folding-based SNARKs
Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, Dan Boneh
Cryptographic protocols
We present a framework for building efficient folding-based SNARKs. First we develop a new "uniformizing" compiler for NP statements that converts any poly-time computation to a sequence of identical simple steps. The resulting uniform computation is especially well-suited to be processed by a folding-based IVC scheme. Second, we develop two optimizations to folding-based IVC. The first reduces the recursive overhead of the IVC by restructuring the relation to which folding is applied. The...
Malicious Security for SCALES: Outsourced Computation with Ephemeral Servers
Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, Manoj Prabhakaran
Cryptographic protocols
SCALES (Small Clients And Larger Ephemeral Servers) model is a recently proposed model for MPC (Acharya et al., TCC 2022). While the SCALES model offers several attractive features for practical large-scale MPC, the result of Acharya et al. only offered semi-honest secure protocols in this model.
We present a new efficient SCALES protocol secure against malicious adversaries, for general Boolean circuits. We start with the base construction of Acharya et al. and design and use a suite of...
Two-Round Maliciously-Secure Oblivious Transfer with Optimal Rate
Pedro Branco, Nico Döttling, Akshayaram Srinivasan
Cryptographic protocols
We give a construction of a two-round batch oblivious transfer (OT) protocol in the CRS model that is UC-secure against malicious adversaries and has (near) optimal communication cost. Specifically, to perform a batch of $k$ oblivious transfers where the sender's inputs are bits, the sender and the receiver need to communicate a total of $3k + o(k) \cdot \mathsf{poly}(\lambda)$ bits. We argue that $3k$ bits are required by any protocol with a black-box and straight-line simulator. The...
Adaptive Security in SNARGs via iO and Lossy Functions
Brent Waters, Mark Zhandry
Foundations
We construct an adaptively sound SNARGs in the plain model with CRS
relying on the assumptions of (subexponential) indistinguishability obfuscation (iO), subexponential one-way functions and a notion of lossy functions we call length parameterized lossy functions. Length parameterized lossy functions take in separate security and input length parameters and have the property that the function image size in lossy mode depends only on the security parameter. We then show a novel way of...
NIZKs with Maliciously Chosen CRS: Subversion Advice-ZK and Accountable Soundness
Prabhanjan Ananth, Gilad Asharov, Vipul Goyal, Hadar Kaner, Pratik Soni, Brent Waters
Foundations
Trusted setup is commonly used for non-interactive proof and argument systems. However, there is no guarantee that the setup parameters in these systems are generated in a trustworthy manner. Building upon previous works, we conduct a systematic study of non-interactive zero-knowledge arguments in the common reference string model where the authority running the trusted setup might be corrupted. We explore both zero-knowledge and soundness properties in this setting.
- We consider a new...
Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis
Hoeteck Wee, David J. Wu
Foundations
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
Upgrading Fuzzy Extractors
Chloe Cachet, Ariel Hamlin, Maryam Rezapour, Benjamin Fuller
Foundations
Fuzzy extractors derive stable keys from noisy sources non-interactively (Dodis et al., SIAM Journal of Computing 2008). Since their introduction, research has focused on two tasks: 1) showing security for as many distributions as possible and 2) providing stronger security guarantees including allowing one to enroll the same value multiple times (reusability), security against an active attacker (robustness), and preventing leakage about the enrolled value (privacy).
Existing constructions...
A Novel Power-Sum PRG with Applications to Lattice-Based zkSNARKs
Charanjit S Jutla, Eamonn W. Postlethwaite, Arnab Roy
Cryptographic protocols
zkSNARK is a cryptographic primitive that allows a prover to prove to a resource constrained verifier, that it has indeed performed a specified non-deterministic computation correctly, while hiding private witnesses. In this work we focus on lattice based zkSNARK, as this serves two important design goals. Firstly, we get post-quantum zkSNARK schemes with $O(\log (\mbox{Circuit size}))$ sized proofs (without random oracles) and secondly,
the easy verifier circuit allows further...
A Simple and Efficient Framework of Proof Systems for NP
Yuyu Wang, Chuanjie Su, Jiaxin Pan, Yu Chen
Foundations
In this work, we propose a simple framework of constructing efficient non-interactive zero-knowledge proof (NIZK) systems for all NP. Compared to the state-of-the-art construction by Groth, Ostrovsky, and Sahai (J. ACM, 2012), our resulting NIZK system reduces the proof size and proving and verification cost without any trade-off, i.e., neither increasing computation cost, CRS size nor resorting to stronger assumptions.
Furthermore, we extend our framework to construct a batch argument...
Fast and Designated-verifier Friendly zkSNARKs in the BPK Model
Xudong Zhu, Xuyang Song, Yi Deng
Cryptographic protocols
After the pioneering results proposed by Bellare et al in ASIACRYPT 2016, there have been lots of efforts to construct zero-knowledge succinct non-interactive arguments of knowledge protocols (zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and standard soundness from the zk-SNARK in the common reference string (CRS) model. The various constructions could be regarded secure in the bare public key (BPK) model because of the equivalence between S-ZK in the CRS model, and uniform...
Broadcast-Optimal Four-Round MPC in the Plain Model
Michele Ciampi, Ivan Damgård, Divya Ravi, Luisa Siniscalchi, Yu Xia, Sophia Yakoubov
Foundations
Motivated by the fact that broadcast is an expensive, but useful, resource for the realization of multi-party computation protocols (MPC), Cohen, Garay, and Zikas (Eurocrypt 2020), and subsequently Damgård, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021), and, Damgård, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023), focused on 𝘴𝘰-𝘤𝘢𝘭𝘭𝘦𝘥 𝘣𝘳𝘰𝘢𝘥𝘤𝘢𝘴𝘵 𝘰𝘱𝘵𝘪𝘮𝘢𝘭 𝘔𝘗𝘊. In particular, the authors focus on two-round MPC protocols (in the CRS model), and give tight characterizations of which...
On Quantum Simulation-Soundness
Behzad Abdolmaleki, Céline Chevalier, Ehsan Ebrahimi, Giulio Malavolta, Quoc-Huy Vu
Foundations
Non-interactive zero-knowledge (NIZK) proof systems are a cornerstone of modern cryptography, but their security has received little attention in the quantum settings. Motivated by improving our understanding of this fundamental primitive against quantum adversaries, we propose a new definition of security against quantum adversary. Specifically, we define the notion of quantum simulation soundness (SS-NIZK), that allows the adversary to access the simulator in superposition.
We show a...
Sometimes You Can’t Distribute Random-Oracle-Based Proofs
Jack Doerner, Yashvanth Kondi, Leah Namisa Rosenbloom
Cryptographic protocols
We investigate the conditions under which straight-line extractable NIZKs in the random oracle model (i.e. without a CRS) permit multiparty realizations that are black-box in the same random oracle. We show that even in the semi-honest setting, any MPC protocol to compute such a NIZK cannot make black-box use of the random oracle or a hash function instantiating it if security against all-but-one corruptions is desired, unless the number of queries made by the verifier to the oracle grows...
An optimization of the addition gate count in Plonkish circuits
Steve Thakur
Cryptographic protocols
We slightly generalize Plonk's ([GWC19]) permutation argument by replacing permutations with (possibly non-injective) self-maps of an interval. We then use this succinct argument to obtain a protocol for weighted sums on committed vectors, which, in turn, allows us to eliminate the intermediate gates arising from high fan-in additions in Plonkish circuits.
We use the KZG10 polynomial commitment scheme, which allows for a universal updateable CRS linear in the circuit size. In keeping...
A flexible Snark via the monomial basis
Steve Thakur
Cryptographic protocols
We describe a pairing-based Snark with a universal updateable CRS that can be instantiated with any pairing-friendly curve endowed with a sufficiently large prime scalar field. We use the monomial basis, thus sidestepping the need for large smooth order subgroups in the scalar field. In particular, the scheme can be instantiated with outer curves to widely used curves such as Ed25519, secp256k1, BN254 and BLS12-381. This allows us to largely circumvent the overhead of non-native field...
Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Channels
Ivan Damgård, Divya Ravi, Luisa Siniscalchi, Sophia Yakoubov
Cryptographic protocols
In this paper we continue the study of two-round broadcast-optimal MPC, where broadcast is used in one of the two rounds, but not in both. We consider the realistic scenario where the round that does not use broadcast is asynchronous. Since a first asynchronous round (even when followed by a round of broadcast) does not admit any secure computation, we introduce a new notion of asynchrony which we call $(t_d, t_m)$-asynchrony. In this new notion of asynchrony, an adversary can delay or...
Two-Round Adaptively Secure MPC from Isogenies, LPN, or CDH
Navid Alamati, Hart Montgomery, Sikhar Patranabis, Pratik Sarkar
Cryptographic protocols
We present a new framework for building round-optimal (two-round) $adaptively$ secure MPC. We show that a relatively weak notion of OT that we call $indistinguishability \ OT \ with \ receiver \ oblivious \ sampleability$ (r-iOT) is enough to build two-round, adaptively secure MPC against $malicious$ adversaries in the CRS model. We then show how to construct r-iOT from CDH, LPN, or isogeny-based assumptions that can be viewed as group actions (such as CSIDH and CSI-FiSh). This yields the...
Benchmarking the Setup of Updatable zk-SNARKs
Karim Baghery, Axel Mertens, Mahdi Sedaghat
Cryptographic protocols
Subversion-resistant zk-SNARKs allow the provers to verify the Structured Reference String (SRS), via an SRS Verification (SV) algorithm and bypass the need for a Trusted Third Party (TTP). Pairing-based zk-SNARKs with \(updatable\) and \(universal\) SRS are an extension of subversion-resistant ones which additionally allow the verifiers to update the SRS, via an SRS Updating (SU) algorithm, and similarly bypass the need for a TTP. In this paper, we examine the setup of these zk-SNARKs by...
Fast and Frobenius: Rational Isogeny Evaluation over Finite Fields
Gustavo Banegas, Valerie Gilchrist, Anaëlle Le Dévéhat, Benjamin Smith
Foundations
Consider the problem of efficiently evaluating isogenies $\phi: \mathcal{E} \to \mathcal{E}/H$ of elliptic curves over a finite field $\mathbb{F}_q$, where the kernel \(H = \langle{G}\rangle\) is a cyclic group of odd (prime) order: given \(\mathcal{E}\), \(G\), and a point (or several points) $P$ on $\mathcal{E}$, we want to compute $\phi(P)$. This problem is at the heart of efficient implementations of group-action- and isogeny-based post-quantum cryptosystems such as CSIDH. Algorithms...
On the Impossibility of Algebraic NIZK In Pairing-Free Groups
Emanuele Giunta
Foundations
Non-Interactive Zero-Knowledge proofs (NIZK) allow a prover to convince a verifier that a statement is true by sending only one message and without conveying any other information.
In the CRS model, many instantiations have been proposed from group-theoretic assumptions.
On the one hand, some of these constructions use the group structure in a black-box way but rely on pairings, an example being the celebrated Groth-Sahai proof system.
On the other hand, a recent line of research realized...
On the (Im)possibility of Distributed Samplers: Lower Bounds and Party-Dynamic Constructions
Damiano Abram, Maciej Obremski, Peter Scholl
Cryptographic protocols
Distributed samplers, introduced by Abram, Scholl and Yakoubov (Eurocrypt ’22), are a one-round, multi-party protocol for securely sampling from any distribution. We give new lower and upper bounds for constructing distributed samplers in challenging scenarios. First, we consider the feasibility of distributed samplers with a malicious adversary in the standard model; the only previous construction in this setting relies on a random oracle. We show that for any UC-secure construction in the...
Security-Preserving Distributed Samplers: How to Generate any CRS in One Round without Random Oracles
Damiano Abram, Brent Waters, Mark Zhandry
Cryptographic protocols
A distributed sampler is a way for several mutually distrusting parties to non-interactively generate a common reference string (CRS) that all parties trust. Previous work constructs distributed samplers in the random oracle model, or in the standard model with very limited security guarantees. This is no accident, as standard model distributed samplers with full security were shown impossible.
In this work, we provide new definitions for distributed samplers which we show achieve...
2023/509
Last updated: 2023-05-17
Non-malleable Codes from Authenticated Encryption in Split-State Model
Anit Kumar Ghosal, Dipanwita Roychowdhury
Foundations
The secret key of any encryption scheme that are stored in secure memory of the hardwired devices can be tampered using fault attacks. The usefulness of tampering attack is to recover the key by altering some regions of the memory. Such attack may also appear when the device is stolen or viruses has been introduced. Non-malleable codes are used to protect the secret information from tampering attacks. The secret key can be encoded using non-malleable codes rather than storing it in plain...
Simplex Consensus: A Simple and Fast Consensus Protocol
Benjamin Y Chan, Rafael Pass
Cryptographic protocols
We present a theoretical framework for analyzing the efficiency of consensus protocols, and apply it to analyze the optimistic and pessimistic confirmation times of state-of-the-art partially-synchronous protocols in the so-called "rotating leader/random leader" model of consensus (recently popularized in the blockchain setting).
We next present a new and simple consensus protocol in the partially synchronous setting, tolerating $f < n/3$ byzantine faults; in our eyes, this protocol is...
Registered FE beyond Predicates: (Attribute-Based) Linear Functions and more
Pratish Datta, Tapas Pal, Shota Yamada
Public-key cryptography
This paper introduces the first registered functional encryption RFE scheme tailored for linear functions. Distinctly different from classical functional encryption (FE), RFE addresses the key-escrow issue and negates the master key exfiltration attack. Instead of relying on a centralized trusted authority, it introduces a “key curator” - a fully transparent entity that does not retain secrets. In an RFE framework, users independently generate secret keys and subsequently register their...
Composable Long-Term Security with Rewinding
Robin Berger, Brandon Broadnax, Michael Klooß, Jeremias Mechler, Jörn Müller-Quade, Astrid Ottenhues, Markus Raiber
Foundations
Long-term security, a variant of Universally Composable (UC) security introduced by Müller-Quade and Unruh (JoC ’10), allows to analyze the security of protocols in a setting where all hardness assumptions no longer hold after the protocol execution has finished. Such a strict notion is highly desirable when properties such as input privacy need to be guaranteed for a long time, e.g. zero-knowledge proofs for secure electronic voting. Strong impossibility results rule out so-called...
A Map of Witness Maps: New Definitions and Connections
Suvradip Chakraborty, Manoj Prabhakaran, Daniel Wichs
Public-key cryptography
A \emph{witness map} deterministically maps a witness $w$ of some NP statement $x$ into computationally sound proof that $x$ is true, with respect to a public common reference string (CRS). In other words, it is a deterministic, non-interactive, computationally sound proof system in the CRS model. A \emph{unique witness map} (UWM) ensures that for any fixed statement $x$, the witness map should output the same \emph{unique} proof for $x$, no matter what witness $w$ it is applied to. More...
Circuit-Succinct Universally-Composable NIZKs with Updatable CRS
Behzad Abdolmaleki, Noemi Glaeser, Sebastian Ramacher, Daniel Slamanig
Cryptographic protocols
Non-interactive zero-knowledge proofs (NIZKs) and in particular succinct NIZK arguments of knowledge (zk-SNARKs) increasingly see real-world adoption in large and complex systems. Many zk-SNARKs require a trusted setup, i.e., a common reference string (CRS), and for practical use it is desirable to reduce the trust in the CRS generation. The latter can be achieved via the notions of subversion or updatable CRS. Another important property when deployed in large systems is the ability to...
Fully Succinct Batch Arguments for NP from Indistinguishability Obfuscation
Rachit Garg, Kristin Sheridan, Brent Waters, David J. Wu
Cryptographic protocols
Non-interactive batch arguments for $\mathsf{NP}$ provide a way to amortize the cost of $\mathsf{NP}$ verification across multiple instances. In particular, they allow a prover to convince a verifier of multiple $\mathsf{NP}$ statements with communication that scales sublinearly in the number of instances.
In this work, we study fully succinct batch arguments for $\mathsf{NP}$ in the common reference string (CRS) model where the length of the proof scales not only sublinearly in the...
CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments
Behzad Abdolmaleki, Daniel Slamanig
Cryptographic protocols
A critical aspect for the practical use of non-interactive zero-knowledge (NIZK) arguments in the common reference string (CRS) model is the demand for a trusted setup, i.e., a trusted generation of the CRS. Recently, motivated by its increased use in real-world applications, there has been a growing interest in concepts that allow to reduce the trust in this setup. In particular one demands that the zero-knowledge and ideally also the soundness property hold even when the CRS generation is...
Leakage Resilient l-more Extractable Hash and Applications to Non-Malleable Cryptography
Aggelos Kiayias, Feng-Hao Liu, Yiannis Tselekounis
Foundations
$\ell$-more extractable hash functions were introduced by Kiayias et al. (CCS '16) as a strengthening of extractable hash functions by Goldwasser et al. (Eprint '11) and Bitansky et al. (ITCS '12, Eprint '14). In this work, we define and study an even stronger notion of leakage-resilient $\ell$-more extractable hash functions, and instantiate the notion under the same assumptions used by Kiayias et al. and Bitansky et al. In addition, we prove that any hash function that can be modeled...
LUNA: Quasi-Optimally Succinct Designated-Verifier Zero-Knowledge Arguments from Lattices
Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, Raymond K. Zhao
Cryptographic protocols
We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...
Set (Non-)Membership NIZKs from Determinantal Accumulators
Helger Lipmaa, Roberto Parisella
Cryptographic protocols
We construct a falsifiable set (non-)membership NIZK $\Pi^*$ that is considerably more efficient than known falsifiable set (non-)membership NIZKs. It also has a universal CRS. $\Pi^*$ is based on the novel concept of determinantal accumulators. Determinantal primitives have a similar relation to recent pairing-based (non-succinct) NIZKs of Couteau and Hartmann (Crypto 2020) and Couteau et al. (CLPØ, Asiacrypt 2021) that structure-preserving primitives have to the Groth-Sahai NIZK. We also...
Round-Optimal Black-Box Secure Computation from Two-Round Malicious OT
Yuval Ishai, Dakshita Khurana, Amit Sahai, Akshayaram Srinivasan
Cryptographic protocols
We give round-optimal {\em black-box} constructions of two-party and multiparty protocols in the common random/reference string (CRS) model, with security against malicious adversaries, based on any two-round oblivious transfer (OT) protocol in the same model. Specifically, we obtain two types of results.
\begin{enumerate}
\item {\bf Two-party protocol.} We give a (two-round) {\it two-sided NISC} protocol that makes black-box use of two-round (malicious-secure) OT in the CRS model....
Permissionless Clock Synchronization with Public Setup
Juan Garay, Aggelos Kiayias, Yu Shen
Cryptographic protocols
The permissionless clock synchronization problem asks how it is possible for a population of parties to maintain a system-wide synchronized clock, while their participation rate fluctuates --- possibly very widely --- over time. The underlying assumption is that parties experience the passage of time with roughly the same speed, but however they may disengage and engage with the protocol following arbitrary (and even chosen adversarially) participation patterns. This (classical) problem has...
Classically Verifiable NIZK for QMA with Preprocessing
Tomoyuki Morimae, Takashi Yamakawa
Foundations
We propose three constructions of classically verifiable non-interactive zero-knowledge proofs and arguments (CV-NIZK) for QMA in various preprocessing models.
1. We construct a CV-NIZK for QMA in the quantum secret parameter model where a trusted setup sends a quantum proving key to the prover and a classical verification key to the verifier. It is information theoretically sound and zero-knowledge.
2. Assuming the quantum hardness of the learning with errors problem, we construct a...
Nonmalleable Digital Lockers and Robust Fuzzy Extractors in the Plain Model
Daniel Apon, Chloe Cachet, Benjamin Fuller, Peter Hall, Feng-Hao Liu
Foundations
We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with entropy below 1/2 of their length. Constructions were previously only known for both primitives assuming random oracles or a common reference string (CRS).
Along the way, we define a new primitive called a nonmalleable point function obfuscation with associated data. The associated data is...
On the Impossibility of Algebraic Vector Commitments in Pairing-Free Groups
Dario Catalano, Dario Fiore, Rosario Gennaro, Emanuele Giunta
Foundations
Vector Commitments allow one to (concisely) commit to a vector of messages so that one can later (concisely) open the commitment at selected locations. In the state of the art of vector commitments, algebraic constructions have emerged as a particularly useful class, as they enable advanced properties, such as stateless updates, subvector openings and aggregation, that are for example unknown in Merkle-tree-based schemes. In spite of their popularity, algebraic vector commitments remain...
Fiat-Shamir for Proofs Lacks a Proof Even in the Presence of Shared Entanglement
Frédéric Dupuis, Philippe Lamontagne, Louis Salvail
Foundations
We explore the cryptographic power of arbitrary shared physical resources. The most general such resource is access to a fresh entangled quantum state at the outset of each protocol execution. We call this the Common Reference Quantum State (CRQS) model, in analogy to the well-known Common Reference String (CRS). The CRQS model is a natural generalization of the CRS model but appears to be more powerful: in the two-party setting, a CRQS can sometimes exhibit properties associated with a...
Multiverse of HawkNess: A Universally-Composable MPC-based Hawk Variant
Aritra Banerjee, Hitesh Tewari
Cryptographic protocols
The evolution of Smart contracts in recent years inspired a crucial question: Do smart contract evaluation protocols provide the required level of privacy when executing contracts on the Blockchain? The Hawk (IEEE S&P '16) paper introduces a way to solve the problem of privacy in smart contracts by evaluating the contracts off-chain, albeit with the trust assumption of a manager. To avoid the partially trusted manager altogether, a novel approach named zkHawk (IEEE BRAINS '21) explains how...
Batch Arguments for NP and More from Standard Bilinear Group Assumptions
Brent Waters, David J. Wu
Cryptographic protocols
Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple instances. They enable a prover to convince a verifier of multiple NP statements with communication much smaller than the total witness length and verification time much smaller than individually checking each instance.
In this work, we give the first construction of a non-interactive batch argument for NP from standard assumptions on groups with bilinear maps (specifically, from...
(Nondeterministic) Hardness vs. Non-Malleability
Marshall Ball, Dana Dachman-Soled, Julian Loss
Foundations
We present the first truly explicit constructions of non-malleable codes against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.
Prior works on NMC for polysize circuits, either required an untamperable CRS [Cheraghchi, Guruswami ITCS'14; Faust, Mukherjee, Venturi, Wichs EUROCRYPT'14] or very strong...
Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes
Aisling Connolly, Pascal Lafourcade, Octavio Perez Kempner
Public-key cryptography
Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users to authenticate while maintaining privacy. When instantiated from structure-preserving signatures on equivalence classes (SPS-EQ) we obtain a controlled form of malleability, and hence increased functionality and privacy for the user.
Existing constructions consider equivalence classes on the message space, allowing the joint randomization of credentials and the corresponding signatures on them. In this work,...
Updatable Trapdoor SPHFs: Modular Construction of Updatable Zero-Knowledge Arguments and More
Behzad Abdolmaleki, Daniel Slamanig
Cryptographic protocols
Recently, motivated by its increased use in real-world applications, there has been a growing interest on the reduction of trust in the generation of the common reference string (CRS) for zero-knowledge (ZK) proofs. This line of research was initiated by the introduction of subversion non-interactive ZK (NIZK) proofs by Bellare et al. (ASIACRYPT'16). Here, the zero-knowledge property needs to hold even in case of a malicious generation of the CRS. Groth et al. (CRYPTO'18) then introduced the...
Improved Computational Extractors and their Applications
Dakshita Khurana, Akshayaram Srinivasan
Foundations
Recent exciting breakthroughs, starting with the work of Chattopadhyay and Zuckerman (STOC 2016) have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately, these constructions suffer from non-negligible error, and reducing the error to negligible remains an important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a meaningful relaxation of this problem to the computational setting, in the presence of a...
Computational Robust (Fuzzy) Extractors for CRS-dependent Sources with Minimal Min-entropy
Hanwen Feng, Qiang Tang
Foundations
Robust (fuzzy) extractors are very useful for, e.g., authenticated exchange from shared weak secret and remote biometric authentication against active adversaries. They enable two parties to extract the same uniform randomness with the ``helper'' string. More importantly, they have an authentication mechanism built in that tampering of the ``helper'' string will be detected. Unfortunately, as shown by Dodis and Wichs, in the information-theoretic setting, a robust extractor for an...
Towards Accountability in CRS Generation
Prabhanjan Ananth, Gilad Asharov, Hila Dahari, Vipul Goyal
Cryptographic protocols
It is well known that several cryptographic primitives cannot be achieved without a common reference string (CRS). Those include, for instance, non-interactive zero-knowledge for NP, or maliciously secure computation in fewer than four rounds. The security of those primitives heavily relies upon on the assumption that the trusted authority, who generates the CRS, does not misuse the randomness used in the CRS generation. However, we argue that there is no such thing as an unconditionally...
Classical Binding for Quantum Commitments
Nir Bitansky, Zvika Brakerski
Foundations
In classical commitments, statistical binding means that for almost any commitment transcript there is at most one possible opening. While quantum commitments (for classical messages) sometimes have benefits over their classical counterparts (e.g.\ in terms of assumptions), they provide a weaker notion of binding. Essentially that the sender cannot open a given commitment to a random value with probability noticeably greater than $1/2$.
We introduce a notion of classical binding for quantum...
Secure Quantum Computation with Classical Communication
James Bartusek
Cryptographic protocols
The study of secure multi-party computation (MPC) has thus far been limited to the following two settings: every party is fully classical, or every party has quantum capabilities. This paper studies a notion of MPC that allows some classical and some quantum parties to securely compute a quantum functionality over their joint private inputs.
In particular, we construct (constant-round, composable) protocols for blind and verifiable classical delegation of quantum computation, and give...
Security Characterization of J-PAKE and its Variants
Michel Abdalla, Manuel Barbosa, Peter B. Rønne, Peter Y. A. Ryan, Petra Šala
Cryptographic protocols
The J-PAKE protocol is a Password Authenticated Key Establishment protocol whose security rests on Diffie-Hellman key establishment and Non-Interactive Zero Knowledge proofs. It has seen widespread deployment and has previously been proven secure, including forward secrecy, in a game-based model. In this paper we show that this earlier proof can be re-cast in the Universal Composability framework, thus yielding a stronger result.
We also investigate the extension of such proofs to a...
SNARGs for $\mathcal{P}$ from LWE
Arka Rai Choudhuri, Abhishek Jain, Zhengzhong Jin
Foundations
We provide the first construction of a succinct non-interactive argument (SNARG) for *all* polynomial time deterministic computations based on standard assumptions. For $T$ steps of computation, the size of the proof and the common random string (CRS) as well as the verification time are poly-logarithmic in $T$. The security of our scheme relies on the hardness of the Learning with Errors (LWE) problem against polynomial-time adversaries. Previously, SNARGs based on standard assumptions...
Smooth Zero-Knowledge Hash Functions
Behzad Abdolmaleki, Hamidreza Khoshakhlagh, Helger Lipmaa
Cryptographic protocols
We define smooth zero-knowledge hash functions (SZKHFs) as smooth projective hash functions (SPHFs) for which the completeness holds even when the language parameter lpar and the projection key HP were maliciously generated.
We prove that blackbox SZKHF in the plain model is impossible even if lpar was honestly generated. We then define SZKHF in the registered public key (RPK) model, where both lpar and HP are possibly maliciously generated but accepted by an RPK server, and show that the...
On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs
Benny Applebaum, Eyal Golombek
Foundations
We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, $R$, of the verifier to be comparable with the number of bits, $C_V$, that the verifier sends during the interaction.
We show that such \emph{randomness sparsification} is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a...
Multiparty Reusable Non-Interactive Secure Computation from LWE
Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, Huijia Lin
Foundations
Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using...
Practical Dynamic Group Signatures Without Knowledge Extractors
Hyoseung Kim, Olivier Sanders, Michel Abdalla, Jong Hwan Park
Public-key cryptography
Dynamic group signature (DGS) allows a user to generate a signature on behalf of a group, while preserving anonymity. Although many existing DGS schemes have been proposed in the random oracle model for achieving efficiency, their security proofs require knowledge extractors that cause loose security reductions. In this paper, we first propose a new practical DGS scheme whose security can be proven without knowledge extractors in the random oracle model. Moreover, our scheme can also be...
Reusable Two-Round MPC from LPN
James Bartusek, Sanjam Garg, Akshayaram Srinivasan, Yinuo Zhang
Cryptographic protocols
We present a new construction of maliciously-secure, two-round multiparty computation (MPC) in the CRS model, where the first message is reusable an unbounded number of times. The security of the protocol relies on the Learning Parity with Noise (LPN) assumption with inverse polynomial noise rate 1/n^{1-epsilon} for small enough epsilon, where n is the LPN dimension. Prior works on reusable two-round MPC required assumptions such as DDH or LWE that imply some flavor of homomorphic...
The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT
Claudio Orlandi, Peter Scholl, Sophia Yakoubov
Cryptographic protocols
We describe a simple method for solving the distributed discrete logarithm problem in Paillier groups, allowing two parties to locally convert multiplicative shares of a secret (in the exponent) into additive shares. Our algorithm is perfectly correct, unlike previous methods with an inverse polynomial error probability. We obtain the following applications and further results.
- Homomorphic secret sharing. We construct homomorphic secret sharing for branching programs with *negligible*...
On the Round Complexity of Fully Secure Solitary MPC with Honest Majority
Saikrishna Badrinarayanan, Peihan Miao, Pratyay Mukherjee, Divya Ravi
Cryptographic protocols
We study the problem of secure multiparty computation for functionalities where only one party receives the output, to which we refer as solitary MPC. Recently, Halevi et al. (TCC 2019) studied fully secure (i.e., with guaranteed output delivery) solitary MPC and showed impossibility of such protocols for certain functionalities when there is no honest majority among the parties.
In this work, we study fully secure solitary MPC in the honest majority setting and focus on its round...
On The Round Complexity of Secure Quantum Computation
James Bartusek, Andrea Coladangelo, Dakshita Khurana, Fermi Ma
Cryptographic protocols
We construct the first constant-round protocols for secure quantum computation in the two-party (2PQC) and multi-party (MPQC) settings with security against malicious adversaries. Our protocols are in the common random string (CRS) model.
- Assuming two-message oblivious transfer (OT), we obtain (i) three-message 2PQC, and (ii) five-round MPQC with only three rounds of online (input-dependent) communication; such OT is known from quantum-hard Learning with Errors (QLWE).
- Assuming...
Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains
Alessandra Scafuro, Luisa Siniscalchi, Ivan Visconti
Cryptographic protocols
Publicly Verifiable Zero-Knowledge proofs are known to exist only from setup assumptions
such as a trusted Common Reference String (CRS) or a Random Oracle. Unfortunately, the
former requires a trusted party while the latter does not exist.
Blockchains are distributed systems that already exist and provide certain security properties
(under some honest majority assumption), hence, a natural recent research direction has been
to use a blockchain as an alternative setup assumption.
In TCC 2017...
Privacy Amplification with Tamperable Memory via Non-malleable Two-source Extractors
Divesh Aggarwal, Maciej Obremski, João Ribeiro, Mark Simkin, Luisa Siniscalchi
Foundations
We extend the classical problem of privacy amplification to a setting where the active adversary, Eve, is also allowed to fully corrupt the internal memory (which includes the shared randomness, and local randomness tape) of one of the honest parties, Alice and Bob, before the execution of the protocol. We require that either one of Alice or Bob detects tampering, or they agree on a shared key that is indistinguishable from the uniform distribution to Eve. We obtain the following...
Updateable Inner Product Argument with Logarithmic Verifier and Applications
Vanesa Daza, Carla Ràfols, Alexandros Zacharakis
Cryptographic protocols
We propose an improvement for the inner product argument of Bootle et al. (EUROCRYPT’16). The new argument replaces the unstructured common reference string (the commitment key) by a structured one. We give two instantiations of this argument, for two different distributions of the CRS. In the designated verifier setting, this structure can be used to reduce verification from linear to logarithmic in the circuit size. The argument can be compiled to the publicly verifiable setting in...
Simulation Extractable Versions of Groth’s zk-SNARK Revisited
Oussama Amine, Karim Baghery, Zaira Pindado, Carla Ràfols
Cryptographic protocols
Zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) are the most efficient proof systems in terms of proof size and verification. Currently, Groth's scheme from EUROCRYPT 2016, $\textsf{Groth16}$, is the state-of-the-art and is widely deployed in practice. $\mathsf{Groth16}$ is originally proven to achieve knowledge soundness, which does not guarantee the non-malleability of proofs. There has been considerable progress in presenting new zk-SNARKs or modifying...
Classical Verification of Quantum Computations with Efficient Verifier
Nai-Hui Chia, Kai-Min Chung, Takashi Yamakawa
Foundations
In this paper, we extend the protocol of classical verification of quantum computations (CVQC) recently proposed by Mahadev to make the verification efficient. Our result is obtained in the following three steps:
- We show that parallel repetition of Mahadev's protocol has negligible soundness error. This gives the first constant round CVQC protocol with negligible soundness error. In this part, we only assume the quantum hardness of the learning with error (LWE) problem similar to...
Triply Adaptive UC NIZK
Ran Canetti, Pratik Sarkar, Xiao Wang
Cryptographic protocols
Non-interactive zero knowledge (NIZK) enables proving the validity of NP statement without leaking anything else. We study multi-instance NIZKs in the common reference string (CRS) model, against an adversary that adaptively corrupts parties and chooses statements to be proven. We construct the first such $\textit{triply adaptive}$ NIZK that provides full adaptive soundness, as well as adaptive zero-knowledge, assuming either LWE or else LPN and DDH (previous constructions rely on...
Single-to-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge
Marc Fischlin, Felix Rohrbach
Cryptographic protocols
Non-interactive zero-knowledge proofs or arguments allow a prover to show validity of a statement without further interaction. For non-trivial statements such protocols require a setup assumption in form of a common random or reference string (CRS). Generally, the CRS can only be used for one statement (single-theorem zero-knowledge) such that a fresh CRS would need to be generated for each proof. Fortunately, Feige, Lapidot and Shamir (FOCS 1990) presented a transformation for any...
Secure Massively Parallel Computation for Dishonest Majority
Rex Fernando, Ilan Komargodski, Yanyi Liu, Elaine Shi
Cryptographic protocols
This work concerns secure protocols in the massively parallel computation (MPC)
model, which is one of the most widely-accepted models for capturing the
challenges of writing protocols for the types of parallel computing clusters
which have become commonplace today (MapReduce, Hadoop, Spark, etc.). Recently,
the work of Chan et al. (ITCS '20) initiated this study, giving a way to
compile any MPC protocol into a secure one in the common random string model,
achieving the standard secure...
On the Exact Round Complexity of Best-of-both-Worlds Multi-party Computation
Arpita Patra, Divya Ravi, Swati Singla
Cryptographic protocols
The two traditional streams of multiparty computation (MPC) protocols consist of-- (a) protocols achieving guaranteed output delivery (god) or fairness (fn) in the honest-majority setting and (b) protocols achieving unanimous or selective abort (ua, sa) in the dishonest-majority setting. The favorable presence of honest majority amongst the participants is necessary to achieve the stronger notions of god or fn. While the constructions of each type are abound in the literature, one...
On Adaptive Security of Delayed-Input Sigma Protocols and Fiat-Shamir NIZKs
Michele Ciampi, Roberto Parisella, Daniele Venturi
Foundations
We study adaptive security of delayed-input Sigma protocols and non-interactive zero-knowledge (NIZK) proof systems in the common reference string (CRS) model. Our contributions are threefold:
- We exhibit a generic compiler taking any delayed-input Sigma protocol and returning a delayed-input Sigma protocol satisfying adaptive-input special honest-verifier zero-knowledge (SHVZK). In case the initial Sigma protocol also satisfies adaptive-input special soundness, our compiler preserves this...
UC-Secure OT from LWE, Revisited
Willy Quach
Cryptographic protocols
We build a two-round, UC-secure oblivious transfer protocol (OT) in the common reference string (CRS) model under the Learning with Errors assumption (LWE) with sub-exponential modulus-to-noise ratio. We do so by instantiating the dual-mode encryption framework of Peikert, Vaikuntanathan and Waters (CRYPTO'08). The resulting OT can be instantiated in either one of two modes: one providing statistical sender security, and the other statistical receiver security. Furthermore, our scheme allows...
Incompressible Encodings
Tal Moran, Daniel Wichs
Foundations
An incompressible encoding can probabilistically encode some data $m$ into a codeword $c$, which is not much larger. Anyone can decode the codeword $c$ to recover the original data $m$. However, the codeword $c$ cannot be efficiently compressed, even if the original data $m$ is given to the decompression procedure on the side. In other words, $c$ is an efficiently decodable representation of $m$, yet is computationally incompressible even given $m$. An incompressible encoding is composable...
Leakage-Resilient Key Exchange and Two-Seed Extractors
Xin Li, Fermi Ma, Willy Quach, Daniel Wichs
Foundations
Can Alice and Bob agree on a uniformly random secret key without having any truly secret randomness to begin with? Here we consider a setting where Eve can get partial leakage on the internal state of both Alice and Bob individually before the protocol starts. They then run a protocol using their states without any additional randomness and need to agree on a shared key that looks uniform to Eve, even after observing the leakage and the protocol transcript. We focus on non-interactive (one...
BETA: Biometric Enabled Threshold Authentication
Shashank Agrawal, Saikrishna Badrinarayanan, Payman Mohassel, Pratyay Mukherjee, Sikhar Patranabis
Cryptographic protocols
In the past decades, user authentication has been dominated by server-side password-based solutions that rely on "what users know". This approach is susceptible to breaches and phishing attacks, and poses usability challenges. As a result, the industry is gradually moving to biometric-based client-side solutions that do not store any secret information on servers. This shift necessitates the safe storage of biometric templates and private keys, which are used to generate tokens, on user...
On Subversion-Resistant SNARKs
Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, Michał Zając
Cryptographic protocols
While NIZK arguments in the CRS model are widely studied, the question of what happens when the CRS was subverted has received little attention. In ASIACRYPT 2016, Bellare, Fuchsbauer, and Scafuro showed the first negative and positive results in the case of NIZK, proving also that it is impossible to achieve subversion soundness and (even non-subversion) zero-knowledge at the same time. On the positive side, they constructed an involved sound and subversion-zero-knowledge (Sub-ZK)...
Efficient and Round-Optimal Oblivious Transfer and Commitment with Adaptive Security
Ran Canetti, Pratik Sarkar, Xiao Wang
Cryptographic protocols
We construct the most efficient two-round adaptively secure bit-OT in the Common Random String (CRS) model. The scheme is UC secure under the Decisional Diffie-Hellman (DDH) assumption. It incurs O(1) exponentiations and sends O(1) group elements, whereas the state of the art requires O(k^2) exponentiations and communicates poly(k) bits, where k is the computational security parameter. Along the way, we obtain several other efficient UC-secure OT protocols under DDH :
- The most...
Tiramisu: Black-Box Simulation Extractable NIZKs in the Updatable CRS Model
Karim Baghery, Mahdi Sedaghat
Cryptographic protocols
Zk-SNARKs, as the most efficient NIZK arguments in terms of proof size and verification, are ubiquitously deployed in practice. In applications like Hawk [S&P'16], Gyges [CCS'16], Ouroboros Crypsinous [S&P'19], the underlying zk-SNARK is lifted to achieve Black-Box Simulation Extractability (BB-SE) under a trusted setup phase. To mitigate the trust in such systems, we propose $\texttt{Tiramisu}$, as a construction to build NIZK arguments that can achieve $\textit{updatable BB-SE}$, which we...
Subversion-Resistant Quasi-Adaptive NIZK and Applications to Modular zk-SNARKs
Behzad Abdolmaleki, Daniel Slamanig
Cryptographic protocols
Quasi-adaptive non-interactive zero-knowledge (QA-NIZK) arguments are NIZK arguments where the common reference string (CRS) is allowed to depend on the language and they can be very efficient for specific languages. Thus, they are for instance used within the modular LegoSNARK toolbox by Campanelli et al. (ACM CCS'19) as succinct NIZKs (aka zkSNARKs) for linear subspace languages. Such modular frameworks are interesting, as they provide gadgets for a flexible design of privacy-preserving...
We propose a new method to construct a public-key encryption scheme, where one can homomorphically transform a ciphertext encrypted under a key $\mathbf{x}$ into a ciphertext under $(P, P(\mathbf{x}))$, for any polynomial-time RAM program $P: \mathbf{x} \mapsto \mathbf{y}$ with runtime $T$ and memory $L$. Combined with other lattice techniques, this allows us to construct: 1) Succinct-randomised encodings from RAM programs with encoder complexity $(|\mathbf{x}| + |\mathbf{y}|)\cdot...
We propose the notion of succinct oblivious tensor evaluation (OTE), where two parties compute an additive secret sharing of a tensor product of two vectors $\mathbf{x} \otimes \mathbf{y}$, exchanging two simultaneous messages. Crucially, the size of both messages and of the CRS is independent of the dimension of $\mathbf{x}$. We present a construction of OTE with optimal complexity from the standard learning with errors (LWE) problem. Then we show how this new technical tool enables a...
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$. Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic encryption (FHE) where following an input-sharing phase, two or more parties can locally compute a function over their private inputs to obtain shares of the function output. Over the last decade, HSS schemes have been constructed from an array of different assumptions. However, all existing HSS schemes, except ones based on assumptions known to imply multi-key FHE, require a public-key infrastructure (PKI) or...
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness. Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that an NP statement $x$ is true with a proof whose size is sublinear in the length of the traditional NP witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants to prove after seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
This document provides a specification guide for the Multi-party Computation (MPC) setup ceremony for the Tokamak zk-SNARK scheme. It begins by revisiting the MMORPG protocol proposed in BGM17 for Groth16 setup generation, which leverages a random beacon to ensure public randomness. Additionally, it explores the alternative design approach presented in the ``Snarky Ceremonies" paper KMSV21, which removes the need for a random beacon. The document includes a detailed pseudocode and workflow...
For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup). However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...
A hybrid cryptosystem combines two systems that fulfill the same cryptographic functionality, and its security enjoys the security of the harder one. There are many proposals for hybrid public-key encryption (hybrid PKE), hybrid signature (hybrid SIG) and hybrid authenticated key exchange (hybrid AKE). In this paper, we fill the blank of Hybrid Password Authentication Key Exchange (hybrid PAKE). For constructing hybrid PAKE, we first define an important class of PAKE -- full DH-type...
We design a generic compiler to boost any non-trivial succinct non-interactive argument of knowledge (SNARK) to full succinctness. Our results come in two flavors: For any constant $\epsilon > 0$, any SNARK with proof size $|\pi| < \frac{|\omega|}{\lambda^\epsilon} + \mathsf{poly}(\lambda, |x|)$ can be upgraded to a fully succinct SNARK, where all system parameters (such as proof/CRS sizes and setup/verifier run-times) grow as fixed polynomials in $\lambda$, independent of witness...
We describe a fully distributed KZG-based Snark instantiable with any pairing-friendly curve with a sufficiently large scalar field. In particular, the proof system is compatible with Cocks-Pinch or Brezing-Weng outer curves to the the widely used curves such as secp256k1, ED25519, BLS12-381 and BN254. This allows us to retain the fully parallelizable nature and the O(1) communication complexity of Pianist ([LXZ+23]) in conjunction with circumventing the huge overhead of non-native...
To date, the strongest notions of security achievable for two-round publicly-verifiable cryptographic proofs for $\mathsf{NP}$ are witness indistinguishability (Dwork-Naor 2000, Groth-Ostrovsky-Sahai 2006), witness hiding (Bitansky-Khurana-Paneth 2019, Kuykendall-Zhandry 2020), and super-polynomial simulation (Pass 2003, Khurana-Sahai 2017). On the other hand, zero-knowledge and even weak zero-knowledge (Dwork-Naor-Reingold-Stockmeyer 1999) are impossible in the two-round publicly-verifiable...
Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE implicitly solve the following /shifted multi-preimage sampling problem/: given matrices $\mathbf{A}_1, \ldots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and targets $\mathbf{t}_1, \ldots, \mathbf{t}_\ell \in \mathbb{Z}_q^n$, sample a shift $\mathbf{c} \in \mathbb{Z}_q^n$ and short preimages $\boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_\ell \in \mathbb{Z}_q^m$ such that $\mathbf{A}_i...
Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...
We construct a succinct non-interactive argument (SNARG) system for every NP language $\mathcal{L}$ that has a propositional proof of non-membership for each $x\notin \mathcal{L}$. The soundness of our SNARG system relies on the hardness of the learning with errors (LWE) problem. The common reference string (CRS) in our construction grows with the space required to verify the propositional proof, and the size of the proof grows poly-logarithmically in the length of the propositional...
We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS model from sub-exponentially-secure indistinguishability obfuscation ($i\mathcal{O}$) and sub-exponentially-secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional algebraic...
Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes $x$ to users. In turn, ciphertexts are associated with a decryption policy $\mathcal{P}$. Decryption succeeds and recovers the encrypted message whenever $\mathcal{P}(x) = 1$. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced the notion of...
A functional commitment allows a user to commit to an input $\mathbf{x}$ and later, open the commitment to an arbitrary function $\mathbf{y} = f(\mathbf{x})$. The size of the commitment and the opening should be sublinear in $|\mathbf{x}|$ and $|f|$. In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the commitment and the size of the opening consist of a constant number of group elements. Security relies on the standard bilateral...
In the common random string model, the parties executing a protocol have access to a uniformly random bit string. It is known that under standard intractability assumptions, we can realize any ideal functionality with universally composable (UC) security if a trusted common random string (CrS) setup is available. It was always a question of where this CrS should come from since the parties provably could not compute it themselves. Trust assumptions are required, so minimizing the level of...
Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...
We present a framework for building efficient folding-based SNARKs. First we develop a new "uniformizing" compiler for NP statements that converts any poly-time computation to a sequence of identical simple steps. The resulting uniform computation is especially well-suited to be processed by a folding-based IVC scheme. Second, we develop two optimizations to folding-based IVC. The first reduces the recursive overhead of the IVC by restructuring the relation to which folding is applied. The...
SCALES (Small Clients And Larger Ephemeral Servers) model is a recently proposed model for MPC (Acharya et al., TCC 2022). While the SCALES model offers several attractive features for practical large-scale MPC, the result of Acharya et al. only offered semi-honest secure protocols in this model. We present a new efficient SCALES protocol secure against malicious adversaries, for general Boolean circuits. We start with the base construction of Acharya et al. and design and use a suite of...
We give a construction of a two-round batch oblivious transfer (OT) protocol in the CRS model that is UC-secure against malicious adversaries and has (near) optimal communication cost. Specifically, to perform a batch of $k$ oblivious transfers where the sender's inputs are bits, the sender and the receiver need to communicate a total of $3k + o(k) \cdot \mathsf{poly}(\lambda)$ bits. We argue that $3k$ bits are required by any protocol with a black-box and straight-line simulator. The...
We construct an adaptively sound SNARGs in the plain model with CRS relying on the assumptions of (subexponential) indistinguishability obfuscation (iO), subexponential one-way functions and a notion of lossy functions we call length parameterized lossy functions. Length parameterized lossy functions take in separate security and input length parameters and have the property that the function image size in lossy mode depends only on the security parameter. We then show a novel way of...
Trusted setup is commonly used for non-interactive proof and argument systems. However, there is no guarantee that the setup parameters in these systems are generated in a trustworthy manner. Building upon previous works, we conduct a systematic study of non-interactive zero-knowledge arguments in the common reference string model where the authority running the trusted setup might be corrupted. We explore both zero-knowledge and soundness properties in this setting. - We consider a new...
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
Fuzzy extractors derive stable keys from noisy sources non-interactively (Dodis et al., SIAM Journal of Computing 2008). Since their introduction, research has focused on two tasks: 1) showing security for as many distributions as possible and 2) providing stronger security guarantees including allowing one to enroll the same value multiple times (reusability), security against an active attacker (robustness), and preventing leakage about the enrolled value (privacy). Existing constructions...
zkSNARK is a cryptographic primitive that allows a prover to prove to a resource constrained verifier, that it has indeed performed a specified non-deterministic computation correctly, while hiding private witnesses. In this work we focus on lattice based zkSNARK, as this serves two important design goals. Firstly, we get post-quantum zkSNARK schemes with $O(\log (\mbox{Circuit size}))$ sized proofs (without random oracles) and secondly, the easy verifier circuit allows further...
In this work, we propose a simple framework of constructing efficient non-interactive zero-knowledge proof (NIZK) systems for all NP. Compared to the state-of-the-art construction by Groth, Ostrovsky, and Sahai (J. ACM, 2012), our resulting NIZK system reduces the proof size and proving and verification cost without any trade-off, i.e., neither increasing computation cost, CRS size nor resorting to stronger assumptions. Furthermore, we extend our framework to construct a batch argument...
After the pioneering results proposed by Bellare et al in ASIACRYPT 2016, there have been lots of efforts to construct zero-knowledge succinct non-interactive arguments of knowledge protocols (zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and standard soundness from the zk-SNARK in the common reference string (CRS) model. The various constructions could be regarded secure in the bare public key (BPK) model because of the equivalence between S-ZK in the CRS model, and uniform...
Motivated by the fact that broadcast is an expensive, but useful, resource for the realization of multi-party computation protocols (MPC), Cohen, Garay, and Zikas (Eurocrypt 2020), and subsequently Damgård, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021), and, Damgård, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023), focused on 𝘴𝘰-𝘤𝘢𝘭𝘭𝘦𝘥 𝘣𝘳𝘰𝘢𝘥𝘤𝘢𝘴𝘵 𝘰𝘱𝘵𝘪𝘮𝘢𝘭 𝘔𝘗𝘊. In particular, the authors focus on two-round MPC protocols (in the CRS model), and give tight characterizations of which...
Non-interactive zero-knowledge (NIZK) proof systems are a cornerstone of modern cryptography, but their security has received little attention in the quantum settings. Motivated by improving our understanding of this fundamental primitive against quantum adversaries, we propose a new definition of security against quantum adversary. Specifically, we define the notion of quantum simulation soundness (SS-NIZK), that allows the adversary to access the simulator in superposition. We show a...
We investigate the conditions under which straight-line extractable NIZKs in the random oracle model (i.e. without a CRS) permit multiparty realizations that are black-box in the same random oracle. We show that even in the semi-honest setting, any MPC protocol to compute such a NIZK cannot make black-box use of the random oracle or a hash function instantiating it if security against all-but-one corruptions is desired, unless the number of queries made by the verifier to the oracle grows...
We slightly generalize Plonk's ([GWC19]) permutation argument by replacing permutations with (possibly non-injective) self-maps of an interval. We then use this succinct argument to obtain a protocol for weighted sums on committed vectors, which, in turn, allows us to eliminate the intermediate gates arising from high fan-in additions in Plonkish circuits. We use the KZG10 polynomial commitment scheme, which allows for a universal updateable CRS linear in the circuit size. In keeping...
We describe a pairing-based Snark with a universal updateable CRS that can be instantiated with any pairing-friendly curve endowed with a sufficiently large prime scalar field. We use the monomial basis, thus sidestepping the need for large smooth order subgroups in the scalar field. In particular, the scheme can be instantiated with outer curves to widely used curves such as Ed25519, secp256k1, BN254 and BLS12-381. This allows us to largely circumvent the overhead of non-native field...
In this paper we continue the study of two-round broadcast-optimal MPC, where broadcast is used in one of the two rounds, but not in both. We consider the realistic scenario where the round that does not use broadcast is asynchronous. Since a first asynchronous round (even when followed by a round of broadcast) does not admit any secure computation, we introduce a new notion of asynchrony which we call $(t_d, t_m)$-asynchrony. In this new notion of asynchrony, an adversary can delay or...
We present a new framework for building round-optimal (two-round) $adaptively$ secure MPC. We show that a relatively weak notion of OT that we call $indistinguishability \ OT \ with \ receiver \ oblivious \ sampleability$ (r-iOT) is enough to build two-round, adaptively secure MPC against $malicious$ adversaries in the CRS model. We then show how to construct r-iOT from CDH, LPN, or isogeny-based assumptions that can be viewed as group actions (such as CSIDH and CSI-FiSh). This yields the...
Subversion-resistant zk-SNARKs allow the provers to verify the Structured Reference String (SRS), via an SRS Verification (SV) algorithm and bypass the need for a Trusted Third Party (TTP). Pairing-based zk-SNARKs with \(updatable\) and \(universal\) SRS are an extension of subversion-resistant ones which additionally allow the verifiers to update the SRS, via an SRS Updating (SU) algorithm, and similarly bypass the need for a TTP. In this paper, we examine the setup of these zk-SNARKs by...
Consider the problem of efficiently evaluating isogenies $\phi: \mathcal{E} \to \mathcal{E}/H$ of elliptic curves over a finite field $\mathbb{F}_q$, where the kernel \(H = \langle{G}\rangle\) is a cyclic group of odd (prime) order: given \(\mathcal{E}\), \(G\), and a point (or several points) $P$ on $\mathcal{E}$, we want to compute $\phi(P)$. This problem is at the heart of efficient implementations of group-action- and isogeny-based post-quantum cryptosystems such as CSIDH. Algorithms...
Non-Interactive Zero-Knowledge proofs (NIZK) allow a prover to convince a verifier that a statement is true by sending only one message and without conveying any other information. In the CRS model, many instantiations have been proposed from group-theoretic assumptions. On the one hand, some of these constructions use the group structure in a black-box way but rely on pairings, an example being the celebrated Groth-Sahai proof system. On the other hand, a recent line of research realized...
Distributed samplers, introduced by Abram, Scholl and Yakoubov (Eurocrypt ’22), are a one-round, multi-party protocol for securely sampling from any distribution. We give new lower and upper bounds for constructing distributed samplers in challenging scenarios. First, we consider the feasibility of distributed samplers with a malicious adversary in the standard model; the only previous construction in this setting relies on a random oracle. We show that for any UC-secure construction in the...
A distributed sampler is a way for several mutually distrusting parties to non-interactively generate a common reference string (CRS) that all parties trust. Previous work constructs distributed samplers in the random oracle model, or in the standard model with very limited security guarantees. This is no accident, as standard model distributed samplers with full security were shown impossible. In this work, we provide new definitions for distributed samplers which we show achieve...
The secret key of any encryption scheme that are stored in secure memory of the hardwired devices can be tampered using fault attacks. The usefulness of tampering attack is to recover the key by altering some regions of the memory. Such attack may also appear when the device is stolen or viruses has been introduced. Non-malleable codes are used to protect the secret information from tampering attacks. The secret key can be encoded using non-malleable codes rather than storing it in plain...
We present a theoretical framework for analyzing the efficiency of consensus protocols, and apply it to analyze the optimistic and pessimistic confirmation times of state-of-the-art partially-synchronous protocols in the so-called "rotating leader/random leader" model of consensus (recently popularized in the blockchain setting). We next present a new and simple consensus protocol in the partially synchronous setting, tolerating $f < n/3$ byzantine faults; in our eyes, this protocol is...
This paper introduces the first registered functional encryption RFE scheme tailored for linear functions. Distinctly different from classical functional encryption (FE), RFE addresses the key-escrow issue and negates the master key exfiltration attack. Instead of relying on a centralized trusted authority, it introduces a “key curator” - a fully transparent entity that does not retain secrets. In an RFE framework, users independently generate secret keys and subsequently register their...
Long-term security, a variant of Universally Composable (UC) security introduced by Müller-Quade and Unruh (JoC ’10), allows to analyze the security of protocols in a setting where all hardness assumptions no longer hold after the protocol execution has finished. Such a strict notion is highly desirable when properties such as input privacy need to be guaranteed for a long time, e.g. zero-knowledge proofs for secure electronic voting. Strong impossibility results rule out so-called...
A \emph{witness map} deterministically maps a witness $w$ of some NP statement $x$ into computationally sound proof that $x$ is true, with respect to a public common reference string (CRS). In other words, it is a deterministic, non-interactive, computationally sound proof system in the CRS model. A \emph{unique witness map} (UWM) ensures that for any fixed statement $x$, the witness map should output the same \emph{unique} proof for $x$, no matter what witness $w$ it is applied to. More...
Non-interactive zero-knowledge proofs (NIZKs) and in particular succinct NIZK arguments of knowledge (zk-SNARKs) increasingly see real-world adoption in large and complex systems. Many zk-SNARKs require a trusted setup, i.e., a common reference string (CRS), and for practical use it is desirable to reduce the trust in the CRS generation. The latter can be achieved via the notions of subversion or updatable CRS. Another important property when deployed in large systems is the ability to...
Non-interactive batch arguments for $\mathsf{NP}$ provide a way to amortize the cost of $\mathsf{NP}$ verification across multiple instances. In particular, they allow a prover to convince a verifier of multiple $\mathsf{NP}$ statements with communication that scales sublinearly in the number of instances. In this work, we study fully succinct batch arguments for $\mathsf{NP}$ in the common reference string (CRS) model where the length of the proof scales not only sublinearly in the...
A critical aspect for the practical use of non-interactive zero-knowledge (NIZK) arguments in the common reference string (CRS) model is the demand for a trusted setup, i.e., a trusted generation of the CRS. Recently, motivated by its increased use in real-world applications, there has been a growing interest in concepts that allow to reduce the trust in this setup. In particular one demands that the zero-knowledge and ideally also the soundness property hold even when the CRS generation is...
$\ell$-more extractable hash functions were introduced by Kiayias et al. (CCS '16) as a strengthening of extractable hash functions by Goldwasser et al. (Eprint '11) and Bitansky et al. (ITCS '12, Eprint '14). In this work, we define and study an even stronger notion of leakage-resilient $\ell$-more extractable hash functions, and instantiate the notion under the same assumptions used by Kiayias et al. and Bitansky et al. In addition, we prove that any hash function that can be modeled...
We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...
We construct a falsifiable set (non-)membership NIZK $\Pi^*$ that is considerably more efficient than known falsifiable set (non-)membership NIZKs. It also has a universal CRS. $\Pi^*$ is based on the novel concept of determinantal accumulators. Determinantal primitives have a similar relation to recent pairing-based (non-succinct) NIZKs of Couteau and Hartmann (Crypto 2020) and Couteau et al. (CLPØ, Asiacrypt 2021) that structure-preserving primitives have to the Groth-Sahai NIZK. We also...
We give round-optimal {\em black-box} constructions of two-party and multiparty protocols in the common random/reference string (CRS) model, with security against malicious adversaries, based on any two-round oblivious transfer (OT) protocol in the same model. Specifically, we obtain two types of results. \begin{enumerate} \item {\bf Two-party protocol.} We give a (two-round) {\it two-sided NISC} protocol that makes black-box use of two-round (malicious-secure) OT in the CRS model....
The permissionless clock synchronization problem asks how it is possible for a population of parties to maintain a system-wide synchronized clock, while their participation rate fluctuates --- possibly very widely --- over time. The underlying assumption is that parties experience the passage of time with roughly the same speed, but however they may disengage and engage with the protocol following arbitrary (and even chosen adversarially) participation patterns. This (classical) problem has...
We propose three constructions of classically verifiable non-interactive zero-knowledge proofs and arguments (CV-NIZK) for QMA in various preprocessing models. 1. We construct a CV-NIZK for QMA in the quantum secret parameter model where a trusted setup sends a quantum proving key to the prover and a classical verification key to the verifier. It is information theoretically sound and zero-knowledge. 2. Assuming the quantum hardness of the learning with errors problem, we construct a...
We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with entropy below 1/2 of their length. Constructions were previously only known for both primitives assuming random oracles or a common reference string (CRS). Along the way, we define a new primitive called a nonmalleable point function obfuscation with associated data. The associated data is...
Vector Commitments allow one to (concisely) commit to a vector of messages so that one can later (concisely) open the commitment at selected locations. In the state of the art of vector commitments, algebraic constructions have emerged as a particularly useful class, as they enable advanced properties, such as stateless updates, subvector openings and aggregation, that are for example unknown in Merkle-tree-based schemes. In spite of their popularity, algebraic vector commitments remain...
We explore the cryptographic power of arbitrary shared physical resources. The most general such resource is access to a fresh entangled quantum state at the outset of each protocol execution. We call this the Common Reference Quantum State (CRQS) model, in analogy to the well-known Common Reference String (CRS). The CRQS model is a natural generalization of the CRS model but appears to be more powerful: in the two-party setting, a CRQS can sometimes exhibit properties associated with a...
The evolution of Smart contracts in recent years inspired a crucial question: Do smart contract evaluation protocols provide the required level of privacy when executing contracts on the Blockchain? The Hawk (IEEE S&P '16) paper introduces a way to solve the problem of privacy in smart contracts by evaluating the contracts off-chain, albeit with the trust assumption of a manager. To avoid the partially trusted manager altogether, a novel approach named zkHawk (IEEE BRAINS '21) explains how...
Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple instances. They enable a prover to convince a verifier of multiple NP statements with communication much smaller than the total witness length and verification time much smaller than individually checking each instance. In this work, we give the first construction of a non-interactive batch argument for NP from standard assumptions on groups with bilinear maps (specifically, from...
We present the first truly explicit constructions of non-malleable codes against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature. Prior works on NMC for polysize circuits, either required an untamperable CRS [Cheraghchi, Guruswami ITCS'14; Faust, Mukherjee, Venturi, Wichs EUROCRYPT'14] or very strong...
Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users to authenticate while maintaining privacy. When instantiated from structure-preserving signatures on equivalence classes (SPS-EQ) we obtain a controlled form of malleability, and hence increased functionality and privacy for the user. Existing constructions consider equivalence classes on the message space, allowing the joint randomization of credentials and the corresponding signatures on them. In this work,...
Recently, motivated by its increased use in real-world applications, there has been a growing interest on the reduction of trust in the generation of the common reference string (CRS) for zero-knowledge (ZK) proofs. This line of research was initiated by the introduction of subversion non-interactive ZK (NIZK) proofs by Bellare et al. (ASIACRYPT'16). Here, the zero-knowledge property needs to hold even in case of a malicious generation of the CRS. Groth et al. (CRYPTO'18) then introduced the...
Recent exciting breakthroughs, starting with the work of Chattopadhyay and Zuckerman (STOC 2016) have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately, these constructions suffer from non-negligible error, and reducing the error to negligible remains an important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a meaningful relaxation of this problem to the computational setting, in the presence of a...
Robust (fuzzy) extractors are very useful for, e.g., authenticated exchange from shared weak secret and remote biometric authentication against active adversaries. They enable two parties to extract the same uniform randomness with the ``helper'' string. More importantly, they have an authentication mechanism built in that tampering of the ``helper'' string will be detected. Unfortunately, as shown by Dodis and Wichs, in the information-theoretic setting, a robust extractor for an...
It is well known that several cryptographic primitives cannot be achieved without a common reference string (CRS). Those include, for instance, non-interactive zero-knowledge for NP, or maliciously secure computation in fewer than four rounds. The security of those primitives heavily relies upon on the assumption that the trusted authority, who generates the CRS, does not misuse the randomness used in the CRS generation. However, we argue that there is no such thing as an unconditionally...
In classical commitments, statistical binding means that for almost any commitment transcript there is at most one possible opening. While quantum commitments (for classical messages) sometimes have benefits over their classical counterparts (e.g.\ in terms of assumptions), they provide a weaker notion of binding. Essentially that the sender cannot open a given commitment to a random value with probability noticeably greater than $1/2$. We introduce a notion of classical binding for quantum...
The study of secure multi-party computation (MPC) has thus far been limited to the following two settings: every party is fully classical, or every party has quantum capabilities. This paper studies a notion of MPC that allows some classical and some quantum parties to securely compute a quantum functionality over their joint private inputs. In particular, we construct (constant-round, composable) protocols for blind and verifiable classical delegation of quantum computation, and give...
The J-PAKE protocol is a Password Authenticated Key Establishment protocol whose security rests on Diffie-Hellman key establishment and Non-Interactive Zero Knowledge proofs. It has seen widespread deployment and has previously been proven secure, including forward secrecy, in a game-based model. In this paper we show that this earlier proof can be re-cast in the Universal Composability framework, thus yielding a stronger result. We also investigate the extension of such proofs to a...
We provide the first construction of a succinct non-interactive argument (SNARG) for *all* polynomial time deterministic computations based on standard assumptions. For $T$ steps of computation, the size of the proof and the common random string (CRS) as well as the verification time are poly-logarithmic in $T$. The security of our scheme relies on the hardness of the Learning with Errors (LWE) problem against polynomial-time adversaries. Previously, SNARGs based on standard assumptions...
We define smooth zero-knowledge hash functions (SZKHFs) as smooth projective hash functions (SPHFs) for which the completeness holds even when the language parameter lpar and the projection key HP were maliciously generated. We prove that blackbox SZKHF in the plain model is impossible even if lpar was honestly generated. We then define SZKHF in the registered public key (RPK) model, where both lpar and HP are possibly maliciously generated but accepted by an RPK server, and show that the...
We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, $R$, of the verifier to be comparable with the number of bits, $C_V$, that the verifier sends during the interaction. We show that such \emph{randomness sparsification} is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a...
Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using...
Dynamic group signature (DGS) allows a user to generate a signature on behalf of a group, while preserving anonymity. Although many existing DGS schemes have been proposed in the random oracle model for achieving efficiency, their security proofs require knowledge extractors that cause loose security reductions. In this paper, we first propose a new practical DGS scheme whose security can be proven without knowledge extractors in the random oracle model. Moreover, our scheme can also be...
We present a new construction of maliciously-secure, two-round multiparty computation (MPC) in the CRS model, where the first message is reusable an unbounded number of times. The security of the protocol relies on the Learning Parity with Noise (LPN) assumption with inverse polynomial noise rate 1/n^{1-epsilon} for small enough epsilon, where n is the LPN dimension. Prior works on reusable two-round MPC required assumptions such as DDH or LWE that imply some flavor of homomorphic...
We describe a simple method for solving the distributed discrete logarithm problem in Paillier groups, allowing two parties to locally convert multiplicative shares of a secret (in the exponent) into additive shares. Our algorithm is perfectly correct, unlike previous methods with an inverse polynomial error probability. We obtain the following applications and further results. - Homomorphic secret sharing. We construct homomorphic secret sharing for branching programs with *negligible*...
We study the problem of secure multiparty computation for functionalities where only one party receives the output, to which we refer as solitary MPC. Recently, Halevi et al. (TCC 2019) studied fully secure (i.e., with guaranteed output delivery) solitary MPC and showed impossibility of such protocols for certain functionalities when there is no honest majority among the parties. In this work, we study fully secure solitary MPC in the honest majority setting and focus on its round...
We construct the first constant-round protocols for secure quantum computation in the two-party (2PQC) and multi-party (MPQC) settings with security against malicious adversaries. Our protocols are in the common random string (CRS) model. - Assuming two-message oblivious transfer (OT), we obtain (i) three-message 2PQC, and (ii) five-round MPQC with only three rounds of online (input-dependent) communication; such OT is known from quantum-hard Learning with Errors (QLWE). - Assuming...
Publicly Verifiable Zero-Knowledge proofs are known to exist only from setup assumptions such as a trusted Common Reference String (CRS) or a Random Oracle. Unfortunately, the former requires a trusted party while the latter does not exist. Blockchains are distributed systems that already exist and provide certain security properties (under some honest majority assumption), hence, a natural recent research direction has been to use a blockchain as an alternative setup assumption. In TCC 2017...
We extend the classical problem of privacy amplification to a setting where the active adversary, Eve, is also allowed to fully corrupt the internal memory (which includes the shared randomness, and local randomness tape) of one of the honest parties, Alice and Bob, before the execution of the protocol. We require that either one of Alice or Bob detects tampering, or they agree on a shared key that is indistinguishable from the uniform distribution to Eve. We obtain the following...
We propose an improvement for the inner product argument of Bootle et al. (EUROCRYPT’16). The new argument replaces the unstructured common reference string (the commitment key) by a structured one. We give two instantiations of this argument, for two different distributions of the CRS. In the designated verifier setting, this structure can be used to reduce verification from linear to logarithmic in the circuit size. The argument can be compiled to the publicly verifiable setting in...
Zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) are the most efficient proof systems in terms of proof size and verification. Currently, Groth's scheme from EUROCRYPT 2016, $\textsf{Groth16}$, is the state-of-the-art and is widely deployed in practice. $\mathsf{Groth16}$ is originally proven to achieve knowledge soundness, which does not guarantee the non-malleability of proofs. There has been considerable progress in presenting new zk-SNARKs or modifying...
In this paper, we extend the protocol of classical verification of quantum computations (CVQC) recently proposed by Mahadev to make the verification efficient. Our result is obtained in the following three steps: - We show that parallel repetition of Mahadev's protocol has negligible soundness error. This gives the first constant round CVQC protocol with negligible soundness error. In this part, we only assume the quantum hardness of the learning with error (LWE) problem similar to...
Non-interactive zero knowledge (NIZK) enables proving the validity of NP statement without leaking anything else. We study multi-instance NIZKs in the common reference string (CRS) model, against an adversary that adaptively corrupts parties and chooses statements to be proven. We construct the first such $\textit{triply adaptive}$ NIZK that provides full adaptive soundness, as well as adaptive zero-knowledge, assuming either LWE or else LPN and DDH (previous constructions rely on...
Non-interactive zero-knowledge proofs or arguments allow a prover to show validity of a statement without further interaction. For non-trivial statements such protocols require a setup assumption in form of a common random or reference string (CRS). Generally, the CRS can only be used for one statement (single-theorem zero-knowledge) such that a fresh CRS would need to be generated for each proof. Fortunately, Feige, Lapidot and Shamir (FOCS 1990) presented a transformation for any...
This work concerns secure protocols in the massively parallel computation (MPC) model, which is one of the most widely-accepted models for capturing the challenges of writing protocols for the types of parallel computing clusters which have become commonplace today (MapReduce, Hadoop, Spark, etc.). Recently, the work of Chan et al. (ITCS '20) initiated this study, giving a way to compile any MPC protocol into a secure one in the common random string model, achieving the standard secure...
The two traditional streams of multiparty computation (MPC) protocols consist of-- (a) protocols achieving guaranteed output delivery (god) or fairness (fn) in the honest-majority setting and (b) protocols achieving unanimous or selective abort (ua, sa) in the dishonest-majority setting. The favorable presence of honest majority amongst the participants is necessary to achieve the stronger notions of god or fn. While the constructions of each type are abound in the literature, one...
We study adaptive security of delayed-input Sigma protocols and non-interactive zero-knowledge (NIZK) proof systems in the common reference string (CRS) model. Our contributions are threefold: - We exhibit a generic compiler taking any delayed-input Sigma protocol and returning a delayed-input Sigma protocol satisfying adaptive-input special honest-verifier zero-knowledge (SHVZK). In case the initial Sigma protocol also satisfies adaptive-input special soundness, our compiler preserves this...
We build a two-round, UC-secure oblivious transfer protocol (OT) in the common reference string (CRS) model under the Learning with Errors assumption (LWE) with sub-exponential modulus-to-noise ratio. We do so by instantiating the dual-mode encryption framework of Peikert, Vaikuntanathan and Waters (CRYPTO'08). The resulting OT can be instantiated in either one of two modes: one providing statistical sender security, and the other statistical receiver security. Furthermore, our scheme allows...
An incompressible encoding can probabilistically encode some data $m$ into a codeword $c$, which is not much larger. Anyone can decode the codeword $c$ to recover the original data $m$. However, the codeword $c$ cannot be efficiently compressed, even if the original data $m$ is given to the decompression procedure on the side. In other words, $c$ is an efficiently decodable representation of $m$, yet is computationally incompressible even given $m$. An incompressible encoding is composable...
Can Alice and Bob agree on a uniformly random secret key without having any truly secret randomness to begin with? Here we consider a setting where Eve can get partial leakage on the internal state of both Alice and Bob individually before the protocol starts. They then run a protocol using their states without any additional randomness and need to agree on a shared key that looks uniform to Eve, even after observing the leakage and the protocol transcript. We focus on non-interactive (one...
In the past decades, user authentication has been dominated by server-side password-based solutions that rely on "what users know". This approach is susceptible to breaches and phishing attacks, and poses usability challenges. As a result, the industry is gradually moving to biometric-based client-side solutions that do not store any secret information on servers. This shift necessitates the safe storage of biometric templates and private keys, which are used to generate tokens, on user...
While NIZK arguments in the CRS model are widely studied, the question of what happens when the CRS was subverted has received little attention. In ASIACRYPT 2016, Bellare, Fuchsbauer, and Scafuro showed the first negative and positive results in the case of NIZK, proving also that it is impossible to achieve subversion soundness and (even non-subversion) zero-knowledge at the same time. On the positive side, they constructed an involved sound and subversion-zero-knowledge (Sub-ZK)...
We construct the most efficient two-round adaptively secure bit-OT in the Common Random String (CRS) model. The scheme is UC secure under the Decisional Diffie-Hellman (DDH) assumption. It incurs O(1) exponentiations and sends O(1) group elements, whereas the state of the art requires O(k^2) exponentiations and communicates poly(k) bits, where k is the computational security parameter. Along the way, we obtain several other efficient UC-secure OT protocols under DDH : - The most...
Zk-SNARKs, as the most efficient NIZK arguments in terms of proof size and verification, are ubiquitously deployed in practice. In applications like Hawk [S&P'16], Gyges [CCS'16], Ouroboros Crypsinous [S&P'19], the underlying zk-SNARK is lifted to achieve Black-Box Simulation Extractability (BB-SE) under a trusted setup phase. To mitigate the trust in such systems, we propose $\texttt{Tiramisu}$, as a construction to build NIZK arguments that can achieve $\textit{updatable BB-SE}$, which we...
Quasi-adaptive non-interactive zero-knowledge (QA-NIZK) arguments are NIZK arguments where the common reference string (CRS) is allowed to depend on the language and they can be very efficient for specific languages. Thus, they are for instance used within the modular LegoSNARK toolbox by Campanelli et al. (ACM CCS'19) as succinct NIZKs (aka zkSNARKs) for linear subspace languages. Such modular frameworks are interesting, as they provide gadgets for a flexible design of privacy-preserving...