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Abstract. In this work, we introduce a new attack for the Loidreau
scheme [PQCrypto 2017] and its more recent variant LowMS. This attack
is based on a constrained linear system for which we provide two solving
approaches:

– the first one is an enumeration algorithm inspired from combinato-
rial attacks on the Rank Decoding (RD) Problem. While the attack
technique remains very simple, it allows us to obtain the best known
structural attack on the parameters of these two schemes.

– the second one is to rewrite it as a bilinear system over Fq. Even if
Gröbner basis techniques on this second system seem infeasible, we
provide a detailed analysis of the first degree fall polynomials which
arise when applying such algorithms.

1 Introduction

The idea of building rank-metric cryptography relying on Gabidulin codes is
over 30 years old. It dates back to the seminal GPT scheme [15]. The initial goal
of Gabidulin was to use the properties of the rank metric in order to propose
a scheme with a public-key size one order of magnitude smaller than that of
the original McEliece cryptosystem [20]. However, this proposal and following
variants have suffered structural attacks [22] tending to show that masking these
codes is difficult.

The Loidreau cryptosystem introduced in [19] is based on a different type
of masking. Along with the LowMS variant [1], it is arguably one of the few
reparations which resists cryptanalysis for well-chosen parameters.

On the one hand, this scheme offers nice features compared to other modern
PKEs and especially to those proposed at the NIST post-quantum standardiza-
tion process. First, decryption is deterministic. Second, regarding performance,
the key is between one and two orders of magnitude smaller than that of non-
structured Hamming-based cryptosystems. It even favorably compares with that
of PKEs based on unstructured lattices. Similarly, the ciphertext is small com-
pared to that of unstructured lattice proposals and it compares favourably with
that of structured lattices.



On the other hand, its security analysis is not yet sufficiently stabilized. This
is mainly due to the new type of masking, which calls for assessing the difficulty
of distinguishing the public code from a random one. This code is a Gabidulin
code distorted with a non-singular matrix with coefficients in a small-dimensional
secret subspace of Fqm . A conjecture was made in [19] concerning the complexity
of solving the problem, for parameters not impacted by the Coggia-Couvreur
attack.

Contributions. First, we improve upon the enumeration approach of Loidreau
presented as an extended abstract at the WCC 2022 conference. We adapt tech-
niques from combinatorial attacks on RD [2] showing that it is more efficient to
enumerate over vector spaces of larger dimension than that of the original secret
subspace. This allows us to obtain the best complexity for this type of technique.

Second, we propose an algebraic approach to find a distinguisher by modeling
the original problem as a bilinear system over Fq. Even if the solving by Gröbner
bases does not seem promising from our experiments, we manage to analyze
precisely the first steps of the computation. In particular, we show that there
exist degree falls of the same nature as in [4,6] due to the specific structure of
the system.

2 Preliminaries on the rank metric

Rank-metric cryptography relies on codes which are Fqm -linear, where Fqm is an
extension of degree m over Fq. In this context, the rank (or weight) of a vector
a = (a1, . . . , an) ∈ Fn

qm denoted by Rk(a) is the dimension of the Fq-subspace of
Fqm generated by the components of a, i.e.,

Rk(a)
def
= dim⟨a1, . . . , an⟩Fq .

Gabidulin codes were first constructed by Delsarte as extremal object in Bose-
Mesner algebra [10]. Some years later, Gabidulin presented an algebraic theory
as well as a polynomial-time decoding algorithm [14]. These codes can be viewed
as analogues of Reed-Solomon codes in the rank metric, where polynomials are
replaced by linearized polynomials.

Notation 1 In the whole paper, we will denote by (ai,j)1≤i≤nr,1≤j≤nc
the nr×nc

matrix whose entry in row i and column j is equal to ai,j for i ∈ {1..nr} and
j ∈ {1..nc} or simply (ai,j) when the sizes are already clear from the context.

Definition 1 For integers k ≤ n ≤ m, let g = (g1, . . . , gm) ∈ Fn
qm such that

Rk(g) = n. The k-dimensional Gabidulin code with support vector g, denoted

Gk(g), is the Fqm-linear code generated by the matrix (g
[i−1]
j )1≤i≤k,1≤j≤n, where

[i]
def
= qi.

Finally, the following proposition shows that the dual of a Gabidulin code is a
Gabidulin code.
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Proposition 1 ([14]) Let Gk(g) ⊂ Fn
qm , then there exists h ∈ Fn

qm of rank n

such that Gn−k(h) = Gk(g)
⊥ for the usual scalar product in Fqm

3 Loidreau cryptosystem

The Loidreau scheme was introduced in [19] with q = 2 but it can be be declined
for any prime power q. For positive integers m, n and an Fq-vector space A, let
Mm,n(A) be the vector space of matrices of size m×n with entries in A and let
GLn(Fqm) be the group of non-singular matrices of size n with entries in Fqm .

3.1 Description of the scheme

The parameters are integers k ≤ n ≤ m related to the underlying Gabidulin
code as well as λ ∈ N related to the masking. The value of λ is chosen such that
λ < ⌊(n − k)/2⌋ for correctness and λ ≥ 3 to avoid the polynomial attack of
[8]. The three standard building blocks of a public encryption scheme are the
following:

KeyGen(1ν)

1. Construct G ⊂ Fn
qm a k-dimensional Gabidulin code.

2. Pick G ∈ Mk,n(Fqm) random in the set of full-rank generator matrices for
G. A usual way to do it is to choose a matrix under canonical form, say the
one given by Definition 1 and then multiply on the left by a randomly chosen
matrix in GLk(Fqm).

3. Pick V ⊂ Fqm a random λ-dimensional Fq-subspace of Fqm .

4. Pick P a random element in GLn(Fqm) ∩Mn,n(V).
5. return Gpub = GP−1 and sk = (G,P).

Let p ∈ Fk
qm be the plaintext to be encrypted.

Encrypt(p,Gpub)

1. Pick e ∈ Fn
qm such that Rk(e) ≤ ⌊(n− k)/2λ⌋.

2. return c = pGpub + e.

Decrypt(c,sk)

– return Decode(cP,G), where Decode(∗,G) stands for any decoding algo-
rithm for a Gabidulin code with generator matrix G decoding up to the
error-correcting capability ⌊(n− k)/2⌋.
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3.2 Security

Let Cpub ⊂ Fn
qm be the Fqm -linear code of dimension k generated by the public

matrix Gpub. The IND-CPA security of the scheme is related to the difficulty of
solving the two following problems:

– Distinguish the code Cpub from a random Fqm -linear code with the same
parameters.

– Solve a generic instance of the Rank Decoding problem whose parameters

are (m,n, k, t
def
= ⌊(n− k)/(2λ)⌋).

In addition to these assumptions, note that LowMS also relies on the Rank
Support Learning problem [16].

We address the hardness of the first problem which is used in both [19] and
[1]. We even go further since we provide an attack enabling to decrypt. For these
schemes, our work also shows that the Gabidulin code itself can be considered as
a parameter (meaning that G generating G is public) without security loss. This
leads to a simplification of the key-generation procedure that can be rewritten
as

KeyGen()

1. Pick V ⊂ Fqm a random λ-dimensional Fq-subspace of Fqm .
2. Pick P randomly in GLn(Fqm) ∩Mn,n(V).
3. return Gpub = pk = GP−1 and sk = P.

4 A constrained linear system for decryption

In this section, we introduce a constrained linear system (Proposition 3) whose
solution allows to devise a polynomial time decryption algorithm for the public
code Cpub. Note that this trivially implies that one has designe a distinguisher
for the public code. The issue of solving this system will be addressed in the
next sections in two different ways.

Let r
def
= n − k. In the following, we overline with a hat data known to an

attacker. For instance, let Ĥpub ∈ Mr,n(Fqm) an arbitrary parity-check ma-

trix for Cpub and for α ∈ Fqm a normal element, let Ĥnorm be the matrix

(α[i+j−2])1≤i≤r,1≤j≤m. Note that

Â def
= {α[i], i = 0, . . . ,m− 1}

is a basis of Fqm over Fq. From Proposition 1, there exists a vector h ∈ Fn
qm such

that H
def
=

 h[0]

...

h[r−1]

 ∈ Mr,n(Fqm) is a parity-check matrix for the Gabidulin
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code G. Then, it is easy to see that there exists a unique S ∈ GLr(Fqm) such
that

SĤpub = HPt. (1)

We indeed have HPtGt
pub = HPt(Pt)−1Gt = HGt = 0, so that HPt is a

parity-check matrix for Cpub. Finally, any parity-check matrix and, a fortiori,

Ĥpub, is obtained with a basis transformation induced by a non-singular matrix
over Fqm . Another straightforward proposition is

Proposition 2 Let H be a parity check matrix for G under canonical form.
There exists a q-ary matrix M ∈ Mm,n(Fq) of rank n such that

H = ĤnormM.

Proof. Let h = (h1, . . . , hn) be the first row of H. We consider the matrix M
whose i-th column corresponds to the m-dimensional q-ary vector formed by
the coordinates of hi in the basis Â, for 1 ≤ i ≤ n. By construction we have
H = ĤnormM and moreover h1, . . . , hn are linearly independent over Fq by
construction of Gabidulin codes. This shows that M has full rank.

Now Equation (1) can be rewritten as

SĤpub = ĤnormT, (2)

where the matrix T
def
= MPt is full rank in Vm×n since M is a q-ary matrix of

full rank n and since P ∈ GLn(V). Finally, the following proposition shows that
any solution to the constrained linear system described by (2) indeed yields a
polynomial-time decryption algorithm.

Proposition 3 Let r = n−k and let Ĥpub be a parity-check matrix for Cpub. Let
α ∈ Fqm be a normal element and let Ĥnorm be the matrix (α[i+j−2])1≤i≤r,1≤j≤m.
From the knowledge of any non-singular matrix V ∈ Mr×r(Fqm) and W ∈
Mm×n(W) of rank n such that

VĤpub = ĤnormW (3)

and where W is Fq-vector subspace of Fqm of dimension ≤ λ, it is possible to
decrypt any ciphertext in polynomial time.

Proof. Recall that a ciphertext is c = p · Gpub + e ∈ Fn
qm , where Rk(e) =

⌊(n− k)/(2λ)⌋. Thus Ĥpubc
t = Ĥpube

t and

VĤpube
t = Ĥnorm Wet︸︷︷︸

e′t

.

Since W has dimension ≤ λ, this implies that and Rk(e′) ≤ λRk(e) ≤ ⌊(n −
k)/2⌋. Therefore by decoding in the public Gabidulin code with parity-check

matrix Ĥnorm, one recovers e′
t
= Wet. Since W has rank n ≤ m, e 7→ Wte is

one-to-one and e can be uniquely recovered. The vector p such that p ·Gpub =
c− e can also be uniquely recovered. ⊓⊔
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To conclude this section, note that a first naive solving approach would be to
enumerate all solutions (V,W) ∈ Mr×r(Fqm) × Mm×n(Fqm) to (3) and to
test if they satisfy the constraint, i.e., the W matrix has its entries in a small
dimensional Fq-vector subspace of Fqm . Even if one takes into account the fact
that there may be multiple possibilities, this effort lies beyond the capacities of
any computer even for moderate parameters. Indeed, a first difficulty is that the
solution space to (3) is an Fqm-vector space of dimension at least r2 + (m− r)n
without the imposed condition.

5 Combinatorial approach

A first idea to take advantage of this extra information is to enumerate candi-
date bases µ ∈ Fλ

qm for the secret vector space V. Any such candidate is then
completed into a basis of Fqm in which we express the coefficients of V and W
in order to write down the linear system (3) over Fq. We assume that each entry
in W belongs to the Fq-vector space spanned by µ and thus we introduce only
λmn unknowns over Fq instead of m2n for this matrix. Since we typically have
rmn ≫ λmn + mr2, this initial guess can be tested by solving the resulting
linear equations over Fq to check if they have a non-zero solution. As is usual
for this type of approach, the total cost contains two factors:

– an exponential one coming from enumerating the bases;
– a polynomial one which corresponds to the linear system solving over Fq.

Proposed algorithm. We can in fact obtain a better exponential factor by
relying on the same techniques as used in combinatorial attacks on the Rank
Decoding problem [21,17,2]. The rationale is that it is enough to know (a basis
for) a γ-dimensional vector space U which contains V for γ ≥ λ to apply the same
algorithm, provided that γ is not too large. The advantage is that it is always
easier to find such a U than to guess a basis of V directly, the extreme case being
γ = m for which we succeed with probability 1. Here, we even note that a vector
space U which contains an arbitrary multiple xV for x ∈ F∗

qm instead of simply
V is enough for our purposes. This is because any pair (xV , xW ) is a solution to
the constrained linear system. The following Proposition 4 gives the condition
on γ for our attack to succeed.

Proposition 4 Assume that γ ≥ λ ∈ N is such that

rn ≥ γn+ r2. (4)

If ν ∈ Fγ
qm is a basis for a vector space U which contains a multiple xV for

x ∈ F∗
qm , the linear system over Fq derived from (3) by writing the coefficients

of the secret matrix W in the basis ν is expected to have a solution space of
dimension 1. If ν does not correspond to such a basis, this linear system will not
have a non-zero solution with overwhelming probability.

From this proposition, we can then use the same algorithm as sketched at the
beginning of Section 5 with γ instead of λ provided that γ ≤ r(1− r/n).
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Estimated cost. The exponential factor of this approach is given by the inverse
of the probability that a fixed subspace U of dimension γ contains a subspace
of the form xV for some x ∈ F∗

qm . According to [2, B.], it can be estimated by

qm−λ(m−γ) = q−(λ−1)m+λγ . We assume that the optimal complexity corresponds
to the optimal exponential factor and thus we consider the highest possible value

for γ. By Equation (4), this leads to choose γ
def
= ⌊r(1− r/n)⌋.

The linear system solving step can be performed by applying Gaussian elim-
ination on a matrix of size rnm × (γn + r2)m over Fq. The corresponding cost
in Fq-operations can be estimated by O((γn + r2)m)ω), where ω is the linear
algebra constant. However, checking that a linear system is consistent does not
require to compute a row echelon form. We can actually apply the Wiedemann
algorithm [9], which may offer an advantage since the input matrix is sparse.
Indeed, equations have weight m(r+γ) but they contain m(r2+γn) ≫ m(r+γ)
unknowns. In particular, we lower bound the complexity of linear algebra by
considering the cost of computing the kernel of a sparse square matrix of size
m(γn + r2) corresponding to the number of unknowns with a number of non-
zero coefficients roughly equal to m2(r+γ)(γn+r2). An estimation of this lower
bound is

m3(r + γ)(γn+ r2)2 > m3r5

q-ary operations. Recalling that r = n − k and by introducing the code rate

R
def
= k/n, a lower bound of the overall complexity of this precise attack is then

given by

WSpec Inf = m3(n− k)5q(λ−1)m−λ⌊n(1−R)R⌋. (5)

Application to some parameters. Finally, we instantiate our bound with the
parameters of the WCC 2022 abstract and the ones of LowMS [1]. We believe
that the comparison is fair since they have been obtained from the content
the abstract. In Table 1, column Lower bound contains the value of the binary
logarithm of the cost of Equation (5). Our results always improve the cost of the
best structural attack. If it becomes below the one of attacks on RD, this might
lead to re-evaluate parameters in [19] and [1].

(m,n, k, λ) Security Source Lower bound Former

(128, 128, 20, 3) 128 WCC 2022 263 311

(128, 128, 44, 3) 128 WCC 2022 225 308

(59, 50, 25, 3) 128 LowMS 123 158

(67, 66, 33, 4) 128 LowMS 180 244

(83, 74, 37, 3) 192 LowMS 157 211

(79, 78, 39, 4) 192 LowMS 206 282
Table 1. Cost estimate on former parameters.
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Note however that we do not claim that the lower bound is on all possible
algorithms which would solve the same problem. The lower bound in our case
only deals with the linear algebra part when using Wiedemann’s algorithm. It
is a lower bound relatively to the state of the art of research in this field.

6 A bilinear system

Instead of guessing a basis for V or for a vector space which contains it as in
Section 5, our second approach consists in solving a bilinear system over Fq

(System 1). These former quantities attached to V still appear in the system
as an unknown block of variables but we will not fix them in the first place.

Let B̂ denote an arbitrary basis of Fqm over Fq. For an element a ∈ Fqm , we

consider a⃗ the m-dimensional vector of its coordinates over B̂, so that B̂a⃗ = a.
For µ ∈ Fqm , we also define Mµ ∈ Mm×m(Fq) the matrix of the multiplication

by µ in the basis B̂. This matrix is such that

∀a, b ∈ Fqm , b = µa, then b⃗ = Mµa⃗.

The claimed bilinear system is as follows:

System 1 Let Ĥpub = (ĥij) and let Ĥnorm = (α[i+j−2]). We consider the bilin-

ear system over Fq in the non-zero unknowns v⃗iu, b
(ℓ)
ij and linearly independent

µ⃗ℓ ∈ Fm
q , whose equations are given by

∀
{
i ∈ {1..r}
j ∈ {1..n} ,

r∑
u=1

Mĥuj
v⃗iu =

m,λ∑
u=1,ℓ=1

b
(ℓ)
ujMα[i+u−2] µ⃗ℓ. (6)

System 1 contains mrn affine equations over Fq. The linear parts involve mr2

variables v⃗iu while the bilinear parts involve λmn + λm variables b
(ℓ)
uj and µ⃗ℓ

respectively. Proposition 5 states that the solutions to this system are actually
equivalent to the ones of the constrained linear equations (3).

Proposition 5 Let Ṽ = (vij) ∈ Mr×r(Fqm) and W̃ = (wij) ∈ Mm×n(Fqm)
which satisfy the constrained linear equations (3) and let W a4 λ-dimensional

subspace of Fqm which contains the entries of W̃. Let (µ1, . . . , µλ) ∈ Fλ
qm be a

basis for W and

wij
def
=

λ∑
ℓ=1

b
(ℓ)
ij µℓ (7)

be the unique decomposision of wij in this basis. Then v⃗iu ∈ Fm
q , b

(ℓ)
ij and µ⃗ℓ are

a solution to System 1. Conversely, any solution v⃗iu, b
(ℓ)
ij , µ⃗ℓ to System 1

gives a pair of matrices Ṽ = (vij), W̃ = (wij) solution to the constrained linear
equations (3), where wij is defined by Equation (7).

4 concretely, “the”

8



If (V ,W ) stands for the genuine couple of matrices which is implicit from the

description of the scheme, we have already mentioned that any (Ṽ , W̃ )
def
=

(xV , xW ) for x ∈ F∗
qm allows to decrypt. Concretely, to reduce the number of

solutions to System 1, we will thus:

– fix µ1 to 1 and choose a basis B̂ such that b̂1 = 1;
– target a basis in systematic form, i.e.,

(1, µ2, . . . , µλ)
T def

=

 01×(m−λ)

Iλ

R′

 B̂T, (8)

where R′ ∈ M(λ−1)×(m−λ)(Fq). We cannot always guarantee to have a so-
lution in this way but the success probability is constant.

Note that similar strategies to fix variables had already been suggested in pre-
vious works, see for instance [7, §3.4] or [21, §3.1].

Solving by Gröbner bases. To solve System 1, one may be tempted to use
Gröbner basis techniques [11,12,13]. However, our practical experiments for this
method were not conclusive. A reason is that there is a great imbalance between

the two blocks of variables µ⃗ℓ and b
(ℓ)
ij since (λ − 1)(m − λ) ≪ mnλ. This also

explains why it was quite natural in Section 5 to proceed by enumeration on the
smallest block µ⃗ℓ (corresponding to an unknown basis for V) in order to obtain
linear equations.

7 Tools to analyze System 1

Even if the Gröbner basis approach seems infeasible, this section gives some back-
ground to partially explain the early steps of such an algorithm. More specifically,
in Section 8, we will characterize the first degree fall polynomials (see Definition
2) which arise in the computation.

Gröbner basis solvers [11,12,13] had already been analyzed by [13] in the
context of generic bilinear systems. However, in our case, we need to use the fact
that System 1 admits a much stronger structure than being merely bilinear.
It turns out that its analysis is much closer to the one performed in [4,23] on
bilinear modelings of MinRank and of the Rank Decoding problem. Indeed, a
common feature in such systems is that the equations can be viewed as the
entries of a matrix M = AXY , where A is a matrix of scalars and where X
and Y are matrices of unknowns x and y respectively. It is easy to see that our
equations exhibit a similar shape. Using the notation from System 1, we can
indeed write each column wj = (w1,j , . . . , wm,j) ∈ Fm

qm of the unknown W as

wT
j = Cj(µ1, . . . , µλ)

T = CjRB̂T, where Cj
def
= (b

(ℓ)
i,j )1≤i≤m,1≤ℓ≤λ and where

the rows of R ∈ Mλ×m(Fq) are the µ⃗ℓ’s for 1 ≤ ℓ ≤ λ. We then obtain
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System 0 For j ∈ {1..n}, let ĥj ∈ Fr
qm denote the j-th column in Ĥpub. There

are r bilinear equations in the entries of Ṽ , R and Cj from the equality

Ṽ ĥj

T
= ĤnormCjRB̂T. (9)

By considering all columns, we obtain an affine bilinear system with

– rn equations over Fqm .
– r2 unknowns vij over Fqm and λmn+ λm unknowns over Fq.

Note that System 1 captures exactly the same information as the system over
Fq obtained from System 0 by taking as unknowns the v⃗iu’s instead of the
vij ’s and then by projecting over the base field. We may adopt the latter for the
theoretical analysis since it is more convenient.

7.1 Algebraic background

Let us start with some necessary facts on Gröbner bases techniques applied to
bilinear systems.

Syzygies and degree falls. For a polynomial sequence F = (f1, . . . , fM ),

a syzygy is a polynomial combination
∑M

i=1 gifi = 0. Its degree is defined by
maxMi=1 (deg(gifi)). In our systems, recall that any polynomial is of the form fi =

bi+ li where bi is bilinear and li is linear. In particular, a syzygy
∑M

i=1 gibi = 0 of

degree d for (b1, . . . , bM ) typically yields an equation
∑m

i=1 gifi =
∑M

i=1 gili = 0
of degree d− 1 in the ideal. This is a particular case of

Definition 2 (Degree fall polynomial) A degree fall polynomial for a se-

quence F = (f1, . . . , fM ) is a non-zero polynomial combination
∑M

i=1 gifi whose

degree δ is strictly less than d
def
= maxMi=1 (deg(gifi)). We may also refer to it as

a degree fall from degree d to degree δ.

Such an equation will be meaningful if and only if it is not a linear combination
between previously considered equations of degree ≤ d−1. Some actually prefer
to include this extra constraint already in Definition 2. Degree fall polynomials
for affine systems play a similar role to that of syzygies for homogeneous equa-
tions. Their study is thus instrumental to understand the complexity of solving
such affine equations.

Bilinear systems [13]. Let B = (b1, . . . , bM ) ⊂ F[x,y] be the homogeneous
bilinear sequence in two blocks of variables x and y over a field F which contains
the degree 2 parts of an affine bilinear sequence F . As we have just said, degree
fall polynomials for F are directly related to syzygies for B. Let us now consider
the Jacobian matrices which are defined by
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Jacx(S)
def
=

(
∂bi
∂xj

)
1≤i≤M, 1≤j≤nx

and

Jacy(S)
def
=

(
∂bi
∂yj

)
1≤i≤M, 1≤j≤ny

.

Their entries are linear forms in F[y] and F[x] respectively. The study of these
Jacobians is motivated by the following Lemma 1, which states that generic
syzygies for S are provided by vectors in the left kernel of these matrices.

Lemma 1 Let S def
= (b1, . . . , bM ) ⊂ F[x,y] be a homogeneous bilinear sequence

and let G def
= (g1, . . . , gM ) ⊂ F[y]M be a polynomial sequence. We have

∑M
i=1 gibi =

0 if and only if G belongs to the left kernel of Jacx(S).

Proof. Let G = (g1, . . . , gM ) be an arbitrary polynomial sequence. Since we have

GJacx(S)xT =
∑M

i=1 gibi,

we obtain a syzygy from any kernel vector of Jacx(S). The converse statement
is only valid for G ⊂ F[y]M . For such a vector of polynomials, the product by
Jacx(S) is still a row vector of elements in F[y]. The only possibility for it to be
0 when multiplied by xT is that it is already 0, i.e., G ∈ ker (Jacx(S)). ⊓⊔

The following Lemma 2 gives kernel vectors for these Jacobian matrices regard-
less of their structure.

Lemma 2 (Lemma 3.1 in [13]) Let M ∈ MM×t(F[y]) be a matrix whose
entries are linear forms with t < M . Let

V J
def
= (. . . , 0︸︷︷︸

j /∈J

, . . . , (−1)ℓ+1|M |J\jℓ,∗︸ ︷︷ ︸
j=jℓ

, . . . ),

where J = {j1 < · · · < jt+1} ⊂ {1..M}. These vectors are such that V JM = 0.

Generically, the vectors V J generate the left kernel of such a matrix M , see
for instance [13, Conjecture 4.1]. Also, for a bilinear random S, the entries of
the matrix Jacx(S) are random linear forms in F[y]. Lemma 2 was thus used
in [13] to have a complete description of its left kernel. Based on this result,
they show that the degree of regularity of a generic bilinear system is such that
dreg ≤ min(nx + 1, ny + 1).

However, the bilinear equations relevant to us are not generic and we will
have to analyze the structure of the Jacobians.
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A useful lemma. Consider a matrix equation M = AXY ∈ Mp×n(F[x,y])
as in the beginning of this section, where A ∈ Mp×m(F) is a matrix of scalars
and where X ∈ Mm×r(F[x]) and Y ∈ Mr×n(F[y]) are matrices of unknowns x
and y respectively. Let us define the row vector

(
M{1},∗ . . . M{m},∗

)
formed by

the concatenation of the rows of M and similarly col(M)
def
= row(MT). Then

we have the following lemma

Lemma 3 The Jacobian matrix of a system AXY = 0p×n with respect to the
x variables is given by

Jacrow(X) (row(AXY )) = A⊗ Y T ∈ Mnp×mr(F[y]),

Jaccol(X) (col(AXY )) = Y T ⊗A ∈ Mnp×mr(F[y]).

Proof. See [4, Lemma 1]. ⊓⊔

7.2 Understanding the projection over Fq

In addition to the matrix product structure, another particularity comes from
the extension field. Indeed, recall that System 1 can be seen as the projection
over Fq of System 0 whose equations have coefficients in Fqm but where the
variables involved in the bilinear parts belong to Fq. In that respect, this system
is obtained in the exact same manner as in [3,4,6] which aim at solving the Rank
Decoding Problem and the Rank Support Learning Problem.

In the case of [3,4,6], the analysis of the full system over Fq can be boiled down
to the one of the initial system over Fqm . On our side, however, the situation is
less simple. For instance, it is not sufficient to analyze System 0 to understand
the computation on System 1 over Fq. This might be due to the following

simple fact: by choosing B̂ = A = {1, α[1], . . . , α[m−1]} to express System 0, we

actually recover the first row of Ĥnorm. This gives another interesting property
which was not present in [3,4,6].

As explained after the definition of System 0, projecting this system yields
equations over Fq which generate the same system as System 1. Let us denote
by {b1, . . . , bm} the set ofm equations over Fq obtained by projecting the bilinear
part b of an equation of System 0. Also, let us extend the Frobenius map to
polynomials by reducing modulo the field equations of the small field since all

variables belong to Fq, namely b[ℓ]
def
= bq

ℓ

mod ⟨xq
i − xi⟩i. For a matrix M =

(mij) over Fqm (or over a polynomial ring with base field Fqm), we also denote

by M [ℓ] the matrix
(
m

[ℓ]
ij

)
. Finally, in our analysis, we will use the fact that

the algebraic properties5 of both sequences (b1, . . . , bm) and (b, . . . , b[m−1]) are
the same. In particular, it will be relevant to consider the following System 2
which is equivalent to System 1.

5 syzygies, etc.
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System 2 For j ∈ {1..n}, let ĥj ∈ Fr
qm denote the j-th column in Ĥpub. For any

0 ≤ ℓ ≤ m− 1, we consider the r equations obtained by applying the Frobenius ℓ
times on Equation (9). They are given by

V [ℓ]

(
ĥj

[ℓ]

)T

= Ĥ[ℓ]
normCjR

(
B̂[ℓ]

)T

. (10)

We stress that System 2 has essentially a theoretical value. In particular, it
would not be suitable to solve it by using naive Gröbner basis algorithms since
the equations have very high degree in the vi,j variables.

8 Degree fall polynomials from Jacobians

This final section aims at studying the Jacobians associated to the bilinear parts
of our equations. We will show in Lemma 4 and Lemma 5 that their kernels
provide two types syzygies in degree λ + 2, hence degree fall polynomials of
degree λ+1 for the original affine equations. Moreover, our experiments suggest
that these are the only ones at this degree and that these are the first, i.e., no
one appear at a lower degree.

Interestingly enough, we do not need to wait the degree λ+2 step of a Gröbner
basis algorithm on System 0 or System 1 for a graded order to obtain these
polynomials. They can indeed be pre-computed as maximal minors of public
matrices of linear forms. In that respect, the situation is quite similar to the
one of algebraic attacks on the Rank Decoding problem [21,4,6,5]. For instance,
the so-called MaxMinors equations introduced in [4] were originally obtained as
degree fall polynomials for the former bilinear modeling of Ourivski-Johansson
[21] but they can also be computed directly.

For the sake of simplicity, we give the results for the non-specialized version
of our systems. They can be easily adapted if we fix µ1 to 1 and if we choose a
matrix R in systematic form as presented above.

8.1 Jacobian with respect to the R variables

We start from the Jacobian matrices with respect to the block of R variables.
We will see that their structure is similar to the one encountered in [4, §5.1]. As
in their work, we also observed that all degree falls over Fq from these matrices
were obtained by projecting over Fq degree fall polynomials whose coefficients
are in Fqm . This means that we can focus on System 0 rather than on System
1 for this part of the analysis, the situation being different in Section 8.2.

If we restrict ourselves to the bilinear parts in System 0, a direct application

of Lemma 3 for 1 ≤ j ≤ n with X
def
= R, A

def
= ĤnormCj and Y

def
= B̂T yields

Jacrow(R)(row(ĤnormCjRB̂T)) = ĤnormCj ⊗ B̂. (11)
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The full system can also be viewed as the following matrix product

(
In ⊗ Ĥnorm

)C1

...
Cn

RB̂T,

and thus we obtain in the same manner

Jacrow(R)

(
In ⊗ Ĥnorm

)C1

...
Cn

RB̂T



=

ĤnormC1

...

ĤnormCn

⊗ B̂. (12)

Recall from Lemma 1 that the kernel of such Jacobians provides syzygies for
the bilinear parts whose coefficients are polynomials in the Cj variables. In our
case, we can obtain

Lemma 4 In System 0, there are at least
(

nr
λ+1

)
degree falls from degree λ+ 2

to λ + 1. Indeed, some of them are already given by the maximal minors of the
matrix

M def
=


Ṽ ĥ1

T
ĤnormC1

...

Ṽ ĥn

T
ĤnormCn

 . (13)

Among these equations, we may find in particular the maximal minors of the
matrix

Mj
def
= M{1+r(j−1)..rj},∗ =

(
Ṽ ĥj

T
ĤnormCj

)
, (14)

for 1 ≤ j ≤ n.

Even before giving the proof of Lemma 4, it is easy to see from Equation (9) that

all Mj matrices are not full-rank (a fortiori, M) if and only if (Ṽ ,C1, . . . ,Cn)
are components of a solution to System 0.

Proof. (Analogous to [4]). We do the proof for a single matrix Mj . Using Equa-

tion (11), it is sufficient to look at the left kernel of ĤnormCj . We then compute
the kernel vectors V J of Lemma 2 for this matrix of linear forms, namely

V J
def
=

 0︸︷︷︸
j /∈J

, . . . , (−1)ℓ+1
∣∣∣ĤnormCj

∣∣∣
J\{j},∗︸ ︷︷ ︸

j=jℓ∈J

, . . .

 , #J = λ+ 1, J ⊂ {1..r}.
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The degree falls are then obtained by multiplying these vectors by the linear

parts of the equations, i.e. (V J) · Ṽ ĥj

T
. Finally, the latter actually coincides

with the maximal minor |Mj |J,∗ using Laplace expansion along the first column.

The reasoning is similar for M if we replace Equation (11) by Equation (12). ⊓⊔

Bilinear structure. The degree fall polynomials given by Lemma 4 have degree
λ + 1. Moreover, Laplace expansion along the first column of M in Equation
(13) shows that these equations are bilinear in the entries of Ṽ (which belong
to Fqm) and in the maximal minors of the matrix

D
def
=

C1

...
Cn

 ,

whose coefficients are in Fq. Similarly, the maximal minors of Mj are simply

bilinear in the entries of Ṽ and in the
(
m
λ

)
maximal minors of Cj . Such a

structure had already been encountered in the bilinear systems of [5,6] to attack
the Rank Decoding Problem and MinRank. In particular, note that the newly
introduced bilinear modeling of [5] ([5, Modeling 4]) has exactly the same shape
as it involves a block of linear variables over the extension field Fqm and a block
of minor variables over Fq.

Projection over Fq. In System 1, we observed m
(

nr
λ+1

)
(linearly independent)

degree falls from degree λ+ 2 to degree λ+ 1 which involve these variables6 in
our experiments. Clearly, they should coincide with the projection over Fq of
the degree fall polynomials described in Lemma 4 for System 0. To project the
equations, note that we also have to express the entries of Ṽ over Fq. This yields
r2m variables v⃗iu and thus r2m

(
mn
λ

)
degree 2 monomials among these degree

fall polynomials (but only r2m
(
m
λ

)
if we restrict ourselves to one matrix Cj).

8.2 Jacobian with respect to the Cj variables

Contrary to the systems of [4,5,6] to solve the Rank Decoding Problem, a speci-
ficity of System 1 is that the Jacobian with respect to the other block of
variables also yields degree fall polynomials of low degree, for instance λ + 1.
One cannot grasp them by studying System 0 only.

Absence of degree falls for System 0. First, let us explain why we do not
expect degree fall polynomials of small degree coming from this Jacobian for
System 0. Note that the set S of bilinear parts of the equations from this

system can be written as S def
= ∪n

j=1Sj , where the polynomials in Sj are defined

6 Section 8.2 will give another type of degree falls in the same degree

15



as the entries of the matrix ĤnormCjRB̂T at the right hand side of Equation (9).

The RB̂T part being independent of j, we already obtain Jacrow(Cj) (row(Sj)) =
Jacrow(C1) (row(S1)) for any j and thus

Jacrow(C) (row(S)) = In ⊗ Jacrow(C1) (row(S1)) .

Then, to compute Jacrow(C1) (row(S1)), we apply Lemma 3 once again this time

with X
def
= Ĥnorm, A

def
= C1 and Y

def
= RB̂T. This yields

Jacrow(C1) (row(S1)) = Ĥnorm ⊗ B̂RT. (15)

This matrix is of size r×mλ and its entries are linear forms in the R variables.
However, we cannot apply Lemma 2 since r < mλ. We expect a trivial left kernel
for this matrix.

Additional degree falls for System 1. We analyze the situation over Fq

by studying the System 2 introduced in Section 7.2, which contains the same
information as System 1. From now on we fix B̂ = A. As in the previous section,
we can clearly reason in a similar way for all indexes 1 ≤ j ≤ n. For 1 ≤ j ≤ n
and 0 ≤ ℓ ≤ m − 1, let us consider Equation (10) and for 1 ≤ u ≤ r, let us
denote by gu,ℓ,j the bilinear polynomial

gu,ℓ,j
def
=

(
Ĥ[ℓ]

norm

)
u,∗

CjR
(
A[ℓ]

)T

=
(
A[ℓ+u−1]

)
CjR

(
A[ℓ]

)T

.

We also keep track of the corresponding linear part Lu,ℓ,j
def
= V [ℓ]

u,∗

(
ĥj

[ℓ]

)T

, so

that the whole equation reads gu,ℓ,j − Lu,ℓ,j = 0. We then group the equations

according to the value of v
def
= u+ℓ−1 mod m. We obtain the following equality,

where all ℓ indexes are modulo m,

(
L1,v,j L2,v−1,j . . . Lr,v−r+1,j

)
=

(
g1,v,j . . . gr,v−r+1,j

)
ĥj

[ℓ]
(
V [ℓ]

)T

= A[v]CjR

((
A[v]

)T ...
(
A[v−r+1]

)T
)

= A[v]CjR
(
Ĥ

[v]
inv

)T

,

and where

Ĥinv
def
=

 A
. . .

A−[r−1]

 ∈ Mm,r(Fqm).

Using Lemma 3, we then compute the Jacobian matrix of these equations with

respect to the Cj variables with A
def
= A[v], X

def
= Cj and Y

def
= R

(
Ĥ

[v]
inv

)T

.

This gives

Jacrow(Cj)

(
g1,ℓ1,j . . . gr,ℓr,j

)
= A[v] ⊗ Ĥ

[v]
invR

T.
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We can continue as above to obtain Lemma 5, whose proof is analogous to the
one of Lemma 4.

Lemma 5 For any fixed column hj in Hpub, for 0 ≤ ℓ ≤ m − 1 and for a
modulus 0 ≤ v ≤ m− 1, there are

(
r

λ+1

)
degree falls from degree λ+ 2 to λ+ 1

which are given by the maximal minors of the matrix

Nj,ℓ,v
def
=

ĥj
[ℓ]

(
V [ℓ]

)T

R
(
Ĥ

[v]
inv

)T

 , (16)

where

Ĥinv
def
=

 A
. . .

A−[r−1]

 .

By gathering the equations for all columns hj in Hpub, all indexes ℓ and all
moduli v, we obtain a system of nm2

(
r

λ+1

)
polynomials of degree λ+1. Similarly

to the above, these polynomials have a bilinear structure: they are bilinear in
the entries of the V [ℓ]’s and in the maximal minors rT of R. Coming back to the
System 1 over Fq that we want to solve, this will correspond to an extra set of
nm2

(
r

λ+1

)
polynomials of degree λ + 1 which are produced in degree λ + 2 by

the computation. They can also be seen as an affine bilinear system involving
mr2

(
m
λ

)
quadratic monomials.

8.3 Approach based on degree fall polynomials

Instead of simply solving the original bilinear system, our results suggest another
method by focusing on a system of degree fall polynomials of degree λ + 1. It
would consist of the one given by Lemma 4, Lemma 5 or a subset of such equa-
tions. As we have just seen, this approach would benefit from the compactness of
these polynomials since they have a specific bilinear structure. Its analysis is left
for future work, including the study of linear dependencies and the possibility
of using hybrid techniques.

In the case of the Rank Decoding Problem, solving the system given by the
MaxMinors equations [6] lead to a significant improvement compared to attacks
based on Ourivski-Johansson [21,4]. In our case, however, the same will not
necessarily hold. First, the ratio between equations and variables in Lemma 4
or Lemma 5 seems less favorable than in [6]. Second, our experiments suggest
that the degree falls polynomials in degree λ + 2 do not mark the end of the
computation on the original system in general, whereas it was often the case for
the Rank Decoding Problem [18,4].

9 Conclusion

In the paper we presented two different approaches to distinguish a public-key
from random.
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The combinatorial approach seems to have reached its limits as is the case for
the problem of decoding in rank metric and we do not expect significant gain (say
non-polynomial improvements on the complexity) from further improvements,
except if there is a major theoretical breakthrough, but who would probably also
extend to the problem of decoding in rank metric.

Concerning the algebraic approach, it is more difficult to ascertain that no
significant improvements are to be expected. Namely, as is the case for solving
non-linear system, a smarter approach to rewrite the system could lead to major
improvements. Anyway it is certainly an interesting field of research to obtain a
finer analysis of system solving.
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