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The traveling salesman problem is the problem of �nding out the shortest route in a network of
cities, that a salesman needs to travel to cover all the cities, without visiting the same city more
than once. This problem is known to be NP -hard with a brute-force complexity of O(NN ) or
O(N2N ) for N number of cities. This problem is equivalent to �nding out the shortest Hamiltonian
cycle in a given graph, if at least one Hamiltonian cycle exists in it. Quantum algorithms for this
problem typically provide with a quadratic speedup only, using Grover's search, thereby having a
complexity of O(NN/2) or O(NN ). We present a bounded-error quantum polynomial-time (BQP)
algorithm for solving the problem, providing with an exponential speedup. The overall complexity
of our algorithm is O(N3 log(N)κ/ϵ + 1/ϵ3), where the errors ϵ are O(1/poly(N)), and κ is the
not-too-large condition number of the matrix encoding all Hamiltonian cycles.

I. INTRODUCTION

Logistics and complex supply chain related problems
that require optimization are challenging to solve. The
Traveling Salesman Problem (TSP) is the most com-
monly explored use case of combinatorial optimization.
The problem appears simple: �nd the shortest path in a
graph that visits each node exactly once and returns to
its origin. It is an NP -hard problem, where NP stands
for nondeterministic polynomial-time [1]. The hardest of
all problems in NP complexity class are NP -complete,
while problems that are at least as hard as NP -complete
problems and can lie outside NP are NP -hard. The
real-world applications of TSP extend to domains, such
as transportation, manufacturing, and network design.
A path in a weighted graph that visits each node, repre-

senting a city, exactly once, through edges weighted with
distances (say, in kilometers) between the cities, before
returning to the starting node, is called a Hamiltonian
cycle. Clearly, there can be multiple distinct Hamilto-
nian cycles in a given graph, with di�erent sums of the
weights of the constituent edges, and the problem being
considered here is then to �nd the Hamiltonian cycle with
the smallest sum of the weights of the constituent edges.
Besides undirected graphs, we mainly consider directed
graphs here with only one edge between any two nodes
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in the same direction, since some or all roads in a city-
network can be one-way, but the given graph itself need
not be fully connected.

Classically, the problem has been tackled by exact as
well as heuristic algorithms. Notably, seminal work in
linear programming in Ref. [2] introduced cutting planes,
laying the groundwork for branch and cut methods [3�5],
and branch and bound algorithms [6, 7]. In particular,
Ref. [8] discussed an implementation of the method from
Ref. [2], suitable for TSP instances having a million or
more cities. There are other approaches to solve TSP in
the literature, such as a thermodynamic approach to �nd
approximate solutions using a Monte Carlo algorithm [9].

With the advent of quantum computing and the pos-
sibility of solving combinatorial optimization problems
faster than classical methods, TSP became a test bed
for ample Noisy Intermediate Scale Quantum (NISQ)-era
algorithms. Both gate-based approaches and annealer-
based approaches have been tested extensively for TSP.
Refs. [10�12] use annealer-based approaches for the prob-
lem. For example, while Ref. [10] explored the use of
Quadratic Unconstrained Binary Optimization (QUBO)
models in solving TSP through quantum annealing al-
gorithms and Graph Neural Networks (GNN), Ref. [11]
proposed a path-integral Monte Carlo quantum anneal-
ing scheme. By contrast, gate-based approaches include
the use of Quantum Approximate Optimization Algo-
rithm (QAOA) [13], and Variational Quantum Eigen-
solvers (VQE) [14]. Fault-Tolerant Quantum Computing
(FTQC) algorithms use approaches based on Grover's
search to solve the problem with a quadratic speedup
[15�18]. In Ref. [16], the eigenstates corresponding to
Hamiltonian cycles in the graph are treated as given, but
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in practice, �nding all the Hamiltonian cycles in a graph
itself is an NP -complete problem.
In this work, we develop a gate-based FTQC BQP al-

gorithm that solves TSP with exponential speedup. We
achieved this by using a novel quantum circuit involving
controlled swap gates to yield all candidate Hamiltonian
cycles of a given graph of N nodes, quantum phase es-
timation to capture the sums of edges of these Hamil-
tonian cycles, and density matrix exponentiation to �nd
the shortest Hamiltonian cycle. The algorithm complex-
ity is O(N3 log(N)κ/ϵ + 1/ϵ3), that is polynomial in N ,
when the errors ϵ are polynomially but not exponentially
small in N , as required for the overall error probability of
our algorithm to be less than or equal to 1/3, and κ is the
condition number of the matrix encoding all Hamiltonian
cycles of the graph.

II. METHOD

Consider that an arbitrary directed graph is given,
with N vertices that are connected by edges. Then, there

can be a maximum of 2 × NC2 = 2 ×N !/(2(N − 2)!) =
N(N − 1) number of edges in the graph. A Hamilto-
nian cycle, if one exists in the graph, would have exactly
N vertices and N edges. We here want to �nd a quan-
tum algorithm that would take time, polynomial in N , to
solve the problem of �nding out the shortest Hamiltonian
cycle, if one exists, in the graph.
We start with logL := ⌈logN⌉ number of qubits. For

example, if we have 4 vertices in a graph, we would use
2 qubits that can have 4 levels: |0⟩ = |00⟩, |1⟩ = |01⟩,
|2⟩ = |10⟩, |3⟩ = |11⟩. We create a unitary operator U ,
that encodes the distances of all the edges into the phase
factors of their eigenstates:

U =

L−1∑
j,k=0

eiϕjk |jk⟩⟨jk|, (1)

where ϕjk is the distance between city j to city k. The
phase factor ϕjk is equal to the phase factor ϕkj in case of
an undirected graph. For example, if we have N = 4 (=
L), i.e, cities represented by index values j = 0, 1, 2, 3,
then we create the following diagonal unitary matrix:

U = eiϕ00 |00⟩⟨00|+ eiϕ01 |01⟩⟨01|+ eiϕ02 |02⟩⟨02|+ eiϕ03 |03⟩⟨03|
+ eiϕ10 |10⟩⟨10|+ eiϕ11 |11⟩⟨11|+ eiϕ12 |12⟩⟨12|+ eiϕ13 |13⟩⟨13|
+ eiϕ20 |20⟩⟨20|+ eiϕ21 |21⟩⟨21|+ eiϕ22 |22⟩⟨22|+ eiϕ23 |23⟩⟨23|
+ eiϕ30 |30⟩⟨30|+ eiϕ31 |31⟩⟨31|+ eiϕ32 |32⟩⟨32|+ eiϕ33 |33⟩⟨33|.

(2)

However, some edges from among all the possible 2×NC2

number of edges may not exist in the actual given graph.
We would, then, precompute the sum of all the up to
2× NC2 number of edges in the graph. Call this sum s,
computing which is cheap and e�cient even classically.
Then, we would encode the phase factor ϕjk∀j and k < N
for each edge that does not exist in the graph as equal
to s, and ϕjk = 0, j or k ≥ N in the unitary U . We will
assume L = N for simplicity, without loss of generality,

in the rest of the paper.
If we now have V = U⊗N , then there are N ! num-

ber of eigenstates, that are possible Hamiltonian cycles
from among a total of N2N (L2N if L > N) number of
eigenstates of V , of which (N − 1)! Hamiltonian cycles
are unique. For example, for N = 4, there are a total of
48 number of eigenstates of V , but we have the following
(4− 1)! = 6 eigenstates representing unique Hamiltonian
cycles starting from city 0:

|ν⟩ = |01122330⟩ : φν = ϕ01 + ϕ12 + ϕ23 + ϕ30 : 0 → 1 → 2 → 3 → 0,

|ν⟩ = |03322110⟩ : φν = ϕ03 + ϕ32 + ϕ21 + ϕ10 : 0 → 3 → 2 → 1 → 0,

|ν⟩ = |02211330⟩ : φν = ϕ02 + ϕ21 + ϕ13 + ϕ30 : 0 → 2 → 1 → 3 → 0,

|ν⟩ = |03311220⟩ : φν = ϕ03 + ϕ31 + ϕ12 + ϕ20 : 0 → 3 → 1 → 2 → 0,

|ν⟩ = |01133220⟩ : φν = ϕ01 + ϕ13 + ϕ32 + ϕ20 : 0 → 1 → 3 → 2 → 0,

|ν⟩ = |02233110⟩ : φν = ϕ02 + ϕ23 + ϕ31 + ϕ10 : 0 → 2 → 3 → 1 → 0.

(3)

Notice that there are NPN = N ! = 4! = 24 number of
possible permutations of four di�erent vertices |0⟩, |1⟩,
|2⟩, |3⟩. For example, the eigenstates |01122330⟩ and

|23300112⟩ represent the same Hamiltonian cycle, but
the starting points are di�erent, i.e. cities 0 and 2, re-
spectively. So, there are N number of same Hamiltonian
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Figure 1. Quantum circuit to create a superposition of all
permutations of 0, 1, 2, . . . , N − 1 for N = 4.

cycles, but simply rotated with respect to each other, for
each of the (N − 1)! unique Hamiltonian cycles, amount-
ing to a total of N ! Hamiltonian cycle eigenstates of V
for a fully-connected directed graph.
Now, we initialize N number of data registers, each

of ⌈logN⌉ qubits, to |0⟩, |1⟩, . . . , |N − 1⟩, respectively.
Then, we create all possible permutations of 0, 1, . . . , N−
1 by using NC2 number of single-qubit ancilla registers,
each initialized to state |+⟩ = 1√

2
(|0⟩+ |1⟩), and apply-

ing ⌈logN⌉ number of controlled swap gates on each of
every combination of two of the N data registers with
one ancilla register as the control qubit. Please see the
circuit in Figure 1.
We will then have the following state in the data

registers, upon tracing out the ancilla registers, with∑
µ β

2
µ = 2

NC2 :

ρ =
1

2NC2

∑
µ

β2
µ|µ⟩⟨µ|. (4)

We, then, expand the state ρ from an N -register state
to a 2N -register state. For example, for N = 4, we aug-
ment a state |0123⟩ to the state |01122330⟩, so that it
forms a valid eigenstate for the unitary V . We can aug-
ment the N -register state by adding N new registers,
each of ⌈logN⌉ qubits initialised to |0⟩, at appropriate
places, and applying CNOT gates to create adjacent
copies of every register in ρ. This way, we will now have
terms like |01122330⟩ replacing |0123⟩ (for N = 4) in ρ.
Please see Figure 2. Call this new state σ, so that we

have, with
∑

ν β
2
ν = 2

NC2 :

σ =
1

2NC2

∑
ν

β2
ν |ν⟩⟨ν|. (5)

We use this state σ as the input eigenstates to perform
quantum phase estimation of the unitary V , to obtain
the following state at the output:

γ =
1

2NC2

∑
ν

β2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|. (6)

The state γ then has all the valid Hamiltonian cycle
eigenstates |ν⟩, along with the estimates φ̃ν of their corre-
sponding (normalised-) sums φν of weights of constituent
edges ϕjk.
Notice that we use the improved quantum phase esti-

mation method from Ref. [19] in the phase estimation of
V , and so, we would have the time variable t = O(ηκ/ε)
(the factor ηκ arises as a result of using C = ηκ in the
controlled rotation later) when simulating the unitary U
in the beginning by exponentiating a diagonal matrix Φ,
such that U = eiΦt. The matrix Φ to exponentiate to
obtain unitary U of (2) is:

Φ = ϕ00|00⟩⟨00|+ ϕ01|01⟩⟨01|+ ϕ02|02⟩⟨02|+ ϕ03|03⟩⟨03|
+ ϕ10|10⟩⟨10|+ ϕ11|11⟩⟨11|+ ϕ12|12⟩⟨12|+ ϕ13|13⟩⟨13|
+ ϕ20|20⟩⟨20|+ ϕ21|21⟩⟨21|+ ϕ22|22⟩⟨22|+ ϕ23|23⟩⟨23|
+ ϕ30|30⟩⟨30|+ ϕ31|31⟩⟨31|+ ϕ32|32⟩⟨32|+ ϕ33|33⟩⟨33|,

which, being diagonal, and so, sparse, U can be simulated
e�ciently [19, 20]. Here, ε/2 is the estimation precision
error in trace distance, and so, the maximum probability
of estimation error. We use ε = O(1/poly(N)) to let time
t to simulate U be polynomial, and not exponential, inN ,
as long as the error probability of our overall algorithm
is below 1/3.
In order to �nd the shortest Hamiltonian cycle, we

add to γ an ancilla qubit, initialized in the state (|0⟩⟨0|+
|1⟩⟨1|)/2, and rotate it, conditioned on |φ̃ν⟩, to get, with

α2
ν := β2

ν/2
NC2 :

ξ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|

⊗
[
(1− C2φ̃2

ν)|0⟩⟨0|+ C2φ̃2
ν |1⟩⟨1|

]
.

(7)

We ensure that all the eigenphases φ̃ν are normalised to
be between 0 and 1 by initially dividing all edges ϕjk by
φ̂max, that is taken as the sum of the N largest edges as
an estimate of φmax. If φ̂max is equal to φmax and if the
phase estimation was perfect, then we have the minimum
φ̃ν , which is φ̃min, equal to the inverse of the not-too-
large condition number (of the matrix of which φν 's are
the eigenvalues of only the valid Hamiltonian cycle eigen-
states of V ), 1/κ = φmin/φmax. Then, the ancilla qubit
above will be rotated from |0⟩ only for φ̃min that is equal
to 1/κ, if C = κ, since the probability C2φ̃2

ν , attached to
|1⟩, will be equal to 1 only for φ̃min. That is, the ancilla
qubit will not be rotated at all for any φ̃ν , other than
φ̃min. However, since φ̂max would almost always be an
overestimate of φmax, we would have 1/κ rather larger
than φ̃min, more so when the variance in the given edges
is large, or there are missing edges initially assigned a
value of s. This is why we use an extra multiplicative
factor η, that we discuss later, to ensure that only φ̃min

is likely going to be less than or equal to 1/(ηκ). So,
in order to �nd and separate out φ̃min, we choose above
C = ηκ, so that the ancilla qubit is rotated from |0⟩ only
for φ̃min that is less than or equal to 1/(ηκ). We will
discuss shortly how to guess the value of ηκ to use.
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Figure 2. Quantum circuit to augment terms like |0123⟩ in ρ to |01122330⟩ in σ for N = 4.

We then need to �nd the Hamiltonian cycle |ν⟩, that
corresponds to φ̃min. Note that if Cφ̃min = O(1), the
probability of obtaining 1 as the outcome of measuring
the ancilla qubit above can be as small as O(1/(N−1)!) ≥
O(1/2

NC2) = O(1/2O(N2)), which can be more than ex-
ponentially small in N . So, we cannot e�ciently perform
a postselection on the outcome being 1 of measuring the
ancilla like in Ref. [19], to obtain the below desired state
from the state ξ in (7):

ζ =
∑
φ̃min

α2
νC

2φ̃2
ν

λmin
|φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|, (8)

where if only φ̃min is less than 1/(ηκ) = 1/C, then we
would have N terms in the summation, all of which
are the same Hamiltonian cycles (with the same sum of
weights of edges), just rotated with respect to each other,
so that λmin :=

∑
φ̃min

α2
νC

2φ̃2
ν . We would not use am-

plitude ampli�cation either, as used in Ref. [19], since
it gives only a quadratic speedup, while we want to get
exponential speedup.
Instead, in order to get the above state ζ in (8), we �rst

exponentiate the ancilla qubit (call it ϱ) from (7) to get
the unitary Y = eiϱτ , and perform phase estimation on
Y for eigenstate |1⟩. We create Y by repeatedly applying
the below to state ϱ of ancilla �anc� and another state ς
[21, 22]:

Tranc
[
eiS∆τ (ϱ⊗ ς)e−iS∆τ

]
= ς − i∆τ [ϱ, ς] +O(∆τ2). (9)

Here, S is the swap operator, which is sparse and so,
eiS∆τ can be performed e�ciently [19, 20]. Also, here,
τ = n∆τ , where n = O(τ2/ϵ) is the required number
of copies of ϱ, and so, the required number of times (9)
needs to be repeated to simulate Y with an error of ϵ.

The phase estimation process requires controlled-eiϱτ op-

erations
∑T−1

ι=0 |ι⟩⟨ι| ⊗ eiϱτι/T (for some T ), that is done

by acting the conditional swap operator |ι⟩⟨ι| ⊗ eiSτι/T

on |ι⟩⟨ι| ⊗ ϱ ⊗ ς instead, and tracing out ϱ. Note that

the eigenvalues of S are ±1, so that W 1/T = W 21/T =

W 22/T = W 23/T . . ., where W = eiSτ , if we use say
τ = 2π.
The phase estimate so obtained would be λ̃min, using

which we further apply a rotation to the ancilla qubit in
(7), to get:

χ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|

⊗
[(

1− C2φ̃2
ν

λ̃min

)
|0⟩⟨0|+ C2φ̃2

ν

λ̃min

|1⟩⟨1|
]
,

(10)

where since the eigenvalue of the eigenstate |1⟩ of the

ancilla qubit is evidently
∑

ν
α2

νC
2φ̃2

ν

λ̃min
= 1, we get the

eigenvalue of the eigenstate |0⟩ of the ancilla qubit to be∑
ν α

2
ν

(
1− C2φ̃2

ν

λ̃min

)
=

∑
ν α

2
ν−

∑
φ̃min

α2
νC

2φ̃2
ν

λ̃min
= 1−1 = 0.

Thus, the above state, upon tracing out the ancilla qubit,
is just the desired state ζ from (8), where every φ̃ν is
equal to φ̃min, so that measuring the two registers yield
the outputs, φ̃min and an eigenstate ν, corresponding
to the desired shortest Hamiltonian cycle in the graph.
Clearly, if φ̃min so obtained is larger than s/φ̂max, the
eigenstate ν so obtained would not be a Hamiltonian cy-
cle, since it would have at least one missing edge assigned
a normalised value of s/φ̂max. So, we decide that there is
no Hamiltonian cycle in the graph. Otherwise, we output
the obtained ν and φ̃min× φ̂max as the shortest Hamilto-
nian cycle and the sum of its edges, respectively.
Note that the controlled rotation in (7) is achieved by

considering two ancilla qubits, denoted by A and B, ini-
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tialised in the state |0A0B⟩, and then rotating this state,
conditioned on phase estimates |φ̃ν⟩, and ignoring one of
the ancilla qubits:

ξ = TrB

{∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |ΦAB⟩⟨ΦAB |

}
, (11)

where |ΦAB⟩ :=
√
1− C2φ̃2

ν |0A0B⟩+Cφ̃ν |1A1B⟩. In or-
der to simulate the unitary Y , we perform density ma-
trix exponentiation of the state ϱ of the ancilla qubit (as
pointed out earlier), that requires n = O(τ2/ϵ) copies of
ϱ. Clearly, we get two copies of ϱ from above, one by ig-
noring the qubit B, and the other by ignoring the qubit
A, but undoing the action of eiςτ on ϱ in between. Thus,
we get n copies of ϱ, required for simulation of Y , by
considering n ancilla qubits in the state |0⊗n⟩, and then
rotating this state, conditioned on |φ̃ν⟩:

ϑ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |ψ⟩⟨ψ|, (12)

where |ψ⟩ :=
√

1− C2φ̃2
ν |0⊗n⟩+ Cφ̃ν |1⊗n⟩. With n an-

cilla qubits, the state corresponding to χ of (10) is:

Θ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |Ψ⟩⟨Ψ|, (13)

where |Ψ⟩ :=
√

1− C2φ̃2
ν

λ̃min
|0⊗n⟩+ Cφ̃ν√

λ̃min

|1⊗n⟩.
We discuss an empirical way to guess C = ηκ. The

mid-range of the means (of N edges) of the Hamilto-
nian cycles is normally close or equal to the mean M
of all edges. We use an extra factor ω/(2N) to o�set
any deviation of 2NM below φ̂max, to get: (φmin/N +
φ̂max/N)/2 = ωM/(2N), with ω = max(2N, (e! = 0)θ),
where θ = NC2 for undirected graphs, θ/2 = NC2 for
directed graphs, e is number of too large (at least ten
times the smallest edge) or missing edges. So, a guess of
1/κ is 1/κ̂ = ωM/φ̂max−1. We use η = Ω/ϖ, if ω > 2N ,
η = (Ω/ϖ) · (ω/(2N)), if ω > 4N , else η = 1, if ω = 2N ,
where Ω is the sum of all edges including missing edges,
ϖ ≤ s is the sum of all edges excluding missing or too
large edges. Usually, 1/C = 1/(ηκ̂) would be below, yet
close to, normalised φmin, so that we repeat our algo-
rithm a few times, slightly raising 1/C each time till we
capture φ̃min only. We �nd that this empirical method
rarely fails [23].

III. ALGORITHM

1. We create the unitary U = eiΦt encoding all weights

of edges ϕjk, where Φ =
L−1∑
j,k=0

ϕjk

φ̂max
|jk⟩⟨jk|, φ̂max

is sum of N largest edges upon replacing miss-
ing edges ∀j, k < N by s, s is sum of all given
edges, logL = ⌈logN⌉. We create N copies of U
for V = U⊗N , since the number of edges in every
Hamiltonian cycle is exactly N .

2. We initialize N number of data registers of
⌈logN⌉ qubits each to |0⟩, |1⟩, |2⟩, . . . , |N − 1⟩,
respectively. We generate all permutations of
0, 1, 2, . . . , N − 1 using NC2 number of single-
qubit ancilla registers, each initialized to |+⟩ =
1√
2
(|0⟩+ |1⟩), and applying ⌈logN⌉ number of con-

trolled swap gates on each combination of two data
registers with one ancilla as control qubit.

3. The �rst register has the state ρ =
1

2
NC2

∑
µ β

2
µ|µ⟩⟨µ|, where

∑
ν β

2
µ = 2

NC2 . We

augment this N -register state by adding N ancilla
registers each of ⌈log(N)⌉ qubits in state |0⟩ and
acting CNOT gates to get a 2N -register state

σ = 1

2
NC2

∑
ν β

2
ν |ν⟩⟨ν|, where

∑
ν β

2
ν = 2

NC2 .

4. We perform quantum phase estimation [19] on V
using σ as input to get γ = 1

2
NC2

∑
ν β

2
ν |φ̃ν⟩⟨φ̃ν | ⊗

|ν⟩⟨ν|.

5. We add to the state γ an ancilla register of n
qubits, initialized in the state |0⊗n⟩, and rotate
it, conditioned on |φ̃ν⟩, to get the state ϑ =∑

ν α
2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |ψ⟩⟨ψ|, where α2

ν :=

β2
ν/2

NC2 , |ψ⟩ :=
[√

1− C2φ̃2
ν |0⊗n⟩+ Cφ̃ν |1⊗n⟩

]
and C is set to ηκ.

6. We exponentiate the e�ective state ϱ of each ancilla
qubit, using n copies of ϱ from n ancilla qubits, to
get a unitary Y := eiϱτ , and perform phase es-
timation on Y for the eigenstate |1⟩. If the phase
estimate for |1⟩ is 0, we repeat step 5 with a slightly
smaller value of C, and then repeat this step, until
we can capture φ̃min in step 5 and get λ̃min as the
phase estimate in this step.

7. We further apply a rotation to the ancilla register
in the state ϑ from step 5, using λ̃min obtained in
step 6, to get Θ =

∑
ν α

2
ν |φ̃ν⟩⟨φ̃ν |⊗|ν⟩⟨ν|⊗|Ψ⟩⟨Ψ|,

where |Ψ⟩ :=

[√
1− C2φ̃2

ν

λ̃min
|0⊗n⟩+ Cφ̃ν√

λ̃min

|1⊗n⟩
]
.

So, upon tracing out the ancilla register |Ψ⟩ from
Θ, we get ζ =

∑
φ̃min

α2
νC

2φ̃2
ν

λmin
|φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|, as∑

ν
α2

νC
2φ̃2

ν

λ̃min
= 1.

8. Measure the two registers in the state ζ from step 7
to get φ̃min and a ν. If φ̃min is larger than s/φ̂max,
output the decision that there is no Hamiltonian
cycle in the graph. Otherwise, output the obtained
values of ν and φ̃min× φ̂max as the desired shortest
Hamiltonian cycle of the graph, and the sum of its
edges, respectively.

The improved quantum phase estimation method from
Ref. [19], that we use above, is as follows. We start with
an initial state |Λ0⟩|uj⟩, where |uj⟩ is the j-th eigenstate
of the Hermitian matrix Γ, that we exponentiate, and
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|Λ0⟩ :=
√

2
T

∑T−1
ι=0 sin

π(ι+ 1
2 )

T |ι⟩ for some large T . The

state |Λ0⟩ can be prepared upto some error ϵΛ in time
poly log(T/ϵΛ) (see Ref. [19]). We apply the conditional

Hamiltonian evolution
∑T−1

ι=0 |ι⟩⟨ι|⊗eiΓιt/T on the initial
state in both registers, and then apply inverse quantum
Fourier transform on the �rst register to get the state∑T−1

q=0 υq|j |q⟩|uj⟩. De�ning the estimate r̃q of the q-th

eigenvalue rq of Γ as r̃q := 2πq
t , we relabel the Fourier

basis states |q⟩ to get
∑T−1

q=0 υq|j |r̃q⟩|uj⟩. If the phase
estimation is perfect, we have υq|j = 1 if r̃q = rj , and
0 otherwise. So, we get the state |r̃j⟩|uj⟩, from which
we obtain the estimate of rj upon measuring the �rst
register.

IV. ALGORITHM COMPLEXITY

In Figure 1 for step 2, the swap gates on ⌈logN⌉ num-
ber of qubits of each data register are applied parallelly.
Since there are NC2 number of such sets of swap gates,
the complexity of this step is O(N2). The complexity
is independent of N in Figure 2 for step 3, since all the
CNOT gates can be applied in parallel. In step 1, cre-
ating each copy of U has a complexity of O(2 log(N)t)
[19, 20], assuming L = N , where each eigenstate has
2 logL qubits. Further, N copies of U , required for V ,
can be created in parallel. The use of improved quan-
tum phase estimation from Ref. [19] in step 4 along
with the controlled rotation with C = ηκ in step 5 re-
quire the time variable t in step 1 to be O(ηκ/ε) (see
Ref. [19]). In step 5, the complexity is polynomial for
the controlled rotation of the ancilla register state, as
in Ref. [19]. The circuit depth of the density matrix
exponentiation in step 6 of the (single) ancilla qubit is
O(log(2)n) = O(τ2/ϵ) = O(1/ϵ3) [21, 22], where ϵ is
the simulation error for Y , as also the precision error of
improved phase estimation of Y for which τ = O(1/ϵ).
Here, ϵ or ϵ/2 is an error in trace distance, and so, de-
termines the maximum error probability in simulation or
estimation of Y [24]. The eigenvalue of ϱ for eigenstate
|1⟩ can be as low as O(1/(N − 1)!), that is indistinguish-
able from 0 with less thanO(log((N−1)!)) phase estimate
qubits, that otherwise leads to τ ≥ O((N − 1)!) in usual
phase estimation [1]. Since ϵ/2 is maximum error proba-
bility, we use ϵ = O(1/poly(N)), not ϵ = O(1/(N − 1)!),

but with T = O((N−1)!) ≤ O(2O(N2)) in improved phase
estimation, so that τ = O(poly(N)), as long as the cumu-
lative error probability of our algorithm is 1/3 or lower.
The complexities of steps 7 and 8 can be ignored. So,
the overall complexity of our algorithm is O(2 log(N)t),
which yields O(log(N)ηκ/ϵ) ≤ O(N3 log(N)κ/ϵ), taking
ε = ϵ for simplicity, with ϵ = O(1/poly(N)), and η ≤
O(N3) (since Ω/ϖ ≤ O(N2s/s) = O(N2) and ω/(2N) ≤
O(N2/N) = O(N)). This is because the complexity of
step 1 is dominant amongst all steps, if it su�ces to have
ϵ ≥ O(1/N). Also, κ = O(poly(N)), since it is geometri-
cally unlikely, if not impossible, for a Hamiltonian cycle of

N edges to be exponentially larger than another Hamilto-
nian cycle of N edges in a city-network graph, even with
too-large edges, as each Hamiltonian cycle must visit all
cities, including too-far ones. When there are e ≤ O(N2)
missing edges, we have κ̂ = φ̂max/((e + 1)s − φ̂max),
where φ̂max < ps+O(10(N − p)/θ)s with p = min(N, e)
(since an edge at least 10 times the smallest edge is
treated too-large), so that with θ = O(N2), we get
κ̂ < O((N2p+10(N−p))/(N2(e+1−p)−10(N−p))) =
O(poly(N)). Note that we need to classically precom-
pute φ̂max by summing the N largest edges, for which
we sort the data, that is expensive. If we use merge
sort to sort the NC2 number of edges, the complexity
is O(NC2 log(

NC2)) = O(N2 log(N)), which is less than
O(N3 log(N)κ/ϵ). But if ϵ ≤ O(1/N2), the complexity of
step 6 is dominant, so the overall complexity of our algo-
rithm is at least O(1/ϵ3) = O(N6). This is an exponen-
tial speedup over the brute-force complexity of O(NN )
for undirected [1], or O(N2N ) for directed graphs.

V. DISCUSSION

Note that if there is a city that is very far from the
rest of the cities in the network, every Hamiltonian cycle
will need to traverse to that far-o� city and back, since
a Hamiltonian cycle must visit all cities. This is why
it is geometrically unlikely for the ratio κ of the longest
Hamiltonian cycle to the shortest Hamiltonian cycle to
be exponential in N . However, it is not absolutely im-
possible. It is possible that one of the Hamiltonian cycles
has a path to that far-o� city via a highly zig-zag route
or requires having to cross a mountain, for example. In
this case, it is indeed possible for that Hamiltonian cycle
to be exponentially larger than the shortest Hamiltonian
cycle. Nonetheless, this is practically irrelevant, even if
not absolutely unlikely, since the salesman is anyway not
going to be crossing the mountain, as he would normally
be aware of such an unusually long path that exists and
would naturally avoid it anyway. Under these unusual or
unlikely circumstances, our empirical method to guess C
would yield a very poor estimate of C, and the algorithm
complexity can become exponential in N .
We also mentioned that our empirical method rarely

fails. Please see Ref. [23], where we indicate in red the
rare cases that fail from among the many examples we
consider, while in most cases, indicated in green, it suc-
ceeds. These rare cases are when there can be many
eigenvalues φ̃ν , and not just the smallest one φ̃min, that
are lower than 1/C, and therefore, can get picked up
by our controlled rotation. Usually, such a situation may
arise in cases of highly skewed data. Otherwise, as can be
seen from the many successful cases, indicated in green,
our empirical method usually yields an estimate of 1/C
that is lower than, but very close to, the φ̃min we are
after. This means that if we are unable to capture φ̃min,
we need to repeat our algorithm upon slightly raising the
estimated value of 1/C, until we are able to capture φ̃min.
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Since our empirical method normally yields an estimate
of 1/C very close to φ̃min, it would usually take only a
few repetitions of our algorithm, until the value of 1/C
used exceeds φ̃min, so that we are able to capture it. Ev-
idently, the number of repetitions required would depend
on the size of the chosen increment in the value of 1/C in
every iteration, compared to the value of φ̃min. The size
of the increment needs to be chosen carefully, so that in
trying to minimize the number of repetitions, we do not
end up raising 1/C above multiple (unequal) φ̃ν 's and
not just φ̃min, in which case the algorithm would not be
able to capture the shortest Hamiltonian cycle only, and
may, therefore, not yield the right answer in the end.

Appendix A gives an example of our entire algorithm.

VI. CONCLUSION

We presented a bounded-error quantum polynomial-
time (BQP ) algorithm for solving the NP -hard traveling
salesman problem. The worst-case brute-force time com-
plexity for this problem is O(NN ) for undirected graphs,
and O(N2N ) for directed graphs, where N is the number

of vertices in the graph. The quantum speedup known
to be achievable for this problem is quadratic only, using
Grover's search, yielding a complexity of O(NN/2) for
undirected graphs or O(NN ) for directed graphs, which
are still exponential in N . On the contrary, our algo-
rithm presented here provides with an exponential quan-
tum speedup, by solving the problem in quantum polyno-
mial time. The overall time complexity of our algorithm
is O(N3 log(N)κ/ϵ + 1/ϵ3), which is indeed polynomial,
and not exponential, in N , where the errors ϵ need not
be exponentially small, and can be polynomially small,
as long as the overall cumulative probability of error of
our algorithm does not exceed 1/3.
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Appendix A: Example of Algorithm for N = 4

Let us now run our entire algorithm through an ex-
ample directed graph with N = 4. Then, the nodes of
the graph are denoted by 0, 1, 2, 3, respectively. Let the
given edges be ϕ01 = 10, ϕ02 = 12, ϕ03 = 15, ϕ12 = 29,
ϕ13 = 10, ϕ23 = 25, ϕ10 = 28, ϕ30 = 20, ϕ21 = 42,
ϕ32 = 73, and let the edges 20 and 31 be missing, so that
we have ϕ20 = ϕ31 = s, where s is the sum of the given
edges s = ϕ01+ϕ02+ϕ03+ϕ12+ϕ13+ϕ23+ϕ10+ϕ30+
ϕ21 + ϕ32 = 264. Then, the lengths of the (N − 1)! = 6
(unique) Hamiltonian cycle (HC) eigenstates from (3)
are: φ01122330 = 84, φ03322110 = 158, φ02211330 = 84,
φ03311220 = 572, φ01133220 = 357, φ02233110 = 329,
out of which φ03311220, φ01133220, φ02233110 are valid HC
eigenstates, but not of interest to us, since they con-
tain edges that are missing in the given graph. More-
over, we can see that there are two shortest HCs of the
same length, viz. φ01122330 = φ02211330 = 84 = φmin,
while the largest HC, even if not of interest to us, is
φ03311220 = 572 = φmax. Our estimate of φmax is
φ̂max = 42 + 73 + 264 + 264 = 643. Thus, in step 1
of our algorithm, all the edge-weights are normalized by
dividing by this value of φ̂max. Then, we get in (5):

σ =
1

64
[|ν1⟩⟨ν1|+ |ν2⟩⟨ν2|+ |ν3⟩⟨ν3|+ |ν4⟩⟨ν4|

+ 2|ν5⟩⟨ν5|+ 2|ν6⟩⟨ν6|+ |ν7⟩⟨ν7|+ |ν8⟩⟨ν8|
+ |ν9⟩⟨ν9|+ |ν10⟩⟨ν10|+ 2|ν11⟩⟨ν11|+ 2|ν12⟩⟨ν12|
+ 2|ν13⟩⟨ν13|+ 2|ν14⟩⟨ν14|+ 2|ν15⟩⟨ν15|+ 2|ν16⟩⟨ν16|
+ 4|ν17⟩⟨ν17|+ 4|ν18⟩⟨ν18|+ 5|ν19⟩⟨ν19|+ 5|ν20⟩⟨ν20|
+5|ν21⟩⟨ν21|+ 5|ν22⟩⟨ν22|+ 6|ν23⟩⟨ν23|+ 6|ν24⟩⟨ν24|] ,

where ν1 = 01122330, ν2 = 01133220, ν3 = 02211330,
ν4 = 02233110, ν5 = 03311220, ν6 = 03322110,
ν7 = 10022331, ν8 = 10033221, ν9 = 12200331,
ν10 = 12233001, ν11 = 13300221, ν12 = 13322001,
ν13 = 20011332, ν14 = 20033112, ν15 = 21100332,
ν16 = 21133002, ν17 = 23300112, ν18 = 23311002,
ν19 = 30011223, ν20 = 30022113, ν21 = 31100223, ν22 =

31122003, ν23 = 32200113, and ν24 = 32211003. Then,
we get (in decimal) in (6) for the 6 valid HCs, assuming
perfect phase estimation: φ̃ν1

= φ̃ν10
= φ̃ν17

= φ̃ν19
=

84
643 = 0.131, φ̃ν2

= φ̃ν12
= φ̃ν13

= φ̃ν23
= 357

643 = 0.555,

φ̃ν3
= φ̃ν11

= φ̃ν16
= φ̃ν20

= 84
643 = 0.131, φ̃ν4

= φ̃ν7
=

φ̃ν18 = φ̃ν21 = 329
643 = 0.512, φ̃ν5 = φ̃ν9 = φ̃ν14 = φ̃ν22 =

572
643 = 0.890, φ̃ν6

= φ̃ν8
= φ̃ν15

= φ̃ν24
= 158

643 = 0.246.
So, there are 2 unique HCs of shortest length 0.131.

Now, using our empirical method, since we have M =
792/12, e = 2, θ = 12 > 2N = 8, ω = 12, η = Ω/ϖ = 3,
and 1/κ̂ = 149/643, we get an estimate of 1/C to
use as 149

3×643 = 0.077, which is less than but close to
φ̃min = 0.131. So, we would need to repeat the algo-
rithm a few times to be able to capture φ̃min; for ex-
ample, if we use an increment size of 0.03 in raising the
value of 1/C to use in each iteration, we would need to
repeat our algorithm only twice to be able to success-
fully capture φ̃min. Clearly, the algorithm would fail on
this occasion, only if the increment size chosen for 1/C is
0.246−0.077 = 0.169 or larger. Considering that the cho-
sen increment size is 0.03, the value of 1/C to use would
become 0.077 + 0.06 = 0.137 after 2 repetitions of the
algorithm, so that we would have Cφ̃min = 0.956 and
λmin =

[(
1
64 + 1

64 + 4
64 + 5

64

)
+

(
1
64 + 2

64 + 2
64 + 5

64

)]
×

(0.956)2 =
(
11
64 + 10

64

)
× 0.914 = 0.3. Assuming that our

estimate λ̃min is equal to λmin, we get in (10):

χ =
C2φ̃2

min

λ̃min

|φ̃min⟩⟨φ̃min| ⊗
[(

1

64
|ν1⟩⟨ν1|+

1

64
|ν10⟩⟨ν10|

+
4

64
|ν17⟩⟨ν17|+

5

64
|ν19⟩⟨ν19|

)
+

(
1

64
|ν3⟩⟨ν3|

+
2

64
|ν11⟩⟨ν11|+

2

64
|ν16⟩⟨ν16|+

5

64
|ν20⟩⟨ν20|

)]
=

0.914

0.3
|0.131⟩⟨0.131| ⊗

[(
1

64
|ν1⟩⟨ν1|+

1

64
|ν10⟩⟨ν10|

+
4

64
|ν17⟩⟨ν17|+

5

64
|ν19⟩⟨ν19|

)
+

(
1

64
|ν3⟩⟨ν3|

+
2

64
|ν11⟩⟨ν11|+

2

64
|ν16⟩⟨ν16|+

5

64
|ν20⟩⟨ν20|

)]
= |0.131⟩⟨0.131| ⊗ [(0.048|ν1⟩⟨ν1|+ 0.048|ν10⟩⟨ν10|
+0.190|ν17⟩⟨ν17|+ 0.238|ν19⟩⟨ν19|) + (0.048|ν3⟩⟨ν3|
+0.095|ν11⟩⟨ν11|+ 0.095|ν16⟩⟨ν16|+ 0.238|ν20⟩⟨ν20|)]

Thus, upon measuring the �rst register above, we would
get φ̃min = 0.131, so that we can calculate the length of
the shortest Hamiltonian cycle(s) in the given graph to be
φ̃min × φ̂max = 0.131× 643 = 84.23, which is close to the
actual value of 84. Upon measuring the second register,
we would get one of the eigenstates ν1, ν10, ν17, ν19, de-
picting one (same) shortest HC, or one of the eigenstates
ν3, ν11, ν16, ν20, depicting the other (same) shortest HC.
Clearly, we can output only either of the 2 distinct HCs,
and not both, since the measurement collapses the su-
perposition state in the second register to either of them.
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