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Abstract
In recent years, the integration of deep learning with differential cryptanalysis has

led to differential neural cryptanalysis, enabling efficient data-driven security evaluation
of modern cryptographic algorithms. Compared to traditional differential cryptanalysis,
differential neural cryptanalysis enhances the efficiency and automation of the analysis
by training neural networks to automatically extract statistical features from ciphertext
pairs. As research advances, neural distinguisher construction faces challenges due to
the absence of a unified framework capable of cross-algorithm generalization and feature
optimization. There’s no systematic way to build a framework from data formats and
network architectures, which limits their scalability across diverse ciphers and and their
suitability for combining different cryptanalysis methods. While neural network training
is data-driven, we lack interpretable explanations for the quality of differentially generated
datasets. Therefore, there is an urgent need to combine cryptographic theory with data
analysis methods to systematically evaluate dataset quality.

This paper proposes a novel framework for constructing related-key neural differential
distinguishers that integrates three core innovations: (1) multi-ciphertext multi-difference
formats to enhance dataset diversity and feature coverage, (2) structural filtering for pri-
oritizing high-probability differential paths aligned with cryptographic architectures, and
(3) Deep Residual Shrinkage Network (DRSN) with adaptive thresholding to suppress
noise and amplify critical differential features. By applying this framework to two stan-
dardized algorithms DES and PRESENT, our results demonstrate significant advance-
ments. For DES, the framework achieves an 8-round related-key neural distinguisher and
improves 6/7-round distinguisher accuracy by over 40%. For PRESENT, we construct the
first 9-round related-key neural distinguisher, which outperforms existing neutral distin-
guishers in both round coverage and accuracy. Additionally, we employ kernel principal
component analysis (KPCA) and K-means clustering to evaluate the quality of differ-
ential datasets for DES and PRESENT, revealing that clustering compactness strongly
correlates with distinguisher performance. Furthermore, we propose a validation algo-
rithm to verify differential combinations with cryptographic advantages from a machine
learning perspective, identifying ‘good’ plaintext-key differential combinations. We apply

∗Corresponding author. Email: jiongjiong fun@163.com

1



this approach to the SIMECK algorithm, demonstrating its broad applicability. These
findings validate the framework’s effectiveness in bridging cryptographic analysis with
data-driven feature extraction and offer new insights for automated security evaluation
of block ciphers.

1 Introduction

Cryptography, the cornerstone of information security, enables critical functions in-
cluding data encryption and integrity verification. Block ciphers—characterized by ef-
ficiency, implementability, and versatility—form the backbone of modern cryptographic
systems. Their evolution originated in the 1970s alongside cryptographic standardiza-
tion, marked by the 1977 establishment of DES(Data Encryption Standard)[1] , the first
government-certified encryption algorithm that propelled cryptographic research glob-
ally. By 2000, the National Institute of Standards and Technology (NIST) adopted the
Rijndael[2] algorithm as the Advanced Encryption Standard (AES), which has renowned
for its robust security and computational efficiency. Recent demands from IoT and AI
advancements have driven lightweight block cipher innovation for resource-constrained en-
vironments. The PRESENT[3] algorithm exemplifies this trend through its ultra-efficient
design, achieving ISO/IEC 29192-2 standardization and widespread deployment in em-
bedded/IoT systems. The standardization of cryptographic algorithms ensures their se-
curity and verifiability, rendering the cryptanalysis of such standardized ciphers critically
important.

Deep learning[4, 5] models have demonstrated remarkable potential in cryptanalysis,
primarily due to their ability to extract discriminative features from ciphertext pairs
associated with input differentials. In 2019, a groundbreaking study by Gohr [6] presented
at CRYPTO achieved the first theoretical integration of deep learning with traditional
differential cryptanalysis. Targeting the lightweight block cipher SPECK32/64, this work
designed a deep residual network (ResNet)[7] architecture to successfully construct an 8-
round neural differential distinguisher, which demonstrated superior accuracy compared
to conventional differential distinguishers at the same round count.

By leveraging deep neural networks for feature learning and pattern recognition on
ciphertext data, deep learning models can precisely identify latent patterns in differ-
ential propagation, thereby constructing comprehensive differential path characteristic
libraries. This data-driven approach to feature extraction enables deep learning tech-
niques to achieve superior distinguishing performance compared to traditional analytical
methods. Research findings demonstrate that integrating deep learning into differential
cryptanalysis holds substantial theoretical and practical significance. Not only does it
provide a novel technical pathway for cryptographic evaluation, but it also opens new re-
search directions, potentially driving transformative innovations in cryptanalysis. Similar
to classical differential cryptanalysis, deep learning-based differential analysis emphasizes
the construction of neural distinguishers, where higher accuracy, extended round cover-
age, and reduced key recovery complexity directly correlate with improved cryptanalytic
outcomes. Current research in this domain is categorized into three primary directions:

Training Data Optimization for High-Accuracy Distinguishers: Recent ad-
vancements in neural distinguishers have emphasized the critical role of training data
optimization. Chen et al.[8] demonstrated that utilizing multiple ciphertext pairs as
training samples significantly enhances the accuracy of 5–7-round neural distinguishers
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for SPECK32/64. Building on this, Hou et al.[9] achieved further improvements for
SPECK and SIMON by training networks on multi-pair output differentials, while Lu
et al.[10] pioneered single-key and related-key neural distinguishers for SIMON through
early-round output inference, attaining unprecedented precision. Bao et al.[11] improved
SIMON32/64 distinguishers by incorporating linear combinations of previous-round out-
puts as network inputs. Wang et al. [12] improved the accuracy of neural distinguishers
for SPECK and SIMON by replacing random differentials with fixed ones to generate
negative samples, based on differential cryptanalysis and sample feature analysis.

Neural Architecture Innovation for Enhanced Distinguishers: Architectural
innovations have been pivotal in advancing neural cryptanalysis. Jain et al.[13] replaced
convolutional networks with multilayer perceptrons (MLPs) to pioneer 3–6-round neural
distinguishers for PRESENT. Bao et al.[14] integrated dense connectivity (DenseNet)
and squeeze-and-excitation (SENet) modules to extend SIMON32/64 distinguishers to
7–11 rounds, demonstrating the efficacy of channel attention mechanisms. Zhang et
al.[15] further enhanced SPECK distinguishers using GoogleNet-inspired architectures,
highlighting the role of multi-scale feature fusion.

Integration of Auxiliary Analysis Techniques: The fusion of classical cryptan-
alytic methods with deep learning has unlocked new frontiers. Lu et al.[10] first bridged
related-key differential analysis with neural networks, constructing high-precision dis-
tinguishers for SIMON and SIMECK family. Bao et al.[14] augmented SIMON32/64
distinguishers using neutral bits for data augmentation, while Seok et al.[16] leveraged
machine learning to identify optimal input differentials, improving SIMON and SPECK
accuracy.

Motivation: Based on prior work, we argue that current neural cryptanalysis faces
three critical limitations.

-Data format optimizations remain tailored to individual ciphers, lacking adaptability
to diverse architectures, which impedes generalized related-key differential dataset con-
struction. How can we design common data formats for different cryptographic algorithm
structures to generate differential data sets?

-Despite advances in architecture, transformative tools such as attention mechanisms
that can prioritize non-linear cryptographic features remain underexplored in crypto-
specific designs. How might attention-driven neural architectures dynamically amplify
cryptographically critical features while suppressing noise in differential propagation?

-The current landscape presents numerous auxiliary techniques and data analysis
methodologies in deep learning. How might the effective integration of these technologies
with intelligent cryptanalysis extend neural distinguishers or enhance interpretability
analysis, and what aspects require deeper exploration?

Contributions: This paper introduces a unified framework combining data opti-
mization, network design, and input differential selection. Test on the standard cipher
DES and PRESENT, it improves neural distinguisher accuracy and round coverage over
existing methods. Additionally, a validation algorithm is proposed to assess the quality
of differential-generated datasets from both cryptographic and machine learning perspec-
tives, providing interpretable explanations for differential selection.

1. This paper proposes a novel framework for constructing related-key neural dif-
ferential distinguishers by synergizing classical differential cryptanalysis with deep
learning. The framework systematically addresses three core challenges: (1) dataset
construction, where we introduce a multi-differential multi-ciphertext pair format
tailored to Feistel (DES) and SPN (PRESENT) architectures, leveraging round
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function structures to extract inter-ciphertext correlations and optimize feature rep-
resentation; (2) network architecture design, employing a Deep Residual Shrinkage
Network (DRSN)[17] enhanced with adaptive threshold shrinkage units to suppress
noise in cryptographic data while amplifying critical differential patterns; (3) dif-
ferential selection, which integrates traditional related-key differential analysis to
identify high-probability differential combinations, thereby reducing neural network
training complexity.

2. Based on this framework, we constructed related-key neural differential distinguish-
ers for DES and PRESENT algorithms. For DES, our framework improved the ac-
curacy of 6/7-round distinguishers by over 40% compared to existing distinguishers.
Notably, we reported the first 8-round related-key neural differential distinguisher
for DES. For PRESENT, we constructed the first 9-round related-key neural differ-
ential distinguisher, achieving both increased round numbers and accuracy under
identical conditions.

3. Furthermore, we employed data analysis techniques, including Kernel Principal
Component Analysis (KPCA) and K-means clustering, to evaluate the quality of
differential datasets. By applying this approach to the DES and PRESENT al-
gorithms, we successfully identified high-quality input differential pairs, enabling
the construction of high-accuracy related-key neural distinguishers. Building on
this, we proposed a data-driven framework that integrates KPCA and K-means
clustering to systematically recognize cryptographically advantageous ciphertext-
key differential combinations. We validated the effectiveness of this methodology
by applying it to the SIMECK algorithm. Our framework bridges cryptographic
heuristics with machine learning interpretability, offering a systematic solution for
differential selection in related-key neural cryptanalysis.

Comparison with Previous Work. Our neural distinguishers achieve significant
advancements over existing results in both round coverage and accuracy. Key results are
summarized in Table 1 and Table 2. For the DES algorithm, when m = 1 (one ciphertext
pair per sample), the accuracy of the 6-round distinguisher improved from 0.549 to 0.979,
while the 7-round distinguisher achieved over 40% higher accuracy compared to [18] at
m = 16. Notably, the first 8-round neural distinguisher for DES was constructed at
m = 32. For the PRESENT algorithm, the 7-round distinguisher results surpassed
three existing distinguishers by over 20% in accuracy. For the 8-round distinguisher,
the framework outperformed the results in [19] at m = 1, improving accuracy from
0.509 to 0.570, and established a 9-round distinguisher with 0.529 accuracy at m =
4. These results demonstrate the framework’s capability to balance high-probability
differential propagation with robust feature learning, enabling deeper penetration and
enhanced precision in neural cryptanalysis.

In this paper, the available computing resources are: an Intel(R) Core(TM) i9-14900K
CPU @ 3.20GHz, a graphics card (NVIDIA GeForce RTX 4080 SUPER).
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Table 1: Comparison of neural differential distinguishers of DES
Cipher Round m Acc Source

DES

6

1
0.549 [8]
0.979 This work

2
0.565 [8]
0.578 [18]
0.999 This work

4
0.557 [8]
0.627 [18]
0.999 This work

8
0.551 [8]
0.690 [18]
0.999 This work

16
0.553 [8]
0.769 [18]
0.999 This work

7

1 0.535 This work
2 0.562 This work
4 0.666 This work
8 0.823 This work

16
0.511 [18]
0.951 This work

8 32 0.505 This work
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Table 2: Comparison of neural differential distinguishers of PRESENT
Cipher Round m Acc Source

PRESENT

7

1
0.549 [8]
0.563 [20]
0.719 This work

2

0.550 [8]
0.574 [18]
0.593 [20]
0.804 This work

4

0.585 [8]
0.609 [18]
0.635 [20]
0.896 This work

8

0.579 [8]
0.658 [18]
0.691 [20]
0.965 This work

16

0.583 [8]
0.723 [18]
0.765 [20]
0.994 This work

8

1
0.509 [19]∗

0.570 This work

2
0.514 [18]
0.607 This work

4
0.520 [18]
0.658 This work

8
0.529 [18]
0.728 This work

16
0.542 [18]
0.810 This work

9

2 0.502 This work
4 0.529 This work
8 0.544 This work
16 0.567 This work

In [19], the 9-round distinguisher is defined with the whitening key placed in the first
round, meaning their ‘9-round’ configuration is equivalent to the 8-round configuration
in this work.

Section 2 of this paper describes the two standardized cryptographic algorithms, DES
and PRESENT, along with their foundational concepts. Section 3 presents the con-
struction framework for related-key neural differential distinguishers. Building upon the
framework outlined in Section 3, Section 4 details the implementation of the improved
related-key differential distinguishers for DES and PRESENT. In Section 5, we employ
data analysis techniques to analyze the differential datasets of DES and PRESENT and
propose a generic verification algorithm to validate the quality of these datasets. Finally,
the concluding section summarizes the current research work.
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2 PRELIMINARIES

2.1 Discriptions of DES and PRESENT

2.1.1 Specification of DES.

Data Encryption Standard (DES) algorithm, designed by the IBM team, was formally
adopted as a Federal Information Processing Standard (FIPS) by the National Bureau of
Standards (now NIST) in 1977, becoming one of the most widely used block ciphers in
history.

DES employs the classical Feistel structure with a block size of 64 bits and a key length
of 56 bits (with an actual input of 64 bits, where 8 bits are reserved for parity checks).
The encryption process consists of 16 rounds. Initially, the 64-bit plaintext undergoes an
Initial Permutation (IP), followed by 16 rounds of Feistel transformations. In each round,
the right half is expanded to 48 bits via the Expansion Permutation, XORed with the
subkey, and then processed through eight distinct 6-bit input/4-bit output substitution
boxes (S-boxes). The output is permuted via the P Permutation, XORed with the left
half, and the two halves are swapped. After the final round, the ciphertext is obtained
through the Inverse Initial Permutation (IP−1).

The key expansion algorithm of DES transforms the initial 64-bit master key (includ-
ing 8 parity bits) into sixteen 48-bit subkeys for the Feistel network using a systematic
key scheduling strategy. This process involves three stages:

1. Permuted Choice PC-1: Removes parity bits and rearranges the remaining 56 valid
key bits into two 28-bit left and right halves.

2. Circular Shifts: Prior to each round, the two halves undergo specific circular shifts
(1 or 2 bits depending on the round).

3. Permuted Choice PC-2: Compresses the shifted 56-bit intermediate key into a 48-bit
subkey for the current round.

The encryption process and key expansion algorithm of DES is shown in Figure 1.
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.
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PC-2 K16(48bit)

Figure 1: DES Encryption Process and Key Expansion Algorithm.
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In the domain of deep learning-based differential cryptanalysis, [8] pioneered the con-
struction of reduced-round DES neural differential distinguishers in 2021, achieving accu-
racy rates of 0.959 and 0.553 for 5-round and 6-round distinguishers, respectively. Sub-
sequently, [18] developed a 6-round distinguisher with an accuracy of 0.769 and further
reported the first 7-round distinguisher with an accuracy of 0.511. These advancements
introduced novel perspectives for analyzing the security of the DES algorithm, demon-
strating superior generality and feasibility compared to traditional differential cryptanal-
ysis. However, intelligent analytical results under related-key conditions for DES remain
absent in current research.

2.1.2 Specification of PRESENT.

The PRESENT algorithm, proposed by Bogdanov et al. at the CHES conference in
2007, is an ultra-lightweight block cipher specifically designed for resource-constrained
devices such as RFID tags and sensor nodes. Currently standardized by ISO/IEC,
PRESENT is widely adopted in security modules for IoT devices.

PRESENT employs a Substitution-Permutation Network (SPN) structure with a 64-
bit block size, supporting two key lengths (80-bit or 128-bit), and executes 31 encryption
rounds. Renowned for its exceptionally compact hardware footprint, it is hailed as one
of the benchmarks in lightweight cryptography. The encryption process of PRESENT,
illustrated in Figure 2, begins by loading the 64-bit plaintext into a state register, followed
by 31 iterative rounds. Each round comprises three layers of operations:

1. AddRoundKey: The 64-bit state is XORed with the round key.

2. SBoxLayer: A single 4-bit input/4-bit output S-box is applied in parallel to 16
nibbles.

3. PLayer: A deterministic bitwise permutation achieves bit-level diffusion.

After the final round, the 64-bit ciphertext is directly output.

Figure 2: PRESENT Encryption Process.
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The key expansion algorithm of PRESENT is an efficient round-key generation mech-
anism designed to produce unique 64-bit round keys for each encryption round. Its core
principles involve cyclic shifts, nonlinear transformations, and round constant updates.
For an 80-bit master key, denoted as [k79k78 · · · k0], the leftmost 64 bits of the current key
register are extracted as the round key for the i -th encryption round. After extracting
the round key, the key register is updated as follows:

1.[k79k78 · · · k0] = [k18k17 · · · k19]
2.[k79k78k77k76] = S[k79k78k77k76]
3.[k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

Where S refers to the S-box in the encryption algorithm.
In the field of deep learning-based differential analysis, [18] constructed a neural dif-

ferential distinguisher for 8-round PRESENT using 16 pairs of ciphertexts as training
data, achieving a validation accuracy of 0.542. Subsequently, [19] developed a distin-
guisher model for 8-round PRESENT that attained a precision of 0.509 while utilizing
only single ciphertext pairs, thereby dramatically reducing the data requirement. Addi-
tionally, PRESENT currently lacks reported intelligent analysis results under related-key
conditions.

2.2 Differential Cryptanalysis and Related-key Differential
Cryptanalysis

Differential cryptanalysis [21], proposed by Biham and Shamir, is a chosen-plaintext
attack that analyzes how differences in plaintext pairs propagate through intermediate
rounds of an iterative cipher. Resistance to differential cryptanalysis has become a funda-
mental criterion for evaluating the security of block ciphers. The core tool of differential
cryptanalysis is the differential distinguisher. The process involves first identifying high-
probability differential characteristics and then constructing distinguishers based on these
characteristics.

Definition (Differential Characteristic):An i -round differential characteristic of
an iterative block cipher refers to a sequence of differences Ω = (β0, β1, · · · , βi−1, βi),
whereX⊕X∗ = β0 is the input difference, and each intermediate state difference Yj⊕Y ∗

j =
βj(1 ≤ j ≤ i) satisfies specific propagation conditions through the cipher’s rounds.

Definition (Differential Probability): The differentia probability DP(α, β) of an
i -round difference (α, β) is defined as the likelihood that an input pair with difference
X ⊕X∗ = α, under uniformly distributed keys and plaintexts, produces an output pair
with difference Yi ⊕ Y ∗

i = β after i rounds of encryption.
If an r round differential characteristic with probability higher than that of a random

permutation is discovered, it enables distinguishing the r round cipher from a random
permutation, thereby constructing an r round distinguisher. By leveraging this dis-
tinguisher, partial key information can be recovered through analyzing the distribution
patterns of plaintext and ciphertext differences. A higher-probability distinguisher re-
duces the data complexity for key recovery, while a longer-round distinguisher lowers
computational resource requirements.

Related-key differential cryptanalysis [22], introduced by Biham, exploits weaknesses
in block cipher key expansion algorithms by constructing both plaintext differences (∆P)
and key differences (∆K) to analyze ciphertext difference (∆C) propagation and derive
key correlations. Key steps include: Constructing differential paths aligning with key
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scheduling properties; Filtering valid plaintext-ciphertext pairs; Recovering key bits via
statistical or algebraic methods.

This method is particularly effective against ciphers with simplistic or linearly de-
pendent key schedules, where active bits cancellation or subkey differential relationships
reduce key space complexity. Additionally, there exist numerous analytical results of
related-key attacks against standard ciphers. Beyond AES mentioned in [23], KASUMI
in its full-round configuration can theoretically be broken by related-key rectangle attacks
as demonstrated in [24]. However, its efficacy depends on the controllability of key dif-
ferences and diminishes against ciphers with complex key expansion algorithms. Modern
cipher designs mitigate such attacks by: Strengthening key schedules; Enhancing key de-
pendency; Restricting differential propagation. As both a critical tool for cryptographic
security evaluation and a catalyst for advancing key schedule complexity, related-key
differential cryptanalysis remains pivotal in cipher analysis and design.

2.3 Differential Neural Distinguishers

The core mechanism of neural differential distinguishers lies in leveraging deep learn-
ing to achieve efficient classification of cryptographic data, sharing an inherent similarity
with classification tasks in domains such as image recognition and speech processing.
Gohr first introduced the concept of neural differential distinguishers, pioneering the in-
tegration of deep learning into cryptanalysis. These distinguishers train neural network
models to accurately classify real ciphertext pairs (generated by encrypting plaintext
pairs with fixed input differences) versus random ciphertext pairs (produced by encrypt-
ing random plaintext pairs). The trained distinguishers are then utilized for key recovery
attacks, demonstrating superiority over traditional methods in both distinguisher accu-
racy and attack complexity. Notably, Gohr successfully recovered subkeys of 11-round
SPECK32/64 using such neural distinguishers. The generation of the differential dataset
for neural network training proceeds as follows: A plaintext pair (P, P ∗)with input dif-
ference ∆in is encrypted under a random master key KEY to produce a ciphertext pair
(C,C∗), which serves as a training sample. During neural network training, each sample
is assigned a binary label Y:

• Y=1: The ciphertext pair originates from a plaintext pair with input difference
∆in.

• Y=0: The ciphertext pair is generated from random plaintext pairs.

The performance of such distinguishers is typically evaluated using two metrics: train-
ing accuracy and validation accuracy, where the latter is the critical indicator of practical
efficacy. If the neural network achieves classification accuracy exceeding 50% after suffi-
cient training, it is deemed an effective neural differential distinguisher.

Gohr’s work demonstrates that a well-constructed neural differential distinguisher can
leverage its output for key recovery attacks, with attack performance directly dependent
on the distinguisher’s accuracy. Consequently, developing high-accuracy neural distin-
guisher models holds significant importance for advancing cryptanalytic capabilities.
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3 A Generalized Framework for Constructing Related-

Key Differential Neural Distinguisher

The foundational framework for constructing related-key neural differential distin-
guishers comprises three components: dataset construction, differential selection, and
network architecture design. In this section, we present the unified framework for build-
ing related-key neural differential.

3.1 Dataset Construction

Supervised learning, a critical branch of deep learning, relies on labeled training
datasets where each sample is associated with a label representing the expected out-
put of the model. These labels are pivotal for optimizing neural network parameters.
Consequently, when constructing neural differential distinguishers, the selected data for-
mat should maximize diversity and comprehensively encapsulate potential scenarios to
enhance distinguisher performance.

In Gohr’s work, the input format for an n-round neural distinguisher (ND) is a single
ciphertext pair (Cl, Cr, C

∗
l , C

∗
r ), where the model learns features solely from ciphertext

pairs. Benamira hypothesizes that the first convolutional layer in Gohr’s neural network
transforms the input(Cl, Cr, C

∗
l , C

∗
r ) into linear combinations of (Cl ⊕ C∗

l , Cr ⊕ C∗
r , Cl ⊕

Cr, C
∗
l ⊕ C∗

r ), and their interactions. Hou et al. extended this by designing an ND
model that accepts multiple ciphertext pairs as input, denoted as (∆r

L,∆
r
R), to leverage

multi-differential information. In [10], LU et al. proposed an augmented data format
(∆r

L,∆
r
R, Cl, Cr, C

∗
l , C

∗
r ,∆

r−1
R , p∆r−2

R ), incorporating intermediate results from preceding
rounds into training samples.

Building on these insights, we introduce structure-specific input formats tailored to the
Feistel and SPN architectures. These formats enhance the extraction of inter-ciphertext
correlations and intrinsic cryptographic features, thereby improving distinguisher accu-
racy.

(1) For Feistel-Structured Ciphers
For Feistel-structured algorithms, we leverage their structural characteristics by par-

titioning the ciphertext into left and right halves, denoted as (Cl, Cr). Building on prior
work, we design an input format (∆r

L,∆
r
R, C

r−1
l , Cr−1

l

∗
, Cl, Cr, C

∗
l , C

∗
r ), where F (Cl) rep-

resents the output of the F-function under a zero subkey, Cr−1
l = F (Cl) ⊕ Cr, C

r−1
l

∗
=

F (C∗
l ) ⊕ C∗

r . Fig.3 shows a schematic representation of these notations. For an n-bit
block size, the input format comprises eight n/2-bit blocks. This format captures not
only intra-ciphertext and inter-ciphertext pair features but also incorporates character-
istics from preceding rounds. To enhance the neural distinguisher’s performance, we
associate each label with multiple ciphertext pairs encrypted under the same key, en-
abling the neural network to better extract correlated features between ciphertext pairs.
In the context of the DES algorithm, this corresponds to an input format consisting of
eight 32-bit blocks.
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Figure 3: Feistel structured data format

(2) For SPN-Structured Ciphers
For SPN-based algorithms, where ciphertexts are single n-bit units, we adopt a multi-

ciphertext input format (∆C,C,C∗), This format explicitly encodes differential relation-
ships between ciphertext pairs while retaining intrinsic features of individual ciphertexts.
Figure 4 shows the SPN structured data format. By processing multiple ciphertext pairs,
the model better captures inter-pair correlations, improving distinguisher accuracy. For
PRESENT algorithm, this yields an input format of three 64-bit blocks.

Figure 4: SPN structured data format

(3) Generalized Dataset Construction Workflow
For both architectures, we employ multi-ciphertext pair inputs with (∆r

L,∆
r
R, C

r−1
l ,

Cr−1
l

∗
, Cl, Cr, C

∗
l , C

∗
r ) or (∆C,C,C∗). During the data generation phase, fixed input

differences ∆in and key differences ∆in∗ are first determined. Let m denote the block
length of the target algorithm. A total of n samples are generated, with each sample
containing S ciphertext pairs. The generalized dataset construction workflow proceeds
as follows:

a. Plaintext Generation:

• Generate S ∗ n random plaintexts P, partitioned into n groups.

• XOR each element in P with a fixed input difference ∆in to create P ∗.

• Generate a label vector Y of length n, populated with randomly distributed
0s and 1s.
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b. Key Schedule:

• Generate n master keys KEY, each with length matching the algorithm’s key
size.

• Derive KEY ∗ by XORing each key in KEY with a fixed key difference ∆in∗.

c. Label Assignment:

• For groups labeled Y=0, replace S plaintexts in P ∗ with random values.

d. Encryption:

• Encrypt P and P ∗ under KEY and KEY∗, respectively, yielding ciphertext
sets (C,C∗)

Compute ∆C, concatenate values according to the target format , and assign labels
from Y. The workflow is illustrated in Figure 3.
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Figure 5: Dataset Construction Workflow

3.2 Network Architecture Design

In prior work, Gohr employed Residual Networks (ResNet) as the foundational archi-
tecture. ResNet, one of the most representative convolutional neural networks (CNNs)[25],
addresses the vanishing gradient problem during CNN training and enables deeper net-
work structures for higher accuracy. This architecture enhances training stability, compu-
tational efficiency, and classification performance. Subsequent studies by Baksi et al. [26]
explored diverse neural network architectures, including multilayer perceptrons (MLPs),
CNNs, and long short-term memory networks (LSTMs), achieving varying success in
constructing distinguishers for different cryptographic algorithms.

The Deep Residual Shrinkage Network (DRSN), an enhanced ResNet variant, is
specifically designed for noise-contaminated data and has demonstrated unique efficacy
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in cryptographic distinguisher construction. Unlike generic architectures, DRSN inte-
grates soft thresholding—a signal denoising technique—with adaptive threshold learning
to suppress non-informative noise (e.g., random ciphertext fluctuations) while amplifying
cryptographically critical features (e.g., high-probability differential paths). This dual
mechanism aligns with the core requirements of distinguisher design: (1) filtering out
stochastic interference inherent in encrypted data and (2) preserving deterministic non-
random patterns. Key innovations include:

Soft Thresholding Layer: Adaptively zeroes features with magnitudes below a
learned threshold and shrinks others toward zero. In cryptographic contexts, this selec-
tively suppresses noise-corrupted activations such as low-probability differentials while
retaining discriminative signals including biased key-dependent correlations, effectively
mimicking traditional differential filtering but in a data-driven manner.

Adaptive Threshold Generation: A lightweight subnetwork generates sample-
specific thresholds by analyzing global feature statistics. For ciphertext data, this allows
dynamic adaptation to varying noise levels across different encryption rounds or key
schedules, ensuring robustness against algorithmic nonlinearities.

Macro Architecture: Retains ResNet’s backbone of stacked residual blocks with
convolutional layers, batch normalization (BN), ReLU activation, and identity mapping.
Each residual block embeds the soft thresholding layer and threshold generation subnet-
work.

DRSN exhibits unique applicability in uncovering non-random cryptographic patterns
due to its adaptive denoising and fine-grained feature enhancement capabilities. By syn-
ergizing residual learning, attention mechanisms, and soft thresholding, DRSN effectively
extracts subtle yet critical non-random features from noisy ciphertext data.

The architecture comprises three components:

• Input Layer: Accepts data in 8×32-bit (DES) or 3×64-bit (PRESENT) blocks,
aligned with the selected input formats.

• BLOCK1: A 1D convolutional layer (Conv1D) and two dense layers process fixed-
length inputs.

• BLOCK2: DRSN-based residual shrinkage blocks perform feature extraction and
compression via convolutional operations, soft thresholding, and residual connec-
tions.

• Prediction Layer (BLOCK3): A flatten layer transitions convolutional outputs
to dense layers. Two hidden dense layers (64 neurons each, matching the block size)
process features, followed by a Sigmoid activation for binary classification.

The network architecture and training hyperparameters are detailed in Figure 4 and
Table 3.
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Figure 6: Network structure

Table 3: Parameter setting.
Training sample 107

Verify sample 106

Epoch 120
Batch size 10000

Learning rate Cyclic learning rate
Step size 30

Base learning rate 0.0001
Maximum learning rate 0.002

Loss function MSE
Optimizer Adam

L2 regularization parameter 10−4

4 Related-key Differential Neutral Distinguishers for

Round-reduced DES and PRESENT

In this section, based on the framework proposed in the preceding section, we construct
related-key neural differential distinguishers for two classical block ciphers, DES (Feistel
structure) and PRESENT (SPN structure), addressing three critical aspects: differential
selection, dataset construction, and network architecture design.
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Selecting appropriate combinations of input differences (∆P) and key differences (∆K)
is pivotal to constructing effective distinguishers. For each algorithm, we configure these
differences according to its specific structure and key expansion mechanism. The goal
is to ensure that round key differences interact with input differences in a manner that
either cancels out or forms advantageous configurations during differential propagation.
This strategy minimizes the emergence of unnecessary active bits caused by nonlinear
operations and facilitates high-probability propagation patterns, enabling deeper analysis
over more encryption rounds.

4.1 Differential Selection for DES

Based on the DES algorithm’s structure and key expansion mechanism, we discard the
parity bits of the master key and permute the remaining 56 bits to generate 16 subkeys.
The subkey characteristics for the first five rounds are summarized in Table 4.

Table 4: Characteristics of DES Subkeys in the First Five Rounds
Subkey Missing bit position
K1 C06 C07 C11 C12 C43 C46 C50 C52
K2 C03 C04 C35 C38 C42 C44 C61 C62
K3 C19 C22 C26 C45 C46 C52 C55 C57
K4 C03 C06 C10 C29 C30 C36 C39 C41
K5 C13 C14 C23 C25 C49 C52 C53 C59

To propagate low Hamming-weight differentials across as many rounds as possible,
we analyze the differential propagation process in DES, leveraging the linearity of its
key schedule and the differential propagation properties of the Feistel structure. By
exploiting deterministic patterns in key expansion differentials, we align key differences
(∆K) with plaintext/ciphertext differences (∆P/∆C) to create synergistic cancellation
or reinforcement effects. This strategy extends the effective differential chain length and
constructs long-round propagation paths for low-weight differentials.

The DES key schedule (PC-1 permutation and circular shifts) exhibits predictable
periodicity in subkey differential propagation due to its linear nature. Leveraging the
Feistel structure’s properties, key differences can cancel out with expanded right-half
plaintext differences in the first or second round. By applying the inverse of the expansion
permutation to key differences and constraining the number of active bits, we derive
compatible plaintext differences.

Through filtering bits that meet specific criteria (e.g., absence in early rounds), we
identify four active bits—C38, C46, C52, and C62—as optimal for differential propaga-
tion. Consequently, we define candidate plaintext-key differential pairs:

• Plaintext differences:

∆1=(0x0, 0x00000040) ,∆2=(0x00002000, 0x0) ,

∆3=(0x20000000, 0x00) ,∆4=(0x0, 0x00000002) .

• Key differences:

∆∗
1=(0x0000000004000000) ,∆∗

2=(0x0000000000040000) ,

∆∗
3=(0x0000000000001000) ,∆∗

4=(0x0000000000000004) .

16



When C52 (bit 52 of the key register) is active, the linear key schedule ensures its
absence in subkeys of rounds 1, 3, and 5. For round 2, the subkey difference ∆K2=(0x100
000000000) undergoes inverse expansion permutation, corresponds to right-half input dif-
ference ∆R1=(0x20000000) .Thus, the plaintext difference is set to ∆L=(0x20000000) ,∆R
=(0x0) .Analysis detail differential propagation, in the second round, the subkey K2 uses
bit C52 at position 4. The expanded right-half difference ∆R1’s 3rd bit cancels ∆K2’s
4th bit, justifying ∆L=(0x20000000). In the third round, with C52 inactive in K3, no
subkey difference exists, resulting in zero S-box output difference.

The full propagation path is illustrated in Figure 5. This analysis is verifiable by
tracking plaintext and subkey differential transformations through the round function.
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F
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Figure 7: Differential propagation process

4.2 Related-Key Neural Differential Distinguishers for DES

For the related-key neural differential analysis of DES, we train distinguishers us-
ing the four plaintext-key differential combinations satisfying propagation constraints
(Section 4. 1), employing the network architecture and hyperparameters defined in the
preceding chapter. The accuracy of the trained 5-round and 6-round distinguishers is
summarized in Table 5.
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Table 5: Accuracy of Neural Distinguishers for 4 Candidate Differential Pairs
Plaintext difference Round Acc

(0x20000000, 0x00000000)
5 0.999
6 0.979

(0x20000000, 0x00000000)
5 0.999
6 0.951

(0x00000000, 0x40000000)
5 0.949
6 0.500

(0x00000000, 0x20000000)
5 0.970
6 0.501

From the training results, the combination of plaintext difference (0x20000000, 0)
and key difference (0x0000000000001000) demonstrates superior performance compared
to other candidates. The 7-round distinguisher trained on this combination achieves an
accuracy of 0.5354. Notably, our method constructs a 7-round distinguisher using only
a single ciphertext pair per sample, outperforming results in [8] and highlighting the
advantage of related-key neural differential distinguishers.

To investigate the impact of data scale on model performance, we further conduct
experiments for 6, 7, and 8-round DES with varying numbers of ciphertext pairs per
sample (m=1, 2, 4, 8, 16). Key metrics—validation accuracy, true positive rate (TPR),
and true negative rate (TNR)—are detailed in Table 6.

Table 6: Performance Metrics of Related-Key Distinguisher Models for DES
m Round TPR TNR Acc

1
6 0.967 0.995 0.979
7 0.619 0.451 0.535

2
6 1 1 1
7 0.644 0.480 0.562

4
6 1 1 1
7 0.686 0.646 0.666

8
6 1 1 1
7 0.798 0.848 0.823

16 7 0.941 0.960 0.951
32 8 0.041 0.962 0.505

For 6 and 7-round distinguishers, increasing m (ciphertext pairs per sample) signifi-
cantly improves accuracy. The accuracy of the neural distinguisher consistently outper-
forms existing results across all m. At m=32, we construct the first 8-round related-key
neural differential distinguisher for DES, achieving a validation accuracy of 0.505.

4.3 Differential Selection for PRESENT

By analyzing the structure and key expansion algorithm of PRESENT, we observe
that the master key is iteratively updated to generate round subkeys. Considering key
differences with a Hamming weight of 1, the characteristics of the subkeys in the first two
rounds are summarized in Table 7.
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Table 7: Characteristics of PRESENT Subkeys in the First Five Rounds
Active bit position ∆K1 Hamming weight ∆K2 Hamming weight

C1-C45 1 1
C46-C61 1 0
C62 C63 1 3

C64 1 2
C65 0 3

C66-C80 0 1

Similar to DES, constructing low Hamming-weight differential paths for PRESENT
requires selecting input differences that activate the fewest S-boxes while leveraging the
linearity of the key schedule to suppress differential propagation. Based on PRESENT’s
key expansion mechanism, when the active bit of the master key difference lies within
C45–C60, the second-round subkey difference is guaranteed to be zero due to the key
scheduling rules. Consequently, we identify 16 candidate input differences that satisfy
the differential propagation requirements.

Through analyzing the differential propagation process, we set the plaintext difference
to ∆= (0x00000000000010) and the key difference to ∆K=(0x00000000000000100000).
In the first round, the active bit of subkey K1 (bit 60) cancels out the active bit of the
plaintext difference ∆P through XOR, resulting in a zero intermediate state difference
after the first round. Thus, the plaintext difference is set to ∆= (0x00000000000010). In
the second round, since the active bit C59 is absent, subkey K2 has no difference, and
the input difference remains zero, effectively suppressing S-box activation and differential
propagation in this round.

4.4 Related-Key Neural Differential Distinguishers for PRESENT

Similar to the training of DES-related key neural differential distinguishers, based
on the analysis results from earlier sections, we construct neural differential distinguish-
ers using plaintext differences ∆P=(0x8 ≪ i) and key differences ∆K=(0x80000 ≪ i),
where i ∈ [0, 15]. We train distinguishers on the qualified differential combinations, and
the accuracy of the constructed 7-round distinguisher is shown in Table 8.
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Table 8: Accuracy of Neural Distinguishers for 16 Candidate Differential Pairs
Plaintext difference Acc
0x0000000000080000 0.670
0x0000000000100000 0.715
0x0000000000200000 0.584
0x0000000000400000 0.649
0x0000000000800000 0.677
0x0000000001000000 0.501
0x0000000002000000 0.584
0x0000000004000000 0.599
0x0000000008000000 0.625
0x0000000010000000 0.623
0x0000000020000000 0.570
0x0000000040000000 0.615
0x0000000080000000 0.646
0x0000000100000000 0.606
0x0000000200000000 0.563
0x0000000400000000 0.610

From the distinguisher results, the combination ∆P=(0x00000010) and ∆K=(0x0000
0000000000100000) achieves the highest accuracy. Using this differential pair, we con-
struct an 8-round distinguisher with an accuracy of 0.5702. Furthermore, we conduct
experiments on 7-, 8-, and 9-round PRESENT with varying numbers of ciphertext pairs
per sample (m=1, 2, 4, 8, 16). The results are summarized in Table 9. Under related-key
conditions, we construct the first 9-round neural differential distinguisher for PRESENT,
achieving an accuracy of 0.5669.compared to neural distinguishers of [19], our results
demonstrate improvements in both round coverage and accuracy.

Table 9: Performance Metrics of Related-Key Distinguisher Models for PRESENT
m Round TPR TNR Acc

1
7 0.828 0.608 0.719
8 0.720 0.420 0.570

2
7 0.869 0.740 0.804
8 0.709 0.505 0.607
9 0.673 0.331 0.502

4
7 0.924 0.868 0.896
8 0.746 0.571 0.658
9 0.577 0.481 0.529

8
7 0.974 0.956 0.965
8 0.786 0.670 0.728
9 0.621 0.466 0.544

16
7 0.997 0.992 0.994
8 0.845 0.776 0.810
9 0.627 0.507 0.567

In this section, we first analyze the structural characteristics and key expansion algo-
rithms of both DES and PRESENT. Based on their specific features, we derive candidate
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combinations of plaintext differences (∆P ) and key differences (∆K) tailored to each al-
gorithm. Subsequently, we train related-key neural differential distinguishers for DES and
PRESENT using these differential pairs.compared to existing results, our distinguishers
achieve improvements in both round coverage and accuracy.

5 Interpretive of Differential Dataset: a Machine Learn-

ing Perspective

In the preceding section, we determined candidate combinations of plaintext differ-
ences (∆P ) and key differences (∆K) by analyzing the cipher structures and key expan-
sion algorithms from a cryptographic perspective, followed by an exhaustive evaluation to
select optimal input differences. However, this approach lacks interpretability regarding
the intrinsic reasons for differential quality. To address this, we leverage kernel principal
component analysis (KPCA) and K-means clustering to assess the quality of differential
datasets, aiming to identify high-accuracy input differences through machine learning-
driven feature analysis.

5.1 Data Analysis Methods: Principal Component Analysis
and K-means Clustering

Principal Component Analysis (PCA) is a classical linear dimensionality reduction
technique that transforms a set of potentially correlated variables into linearly uncor-
related principal components via orthogonal transformations. Its core objective is to
reduce data dimensionality while preserving maximal information, facilitating data anal-
ysis, visualization, and storage. Key steps include data centralization, covariance matrix
computation, eigenvalue decomposition or singular value decomposition (SVD), principal
component selection, and data projection. PCA is widely used in data preprocessing,
feature extraction, and visualization—for example, extracting dominant features in data
processing or identifying major variation patterns in gene expression data.

Kernel Principal Component Analysis (KPCA) extends traditional PCA to nonlinear
dimensionality reduction using kernel methods. By employing the kernel trick, KPCA
implicitly maps nonlinear data structures from the original low-dimensional space to
a high-dimensional feature space, where linear PCA is performed to extract nonlinear
principal components. Specifically, kernel functions compute pairwise similarities (in-
ner products) between samples, circumventing explicit high-dimensional mapping and
avoiding the ”curse of dimensionality. ” For instance, Gaussian kernels can map circu-
larly distributed data into a linearly separable high-dimensional space, enabling PCA to
identify principal directions that reveal nonlinear structures when projected back to low
dimensions. Implementation Steps of KPCA:

1. Kernel Matrix Construction: Compute kernel function values for all sample pairs.

2. Kernel Matrix Centralization: Center the kernel matrix.

3. Eigenvalue Decomposition: Perform eigendecomposition on the centered kernel ma-
trix and select eigenvectors corresponding to the largest eigenvalues as principal
components.
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4. Data Projection: Project data onto the principal component directions.

KPCA excels at capturing complex nonlinear patterns (e.g., spirals, clusters) and
supports flexible kernel selection to adapt to data characteristics. It is widely applied
to nonlinear feature extraction tasks such as handwritten digit recognition and image
classification.compared to PCA, KPCA overcomes linear limitations and better captures
nonlinear relationships but increases computational complexity and dependency on kernel
selection.

K-Means Clustering is a machine learning algorithm that partitions data objects into
k clusters based on shared features. Classified as an unsupervised machine learning
method, its objective is to group data points such that intra-cluster similarity is maxi-
mized; equivalently, the distance between cluster centroids and their constituent objects
is minimized.

The K-means algorithm operates as follows. Let x represent a data object and µi

denote the centroid of cluster Ci. The criterion function E is defined as:

E =
k∑

i=1

∑
x∈Ci

∥x− µi∥2

The algorithm comprises two phases:

1. Initialization: For a given k, randomly select k initial centroids.

2. Iteration:

• Assign each data point to the nearest centroid using the Euclidean distance:

d(x, µi) =

√√√√ n∑
j=1

(xj − µij)
2

• Recalculate centroids as the mean of all points in each cluster.

• Repeat until convergence, i. e. , when the total intra-cluster distance E is
minimized.

5.2 Analysis of Differential Datasets for DES

For the DES algorithm, we construct four candidate plaintext-key differential pairs
and generate 6-round differential datasets of size 106 for each pair. We apply kernel
principal component analysis (KPCA) for dimensionality reduction. To visualize the
reduced-dimensional data, we project the datasets onto three eigenvectors corresponding
to the largest eigenvalue ratios, serving as coordinate axes. The visualization results for
random differentials are shown in Figure 6, while those for the four candidate differentials
are presented in Figure 7.
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Figure 8: Random Situation Visualization Results

Figure 9: KPCA Visualizations of 4 Candidate Differences

For the case of random differences, the visualization shows a single spherical clus-
ter, similar to data sampled from a Gaussian distribution. For candidate differences,
the datasets form multiple high-density clusters, indicating that high-accuracy differ-
entials induce aggregation of similar data points in the projected space, enabling clear
separation between clusters. The dataset generated by the optimal plaintext difference
(0x20000000, 0) and key difference (0x000000001000) forms 27 distinct clusters, demon-
strating superior separability compared to other candidates.

To quantify clustering effectiveness, we perform K-means clustering on the projected
data and evaluate cluster quality using the Silhouette Score, which measures intra-cluster
compactness and inter-cluster separation. Additionally, We have evaluated the Silhouette
Score and accuracy corresponding to the 6-rounds dataset generated by four candidate
differences in Table 10.Based on visual analysis, we preset the cluster number to 27.com-
bined with Table 10 and Figure 8, the K-means results and Silhouette Score distributions
reveal a significant positive correlation between model accuracy and clustering quality.
This implies that high-accuracy differentials exhibit stronger intra-cluster cohesion and
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inter-cluster separation in the feature space, validating the intrinsic link between data
representation quality and distinguisher performance.

Figure 10: K-means clustering results for 4 candidate differences

Table 10: 6-round DES evalutation results and their training results
Plaintext difference Silhouette score Acc

(0x20000000, 0x00000000) 0.733 0.979
(0x20000000, 0x00000000) 0.683 0.951
(0x00000000, 0x40000000) 0.214 0.500
(0x00000000, 0x20000000) 0.217 0.501

This machine learning-driven framework provides an interpretable methodology for
evaluating differential quality, complementing traditional cryptographic analysis. For
High-Accuracy Difference, datasets corresponding to high-accuracy distinguishers exhibit
prominent multi-cluster distribution characteristics in the feature space. These datasets
form multiple high-density clusters with sharp inter-cluster boundaries, demonstrating
strong intra-cluster cohesion and inter-cluster separability. The observed clustering pat-
terns validate that ”high-quality” differentials can be characterized by distinct geometric
separability, which is directly linked to the classification performance of neural distin-
guishers. This provides data-driven quantitative metrics for evaluating differential qual-
ity, complementing traditional cryptographic criteria.

5.3 Analysis of Differential Datasets for PRESENT

Similar to the DES analysis, we identify 16 candidate plaintext-key differential pairs
for the PRESENT algorithm that satisfy propagation constraints. For each candidate
pair, we first construct a 6-round differential dataset of size 106 and apply kernel prin-
cipal component analysis (KPCA) for nonlinear feature extraction and dimensionality
reduction. To explore the latent structure of the reduced-dimensional data, we project
the high-dimensional datasets onto three principal components with the highest variance
explained ratios, enabling multi-view 3D visualization. The visualization results for all 16
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candidate differentials are shown in Figure 9, which clearly delineates their distribution
patterns and separability in the feature space. Figure 10 shows the visualized results of
k-means clustering for 16 candidate differences. In Table 11, we perform experiments on
all 16 pairs of candidate differences and obtain the accuracy of the corresponding 6-round
distinguishers and give the Silhouette Score corresponding to its dataset.

The analysis reveals a strong positive correlation between Silhouette Scores and distin-
guisher accuracy, underscoring the cryptographic relevance of clustering quality in feature
spaces. Notably, differentials such as 0x00000080 (Silhouette: 0.818, Accuracy: 0.962)
and 0x00000800 (Silhouette: 0.761, Accuracy: 0.919) exhibit both high cluster separabil-
ity and superior classification performance, indicating their alignment with cryptographi-
cally favorable properties like minimized active S-boxes and high-probability propagation
paths. Conversely, poorly clustered differentials (e.g., 0x00000100, Silhouette: 0.417, Ac-
curacy: 0.501) yield near-random accuracy. Our framework filters differential candidates
through Silhouette scores, selecting those with high data quality and model performance.

Figure 11: KPCA Visualizations of 16 Candidate Differences
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Figure 12: K-means clustering results for 16 candidate differences

Table 11: 6-round PRESENT evalutation results and training results
Plaintext difference Silhouette score Acc

0x00000008 0.695 0.915
0x00000010 0.479 0.930
0x00000020 0.470 0.819
0x00000040 0.747 0.932
0x00000080 0.818 0.962
0x00000100 0.417 0.501
0x00000200 0.587 0.881
0x00000400 0.653 0.890
0x00000800 0.761 0.919
0x00001000 0.695 0.921
0x00002000 0.701 0.850
0x00004000 0.720 0.911
0x00008000 0.648 0.924
0x00010000 0.711 0.912
0x00020000 0.495 0.845
0x00040000 0.557 0.883

5.4 Good Input Difference Verification for The Differential Dataset

In this section, we propose a validation algorithm to assess the quality of trainable
related-key differential datasets. Building on the findings from Sections 5.2 and 5.3, we
first configures suitable combinations of input differences and key differences by leveraging
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cryptographic characteristics and key expansion mechanisms. This ensures that round
key differences either cancel out or favorably interact with input differences, thereby
minimizing unnecessary active bits induced by nonlinear operations and enabling high-
probability differential propagation across extended rounds.

Subsequently, the algorithm performs kernel principal component analysis (KPCA)
and K-means clustering to reduce the dimensionality of differential datasets generated
with target differences. The reduced data is projected into a latent space for cluster
analysis. Clustering quality is then quantified using the silhouette score, which eval-
uates intra-cluster cohesion and inter-cluster separation to identify optimal differential
candidates.

The proposed algorithm systematically integrates cryptographic validation and ma-
chine learning-driven analysis to optimize differential selection. Lines 1–13 outline the
systematic construction of differential datasets from candidate plaintext-key differential
pairs (∆1,∆2), with Line 2 ensuring minimal S-box activation in early rounds to suppress
unnecessary active bits and enhance differential propagation probability. Subsequently,
kernel principal component analysis (KPCA) is applied: a Gaussian kernel constructs
the nonlinear similarity matrix K (Line 14), which is centered and decomposed to ex-
tract the top three eigenvectors V (Line 15), enabling projection of the dataset D into
a 3D latent space Z = KV for visualization and dimensionality reduction (Line 16).
The reduced data is then partitioned into T clusters via K-means (Line 17), which is
a parameter derived from the KPCA visualization results, consistent with the previous
observations of DES and PRESENT, where high-quality differentials naturally form dis-
tinct groupings. Finally, the silhouette score S quantifies clustering quality by measuring
intra-cluster cohesion and inter-cluster separation (Line 18), with higher scores indicating
cryptographically advantageous differentials—such as those minimizing active S-boxes or
maximizing linear trail consistency. This pipeline bridges cryptographic heuristics with
data-driven metrics, offering a reproducible framework for neural distinguisher design.

27



Algorithm 1 Good input difference verification algorithm

Input: ∆P (candidate plaintext difference)
∆K(candidate key difference)
n−number of ciphertext pairs
ks−key size of target cipher
bs−block size of target cipher
t−quantity of required difference pair

Output: Optimal differential pair(∆P ∗,∆K∗)with the highest t-position silhouette score
1: for each (∆1,∆2) ∈ (∆P,∆K) do
2: Validate propagation: Ensure (∆1 ⊕ ∆K1) minimizes active S-boxes in initial

rounds.
3: K ← Rand(0, 2ks − 1)
4: K∗ = K ⊕∆2

5: for i ∈ n do
6: label← Rand(0, 1)
7: if label = 0 then
8: P, P ∗ ← Rand(0, 2bs − 1), rand(0, 2bs − 1)
9: else
10: P ← Rand(0, 2bs − 1), P ∗ ← P ⊕∆1

11: end if
12: D ← Append(EK(P ) ∥ EK∗(P ∗))
13: end for
14: Construct kernel matrix K using Gaussian kernel
15: Center K and compute top 3 eigenvectors V
16: Project dataset D to 3D latent space:Z = KV
17: C ← Kmeans(D, T )
18: S ← SilhouetteScore(D, cluster label = C)
19: end for
20: Sort (∆P (i)∗,∆K(i)∗, S(i)) by S(i) in descending order.
21: Select the first t entries:

T =
[
(∆P (1),∆K(1), S(1)), . . . , (∆P (t),∆K(t), S(t))

]
22: return T

To evaluate the effectiveness of our proposed algorithm in validating related-key dif-
ferential datasets, we applied it to the SIMECK32/64 [27], a lightweight block cipher
specifically designed for constrained environments. Featuring compact hardware imple-
mentation and low power consumption, SIMECK is particularly suitable for embedded
systems and IoT devices. According to the findings in [27], when the plaintext difference
∆P = (0, 0x1 ≪ i) and key difference ∆K = (0, 0, 0, 0x1 ≪ i), where i ∈ [0, 15], the
plaintext and key differences cancel each other in the first round, and both remain zero
for the subsequent three rounds. A key difference re-emerges only at the fifth round,
which led to the identification of 16 candidate differential pairs. For all candidate dif-
ferential pairs, we applied the validation algorithm to the 11-round SIMECK difference
dataset, where the results for 16 pairs of candidate differences are summarized in Table
12. The KPCA visual results are shown in Figure 13, and the K-means clustering results
are shown in Figure 14.
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Figure 13: The results of PCA visualization for one-bit differential dataset
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Figure 14: Visualization results of Kmeans clustering against one-bit differential dataset
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Table 12: 11-round SIMECK evalutation results and training results
Difference Silhouette Score Acc

(0x0,0x00000001) 0.899 0.907
(0x0,0x00000002) 0.908 0.877
(0x0,0x00000004) 0.915 0.877
(0x0,0x00000008) 0.900 0.877
(0x0,0x00000010) 0.904 0.907
(0x0,0x00000020) 0.904 0.877
(0x0,0x00000040) 0.901 0.876
(0x0,0x00000080) 0.913 0.876
(0x0,0x00000100) 0.910 0.877
(0x0,0x00000200) 0.913 0.877
(0x0,0x00000400) 0.913 0.877
(0x0,0x00000800) 0.900 0.877
(0x0,0x00001000) 0.907 0.877
(0x0,0x00002000) 0.913 0.877
(0x0,0x00004000) 0.912 0.877
(0x0,0x00008000) 0.907 0.877

Analysis of the results revealed that when the active bits were positioned on the right
side of the differential, satisfying the candidate differential conditions defined in [28], all 16
candidate differential pairs exhibited highly similar visualization patterns, demonstrated
only marginal differences in their silhouette scores, and produced distinguishers with
statistically equivalent accuracy rates. Consequently, in building an 11-round SIMECK
related-key neural distinguisher, any of the 16 candidate differential pairs could be se-
lected, yielding conclusions consistent with [28]. This further validates the effectiveness of
the algorithm and provides empirical support for the dataset construction of related-key
neural differential distinguishers.

6 CONCLUSION

In this paper, we propose a novel framework for constructing related-key neural dif-
ferential distinguishers that synergizes traditional differential cryptanalysis with deep
learning. The framework systematically optimizes three critical components: dataset
construction, differential path optimization, and network architecture design. Applied to
DES and PRESENT algorithms, our framework achieves superior performance compared
to existing approaches.

Specifically, the constructed distinguishers surpassed results of [18] in both accuracy
and round coverage, breaking previous records for the highest-round neural distinguish-
ers under single-key conditions. These improvements stemmed from a dual analytical
approach: cryptographic evaluation of differential propagation via algorithmic structures
and key schedules, complemented by machine learning-driven dataset quality assessment
using kernel PCA and K-means clustering. By correlating feature-space separability with
distinguisher accuracy, we bridged cryptographic intuition and data-driven interpretabil-
ity, validating that high-quality differentials exhibited strong intra-cluster cohesion and
inter-cluster separation. The work underscores the potential of deep learning in advanc-
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ing cryptanalysis and provides a scalable methodology for future research in intelligent
cryptographic evaluation.

Looking ahead, this framework lays the groundwork for automated cryptanalysis tools
capable of evaluating diverse cryptographic algorithms. Future directions will include
integrating advanced techniques like UMAP or t-SNE for refined feature visualization,
exploring semi-supervised learning to reduce data dependency, and extending the method-
ology to ARX or AES-like ciphers. By merging classical cryptanalysis with modern ma-
chine learning, this work not only enhances the efficacy of neural distinguishers but also
advances their interpretability, offering a paradigm shift in block cipher security analysis.
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