
A Hardware-Software Co-Design for the Discrete
Gaussian Sampling of FALCON Digital Signature

Emre Karabulut
North Carolina State University

NC, USA
ekarabu@ncsu.edu

Aydin Aysu
North Carolina State University

NC, USA
aaysu@ncsu.edu

Abstract—Sampling random values from a discrete Gaussian
distribution with high precision is a major and computationally-
intensive operation of upcoming or existing cryptographic stan-
dards. FALCON is one such algorithm that the National Institute
of Standards and Technology chose to standardize as a next-
generation, quantum-secure digital signature algorithm. The
discrete Gaussian sampling of FALCON has both flexibility and
efficiency needs—it constitutes 72% of total signature generation
in reference software and requires sampling from a variable mean
and standard deviation. Unfortunately, there are no prior works
on accelerating this complete sampling procedure.

In this paper, we propose a hardware-software co-design
for accelerating FALCON’s discrete Gaussian sampling sub-
routine. The proposed solution handles the flexible computations
for setting the variable parameters in software and executes
core operations with low latency, parameterized, and custom
hardware. The hardware parameterization allows trading off
area vs. performance. On a Xilinx SoC FPGA Architecture,
the results show that compared to the reference software, our
solution can accelerate the sampling up to 9.83× and the full
signature scheme by 2.7×. Moreover, we quantified that our
optimized multiplier circuits can improve the throughput over
a straightforward implementation by 60%.

Index Terms—discrete Gaussian sampling, hardware-software
co-design, post-quantum cryptography, digital signatures, FPGA.

I. INTRODUCTION

The security of the current large-scale encryption infras-
tructure is based on the difficulty of solving mathematical
problems such as integer factorization [1] and discrete log-
arithms [2]. Although these problems are conjectured to be
hard for classical computers, quantum algorithms are proven
to solve them exponentially faster [3], [4]. This poses a serious
risk at the core of existing security systems, calling for new
cryptographic solutions that can survive the quantum threat.

Recently, the National Institute of Standards and Technol-
ogy (NIST) has announced algorithms to be standardized for
the new, quantum-safe, public-key encryption/establishment
and digital signature applications [5]. A major push has just
started for transitioning to post-quantum cryptography led by
NIST, DHS, Microsoft, Cisco, and Amazon Web Services
among others. A vital roadblock to transitioning to practice
is efficient implementation, which is especially important for
real-time, embedded/edge, and battery-operated devices.

FALCON is one of the algorithms that NIST chose
for the post-quantum standards. FALCON uses lattice-based

cryptography—a (relatively) new family of cryptographic sys-
tems that are based on the short integer solution (SIS) over
NTRU lattices [6]. Lattice cryptography includes new types of
computations that are absent in earlier cryptographic standards
such as RSA and ECDSA. One of these building blocks is
discrete Gaussian sampling needed to create the construction
of the trapdoors. Having such high-precision Gaussian distri-
butions reduces the signature size and, indeed, FALCON was
explicitly chosen for its small signature sizes.

Unfortunately, the signature size savings of discrete Gaus-
sian sampling comes at the expense of computing overhead.
This is especially true for FALCON: for the reference soft-
ware [6] provided in the NIST submission package, sampling
can account for 72% of the total signing execution time1.
Moreover, the sampling in FALCON is different from other
lattice-based cryptographic schemes: it requires sampling from
variable means and variances. Therefore, a practical imple-
mentation of FALCON’s sampling procedure requires both
efficiency and flexibility.

In this work, we propose the first accelerated implementa-
tion of FALCON’s discrete Gaussian sampling. Specifically,
we designed and implemented a hardware-software co-design
that can address both the flexibility and efficiency needs.
We partition the sampling in such a way that the hardware
executes the core operations of sampling (i.e., sampling over
the cumulative distribution table, exponent calculation, and
rejection sampling) in a configurable manner, while the soft-
ware performs floating-point divisions. The custom hardware
consists of a novel, fully-pipelined and high-throughput dat-
apath. Moreover, the custom hardware includes design-time
parameters that change the multiplication pipeline stage, al-
lowing a trade-off between area vs. performance. The software
runs on an ARM Cortex-A9 within the Xilinx Zynq SoC
FPGA architecture and communicates with the hardware over
the AXI bus. The results show that, compared to the NIST
reference software [6] compiled on the same platform, our
solution can accelerate the sampling up to 9.833×.

The rest of the paper is organized as follows. Section II
provides the background on the discrete Gaussian sampling
and its special use in FALCON digital signature algorithm.

1This obviously changes with respect to the architecture. For implementa-
tion result details, please check Section V.

1

Algorithm 1 FALCON Key Generation Algorithm [6]
Input: A monic polynomial ϕ ∈ Z[x], a modulus q
Output: A secret key sk and a public key h

1: f, g ← Gaussian CDT Sampling()
2: F,G← NTRUSolve(f, g, ϕ, q)

3: B ←
[
g −f
G F

]
4: B̂ ← FFT (B)
5: G← B̂ × B̂∗ ▷ × represents matrix multiplication
6: T ← ffLDL∗(G)
7: for each leaf of T do
8: leaf.value← σ/

√
leaf.value

9: sk ← (B̂, T)
10: h← gf−1mod(q)
11: return sk, h

Section III describes the target system’s architecture and
the rationale behind our hardware-software partitioning. Sec-
tion IV discusses our custom hardware design on the FPGA.
Section V presents the implementation results. Section VI
explains related aspects and future extensions, and Section VII
concludes the paper.

II. BACKGROUND

This section provides background information about FAL-
CON and its discrete Gaussian sampling sub-routines.

A. Discrete Gaussian Sampling

Gaussian distribution (Dσ,µ) is determined with a standard
deviation σ and a mean (center) µ parameters. The statisti-
cal distance from the ideal distribution is determined by a
precision parameter λ in the discrete Gaussian distribution.
FALCON signature scheme samples its secret coefficients over
a discrete Gaussian distribution [6]. Coefficient values range
between −τσ and τσ where τ is

√
λ× 2× ln 2. The prob-

ability of coefficient value x is defined over the distribution
and this probability calculated with 1

σ
√
2π

e(x−µ)2/2σ2

.

B. FALCON Post-Quantum Digital Signature Scheme

FALCON is a post-quantum, lattice-based, hash-and-sign
signature scheme [6]. FALCON signature scheme has three
main steps: key generation, signing, and signature verifica-
tion. FALCON requires sampling during key generation and
signing to generate its secret coefficients; hence, we omit
the discussion about the verification procedure in this work.
Unlike other NIST PQC finalists [7], [8], FALCON samples its
secret coefficients over discrete Gaussian distributions instead
of uniform distributions.

Algorithm 1 shows FALCON’s key generation that com-
putes the secret key sk and the public key h. The key
generation algorithm first samples f and g polynomials over a
Gaussian distribution and then generates the secret key by us-
ing these two polynomials. Since the key generation algorithm
works with constant standard deviation σ and the center µ, the
hardware implementation challenges are limited. Therefore,

Algorithm 2 FALCON Signature Generation Algorithm [6]
Input: a message m, a secret key sk, a bound β2

Output: a signature sig of m
1: r ← {0, 1}320 uniformly
2: c← HashToPoint (r||m)
3: t← (−1

q FFT (c)⊙ FFT (F), 1
qFFT (c)⊙ FFT (f))

4: do ▷ ⊙ represents FFT multiplication
5: do
6: z ← ffSampling (t, T)

7: s← (t− z)

[
FFT (g) −FFT (f)
FFT (G) −FFT (F)

]
8: while s2 > [β2]
9: (s1, s2)← invFFT (s)

10: s← Compress(s2, 8 · sbytelen− 328)
11: while s =⊥
12: return sig = (r, s)

Algorithm 3 BaseSampler [6]
Input: a 72-bit uniformly sampled random number u
Output: a sampled z0 ← Dσbase,0

1: z0 ← 0
2: for i= 0, ..., 17 do
3: if u < RCDT[i] then
4: z0 ← z0 + 1
5: return z0

the prior work [9] that presents a hardware Gaussian sampler
implementation for FALCON’s key generation procedures can
be used to this end.

Algorithm 2 illustrates FALCON’s signing procedure, which
takes in a message m, the signing key sk, and then returns
a signature (r and s). The signing algorithm has three main
subroutines: HashToPoint, ffSampling, and Compress. In the
HashToPoint subroutine, the algorithm first concatenates the
message with a uniformly generated polynomial and then
hashes it to the polynomial c. Compress subroutine reduces the
signature size with a simple encoding mechanism. ffSampling
subroutine generates the signature from the secret key and the
digested message. FALCON’s specification document [6] calls
this subroutine the heart of the signature generation.

ffSampling samples signature coefficients over Gaussian
distribution where the distrubution σ and µ parameters defined
with coefficients of T and t polynomials. Since ffSampling
works with dynamic σ and µ parameters, each coefficient of
the signature is likely to be sampled over different Gaussian
distributions. Although the software’s flexibility allows for the
implementation of a discrete Gaussian sampler with dynamic σ
and µ parameters, efficient hardware acceleration of this sam-
pler is significantly challenging—there was no such hardware
to date at the time of this publication.

C. Sampling in FALCON

FALCON has two sampling routines, one for the key
generation and the other for the signature generation. The

2

Algorithm 4 SamplerZ [6]
Input: Floating point values µ, σ′ and σmin

Input: Constant σinv = 1/(2σ2
max)

Output: a sampled coefficient
1: s← ceil(µ)
2: r ← µ− s
3: ccs← σmin/σ

′

4: dss← 1/(2 · σ′2)
5: while (1) do
6: z0 ← BaseSampler(u) ▷ u is uniformly random

number
7: b← OneBitUniformRnd()
8: z ← b+ (2 · b− 1)z0
9: x← ((z − r)2) · dss− z20 · σinv

10: if (BerExp(x, ccs)) then
11: return z + s

key generation requires a sampling operation over Gaussian
distribution with constant σ and µ parameters. By contrast,
signature generation requires a Gaussian distribution structure
that needs varying σ and µ parameters. Therefore, FALCON
employs a sampling strategy that comprises two levels of
sampling. The first layer samples a value from the base
distribution that has constants σ and µ parameters. The second
layer rejects or accepts the sampled value based on the second
distribution that satisfies varying σ and µ requirements.

Algorithm 3 shows the first layer of the sampling algorithm
used in FALCON, where the input is a 72-bit uniform random
number (u) and the output (z0) is a 5-bit integer from the
distribution Dσbase,0. This algorithm requires a table that stores
pre-computed reverse cumulative distribution values (stored
in the RCDT array, line 3). The algorithm first compares a
uniform random number against the table and then returns the
index of the first entry that is larger. Since all distribution
values are pre-calculated and then stored in a table, this
algorithm does not need to perform the exp() calculation.

Algorithm 4 presents the SamplerZ method that includes
two levels of samplings and provides a discrete distribution for
the varying σ and µ. This algorithm calls first BaseSampler
at step 6 to sample a non-uniform value over the described
Gaussian distribution that has constant σ and µ parameters.
Second, it rejects or accepts the sampled value based on the
second sampling that is performed by the BerExp algorithm
at 10. Note that the SamplerZ function is called many times
during FALCON signature scheme with varying inputs (µ and
σ′). Therefore, the variables s, r, ccs, and dss are calculated
at run-time. These calculations require floating point arith-
metic. Although FALCON uses only BaseSampler during
the key generation, FALCON calls SamplerZ, including both
BaseSampler and BerExp algorithms, during the signature
generation.

The second layer of the sampling procedure needs to work
with dynamic floating-point operations. Algorithm 5 shows the
second layer of the sampling procedure. Although this method
requires performing the exp() calculation, FALCON reduces

Algorithm 5 BerExp [6]

Input: Floating point values x, ccs ≤ 0
Output: 1-bit sampling result

1: s ← x · ln(2)−1

2: r ← x− s · ln(2)
3: if s > 63 then
4: s← 63
5: z ←(2·ApproxExp(r, ccs) - 1) >> s
6: i← 64
7: do
8: i← (i−8)
9: urnd← OneByteUniformRnd()

10: w ← urnd− ((z >> i)&0xFF)
11: while (w == 0 && i > 0)
12: if w < 0 then
13: return True
14: else
15: return False

Listing 1: FALCON SamplerZ reference implementation [6]. This
also shows the partitioning of the reference implementation for
HW and SW.

1 Zf(sampler) (void *ctx, fpr mu, fpr isigma){
2 //===================SW=====================
3 sampler_context *spc;
4 int s, z0, z, b;
5 fpr r, dss, ccs, x;
6 spc = ctx;
7 s = (int)fpr_floor(mu);
8 r = fpr_sub(mu, fpr_of(s));
9 dss = fpr_half(fpr_sqr(isigma));

10 ccs = fpr_mul(isigma, spc->sigma_min);
11 //===================HW=====================
12 for (;;) {
13 z0 = Zf(gaussian0_sampler)(&spc->p);
14 b = (int)prng_get_u8(&spc->p) & 1;
15 z = b + ((b << 1) - 1) * z0;
16 x = fpr_mul(
17 fpr_sqr(fpr_sub(fpr_of(z), r)),
18 dss);
19 x = fpr_sub(x,
20 fpr_mul(fpr_of(z0 * z0),
21 fpr_inv_2sqrsigma0));
22 if (BerExp(&spc->p, x, ccs))
23 return s + z;
24 }
25 }

the computation complexity with ApproxExp implementation
(see step 5 in Algorithm 5). ApproxExp approximates the
exp() with a pre-computed table. Algorithm 5 returns a one-
bit sampling result. This one-bit is indeed the decision bit to
accept or reject the BaseSampler output. The SamplerZ
re-iterates the steps between 6 and 10 until the first sampled
value is accepted by BerExp’s output.

III. SYSTEM ARCHITECTURE AND HARDWARE-SOFTWARE
PARTITIONING

FALCON’s sampling consists of floating-point addition,
multiplication, and division. These operations are expensive

3

Fig. 1: The proposed architecture for FALCON’s sampling operation.
The architecture has two partitions that provide a flexible environment
where the software and hardware can collaborate and run parallel.

to implement because of the large operands. Thus, FAL-
CON’s C reference implementation (software) demonstrates
a sampling mechanism over large integer values. Listing 1
shows FALCON’s SamplerZ reference implementation and
our partitioning into hardware and software in our system.
The sampling requires floating point-based division operations
(lines 9 and 10). The reference implementation approximates
the operations over large integers r, dss, ccs, and x using fpr
which is defined with a 64-bit int data type. The algorithm
has also varying input that increases hardware implementation
complexity and that requires flexibility in the implementation.
In addition to the division, the sampling operation needs
floating point multiplications in samplerZ (lines 16 and 20)
as well as in BerExp. There are also memory read operations
in gaussian0 sampler. Unlike divisions, they are relatively
easier to implement on the hardware but these are time-
consuming operations in software since the operands are large
numbers.

We partitioned the sampling operations into hardware and
software workloads to increase throughput while maintaining
flexibility. Our partitioning aims to increase parallelism in the
sampling operation. The key decider in our hardware-software
partitioning is the separation of floating point divisions; while
floating point arithmetic is mapped to software (since they
already can execute in highly customized ALU datapath
in the processor), other computational units are accelerated
in custom-designed hardware. The software part consists of
floating point-based division and parameter initializations and
covers steps between 7 and 10 in Listing 1. The hardware
partitioning covers the remaining steps (12 to 23).

Although there are input and output-based data dependen-
cies between the software and hardware groups, there is no
intermediate data dependency. The software and hardware
operation can thus execute in parallel. As a result, sharing the
sampling computation workload among hardware and software
can accelerate the sampling operations. While the hardware is
working on the first call’s while loop, the software can execute
s, r, css, and dss for the next call.

We use a Xilinx SoC FPGA that enables running both

Fig. 2: Software and hardware building blocks of SamplerZ sub-
routine. The software (blue) executes floating-point-divisions, while
the hardware part (green) performs BerExp and BaseSampler.

software and hardware implementations in a single SoC.
Figure 1 presents the SoC FPGA architecture and the proposed
design’s block diagram. Our design utilizes the PS part for
performing the operations that requires a flexible architecture
such as the floating point-based division, whereas the PL part
has dedicated hardware designs to accelerate the operations.
Our design has two independent FIFOs that synchronize the
software and hardware executions and also enable running in
parallel. The software implementation generates the inputs of
the hardware accelerator and sends them via RX FIFO. The
hardware design sends the output of the SamplerZ algorithm
to the software with TX FIFO.

IV. HARDWARE DESIGN

The proposed hardware design has one accelerator core
for SamplerZ and FIFO data paths. SamplerZ’s acceler-
ator has three sub-modules: BaseSampler, BerExp, and
ApproxExp. Figure 2 illustrates the SamplerZ algorithm’s
major building blocks and their hardware-software partitions.
The software performs initial floating point-based divisions
for ccs and dss and parameter initializations for r and s. The
hardware accelerator executes BerExp, BaseSampler, and
ApproxExp that require heavy multiplications and memory
read operations. For example, the software would sequen-
tially read table entries in the reference BaseSampler, and
ApproxExp algorithms, while the hardware can read the
entire table and perform all comparisons in one clock cycle.
The figure also shows SamplerZ’s four data paths where the
hardware parallelizes the operations.

A. A Half Gaussian Sampling with BaseSampler

We implement the BaseSampler algorithm with a pre-
computed reverse cumulative distribution (RCDT) table in
hardware, which is carried out in software in FALCON’s ref-
erence implementation. Figure 1 outlines the BaseSampler
implementation in samplerZ module. It has one register file
to store RCDT and one comparison circuit. The input of the
design is a 72-bit uniform random number and the output is
an unsigned integer ranging from 0 to 17.

The design first receives the 72-bit number and then per-
forms a parallel comparison between the input and each entry

4

Fig. 3: The block diagram of BerExp sub-routine. It was fully
implemented on the hardware.

of RCDT. The last step of the design is to count and return
the number of entries that are larger than the given input.
The software implementation may require multiple cycles
to execute a single comparison between the input and one
entry of RCDT. By contrast, our hardware implementation can
complete the entire table comparison in one cycle.

B. Rejection Sampling with BerExp

The BerExp algorithm returns a single bit and the prob-
ability of returning 1 is css · exp(−x). The css value is
a floating-point number and defines the scaling factor for
each σ′ value. The variable x is also a floating-point input
that is calculated with the BaseSampler’s sampled value.
Although the BerExp does not have a floating-point division,
it requires floating-point addition and multiplication. FALCON
documentation provides the minimum and maximum ranges
of the SamplerZ inputs. Therefore, we can simply extend
the floating-point numbers with 272 and can work over their
integer values with 72-bit precision.

Figure 3 illustrates the BerExp algorithm’s computations.
Algorithm 5 shows that the input x first goes through a
floating-point division at the first step with ln(2) to obtain
s. Since ln(2) is a constant value, we calculate its inverse
(ln(2)−1) and then extend it with 272 at the compile time.
After this pre-calculation, the first floating-point division op-
eration simply becomes a 72-bit unsigned multiplication. The
first multiplication result is 144 bits. However, we do not
reduce this multiplication result to 72 bits before the next
multiplication to preserve the precision.

BerExp sampling design also has the ApproxExp mod-
ule to compute an approximation of 263 · css · exp(−x).
FALCON’s NIST submission package already provides a C
implementation of the ApproxExp module. This module
computes the approximation over a pre-calculated table (C),
like BaseSampler. The implementation iteratively performs
64-bit multiplications between table entries and the output of
the previous multiplication. The first multiplication happens
between the input x and the first table entry. Table C has 13
entries and therefore ApproxExp module initially requires
13 multiplications and then obtains 263 · exp(−x). The final
step of ApproxExp is a multiplication between ccs and
263 · exp(−x).

(a) A schoolbook multiplication with four stages.

(b) One stage multiplication with 3 DSP48E multipliers.

Fig. 4: A multiplication representation for 72-bit and 68-bit unsigned
operands. The multiplication is constructed with 17-bit and 24-bit
multiplication steps due to the input size constraint of the Xilinx
DSP48E1 block.

C. Optimizations in Large Multiplications

FALCON’s Gaussian sampling algorithm requires large
integer multiplications. The ApproxExp function, for in-
stance, requires 64-bit integer multiplications (14 times) to
approximate the exponent operation in FALCON’s reference
implementation. In addition, FALCON’s Gaussian sampling
algorithm might call this function more than once to sample
a single coefficient based on the number of rejected samples.
BerExp and SamplerZ are other steps that require large in-
teger (≥ 72-bit) multiplications, and they may also call several
iterations of these multiplications based on the rejection rate.

If FALCON’s Gaussian sampling is designed without op-
timization, dedicated multipliers are separately allocated for
each multiplication2. This implementation approach results in
116 DSP48E1 utilization because a single DSP48E1 block
can multiply at most signed 18-bit with 25-bit variables (or
unsigned 17-bit with 24-bit variables) [10]. Hence, large inte-
ger multiplication mandates the cascade of several DSP48E1
blocks. Moreover, this unoptimized design operates with low
frequencies due to long critical paths caused by the cascaded
DSP48E1 blocks. Our proposed design offers a pipelined mul-
tiplier structure and optimizes DSP utilization. Therefore, the
proposed design operates with a significantly higher frequency.

We first exemplify large integer multiplication with multi-
stage 24-bit and 17-bit multiplications using DSPs with maxi-
mum utilization. Figure 4a illustrates the product operation of
72-bit and 68-bit operands with the schoolbook multiplication
method. The first operand (A) is 72-bit and split into 3 parts
with an equal length of 24-bit, while the second operand (B)
is split into 17-bit vectors. First, the operand A is multiplied

2Simply, the product of A and B is implemented as A ∗B in HDL.

5

Fig. 5: The proposed multiplier design. This design has multi-stage pipelining that multiplies 73-bit and 69-bit signed operands only with
3 DSP48E1 instead of 16 DSP48E1 blocks. Its latency is 8 cycles and throughput is 1 multiplication per 4 cycles.

by each 17-bit vector of the second operand (B); hence, each
stage consists of a 72-bit by 17-bit multiplication. Second,
each block multiplication result is shifted left accordingly. The
final result is the sum of each stage output.

Figure 4b presents a multiplication block for the first stage
of the aforementioned schoolbook multiplication method using
three DSP48E1s. Each DSP48E1 shares the operand A with
24-bit fractions, while their other operands are identical, the
LSB 17-bit of operand B. Similar to the previous instance,
the final result is obtained by first shifting and then summing
each multiplication output. The complete hardware, therefore,
requires 12 DSP48E1 multiplications, 11 shift operations, and
5 additions to multiply A by B.

Figure 5 shows the proposed pipelined large integer multi-
plier design. This hardware multiplies two signed operands,
one of which can have a maximum size of 73 bits while
the other can have a maximum size of 69 bits. The design
has a fully-pipelined architecture with 8 stages and thus its
latency is 8 cycles but its throughput is one multiplication
per 4 cycles. The presented multiplier first converts the two
signed operands to unsigned operands before the multiplica-
tion operation. Second, it splits the first operand (72-bit) into
3 24-bit groups and the second operand (68-bit) into 4 17-bit
groups to fully utilize the DSP48E1 block. Figure 4a shows
each stage of the multiplication is executed between the single
but different 17-bit vector of B and the second operand A. To
sort B’s vectors in a cyclic order, the design pipelines each
vector with a different number of registers and also selects the
corresponding B’s vector with a cycle count. For example,
the LSB 17-bit of operand B arrives at the DSP48E1 units
after the first cycle, while the next 17-bit arrives at the next
clock cycle. However, A’s vectors are pipelined with the same
number of registers since A should remain stable every 4
cycles. Our design utilizes enabled registers and therefore the
implementation requires fewer registers for the pipelining. For
example, A’s vectors are pipelined with one stage of register
rather than 4 stages and the register enable signal is activated
after every 4 cycles.

The DSP48E1 blocks generate the output of one of the
stages in schoolbook multiplication as shown in Figure 4a.

TABLE I: HW utilization of the proposed solution

Task Module LUT FF DSP BRAM
Base Design

SamplerZ
2,185 676 116 0

Perf. Opt. Design 3,055 1,960 9 0
Area. Opt. Design 2,670 865 3 0

Sync+Communication AXI FIFO 592 632 0 2
Communication AXI Periph 405 587 0 0

Reseting rst sys 16 23 0 0

Then, the outputs are shifted accordingly before going through
the adder circuits. Adder 1 executes the addition operation to
execute the model described in Figure 4b, while the second
adder is used to perform the addition shown in Figure 4a. The
final step of design is the sign extension operation that assigns
the corresponding sign to the multiplication product. If these
two signed operands’ multiplication is implemented with a
single asterisk (∗), the implementation requires 16 DSP48E1
blocks, and that increases DSP48E1 usage by 5.33×.

Our multiplier design also provides design-time flexibility
with different area-performance settings. The default con-
figuration uses our performance-optimized design which is
described in detail above. If the area-optimization flag is
set, the multiplier design works with a single DSP48E1 but,
it reduces the throughput and performs one multiplication
per 15-cycle. In addition, one multiplication operation in the
samplerZ algorithm requires two operands larger than 69-
bit but smaller than 73-bit. Therefore, we implemented an
additional multiplier that has a 10-stage pipelined design with
3 DSP48E1s.

V. IMPLEMENTATION RESULTS

We used Xilinx Zedboard XC7Z020 from the Zynq-7000
SoC family as our platform. This board has an SoC FPGA,
which includes an ARM processor for software execution and
a programmable logic part for hardware acceleration. We first
designed and functionally verified the proposed SamplerZ
and created an AXI-Stream wrapper on it. Second, we hooked
the wrapped SamplerZ to FIFOs and Zynq processor as
described in Section III. Then, we tested the proposed im-
plementation and measured its performance with FALCON’s
implementation’s test vectors [11].

Table I shows the area utilizations of each IP block as well
as their tasks in our block design. We have one baseline design

6

TABLE II: Performance comparison for different settings

Design Frequency Latency Throughput Improvment(#Cycle) (sample/sec)
Reference SW [6] 666 MHz 96,747 6,890 -

Base Design 45 MHz 1,691 26,611 3.861×
Perf. Opt. 117 MHz 1,726 67,761 9.833×
Area Opt. 121 MHz 1,807 66,953 9.716×

TABLE III: Theorotical performance result for different settings

Design Frequency Latency Throughput Improvment(#Cycle) (sample/sec)
Reference SW [6] 666 MHz 96747 6,890 -

Base Design 45 MHz 124 362,903 52.67×
Perf. Opt. 117 MHz 212 551,886 80.09×
Area Opt. 121 MHz 406 298,029 43.25×

and two different optimization settings that offer trade-offs be-
tween performance and DSP48E1 usage. The baseline design
does not have the proposed multiplier optimization. The first
setting is the performance-optimized one that employs three
DSP48E1-based multipliers, while the area-optimized design
works with single DSP48E1-based multipliers. Table I shows
that the base design requires a high number of DSP48E1 units
since the base design does not have a dedicated optimization in
the multiplier units. Although the base design utilizes 12.88×
and 38.66× more DSP48E1 block than the performance-
optimized and area-optimized designs, respectively, it uses
fewer LUTs and registers, as expected.

Table II presents a performance comparison between FAL-
CON’s reference implementation [6] and the proposed designs
with different optimization settings. We calculated the im-
provement result based on the designs’ throughputs. The cycle-
count results are taken at ARM’s clock (666 MHz) frequency.
Note that this measurement puts our hardware at a disadvan-
tage: one hardware clock cycle corresponds to 5.67 cycles
in the result table. The base design has a lower cycle count
than other designs as expected. But its frequency is the lowest
one among other designs since it does not have a pipelined
architecture. The proposed performance and area-optimized
designs outperform FALCON’s reference implementation and
the base design. However, our area-optimized design almost
shows the same performance as our performance-optimized
design. This is caused by the AXI components and we later
explain the AXI components’ impact on the performance with
Table III.

Our hardware design consists of two main parts: SamplerZ
accelerator core and AXI components. Table II presents a
performance result for the entire architecture including the
AXI interconnect and AXI FIFO overheads. Therefore, we also
present Table III that illustrates only SamplerZ accelerator
theoretical performance results without the I/O overhead of
carrying the data from the software (PS) side. The results
show that a peak throughput improvement of 80.1× is the-
oretically possible. Since the base design does not have
pipelined multipliers, its latency is the best one compared to
the other two. However, the performance-optimized design’s
theoretical throughput is 1.52× and 1.851× more than base
designs and area-optimized designs, respectively. Although
the base design’s throughput is 1.217× better than the area-

TABLE IV: Hardware design contribution to the performance of
SamplerZ

Platform Optimization Latency Our
(#Cycle) Improvment

ARM Cortex M7 [12] FPU 664 18.97 ×
EMU 3820 109.14×

ARM Cortex M4 [12] FPU 5418 154.14×
EMU 31,744 906.97×

Intel® Core® i5-8259U [13] Reference SW 53 1.51 ×
Proposed Hardware Perf Opt 35 -

optimized design, its DSP requirement overhead is 38.66×
more than the area-optimized design. Table III also shows
that further acceleration may be possible by improving the
I/O communication overhead or by porting the design to a
more capable FPGA that can execute at a higher operating
frequency.

NIST advocated a more scrutiny evaluation of FALCON’s
implementation in the Round 2 status report [14] since,
unlike other PQC finalists, FALCON employs floating-point
arithmetic that might cause implementation errors more likely
than other finalists. This NIST call led to a variety of opti-
mizations and benchmarks for FALCON implementation aside
from FALCON’s reference implementation [12]. There are
two types of optimized implementations: one that employs
emulated floating-point (EMU) operations and one that uses
dedicated floating-point instructions (FPU). FALCON’s sub-
mission package includes its efficient FPU implementation,
which makes use of ARM’s dedicated floating-point instruc-
tions.

FALCON’s FPU optimization can actually be used directly
on the software side of our application, with noticeable speed
improvements. However, it is essential to compare our hard-
ware partitioning part with its corresponding operations in
the FPU and EMU implementations in order to highlight the
contribution of our effort. Therefore, we present Table IV to
compare the performance of the proposed hardware imple-
mentation and the optimized software implementations that
perform the hardware’s corresponding tasks (see Listing 1
steps 12 to 23). Table IV also presents Intel® Core® i5-8259U
performance results for FALCON’s reference implementation.
Since FPU employs ARM’s dedicated floating-point instruc-
tions, Intel® Core® i5-8259U does not have performance
results for FPU or EMU. To provide a fairer comparison,
we compared implementations’ performance using cycle count
rather than throughput and frequency, taking into account that
they are different platforms. We show the cycle count of our
performance-optimized design without including the software
partitioning part and I/O overhead. We only compare our
hardware performance because the FPU is also suitable to
work in our software partition part.

Table IV depicts that our novel and efficient hardware
implementation significantly improves the performance (up
to 906.97×) in terms of cycle count. FALCON’s sampling
procedure requires operations with large operands so ARM
Cortex M4 performs the poorest due to its basic structure. Al-
though ARM Cortex M7 is able to benefit from 64-bit floating-
point instructions, our hardware implementation executes the

7

TABLE V: Improvement in performance
Operation Reference SW [6] Our Design ImprovmentCycle Count Cycle Count
SamplerZ 96,747 9,838 89%

GaussianSampling 99,068,928 10,074,112 89%
ffSampling 126,157,824 41,632,081 67%

FALCON Signature Generation 136,234,371 50,406,717 63%

same operation 18.97× and 109.14× faster. Our hardware
even outperforms the modern Intel® Core® i5-8259U CPU by
showing 1.51× better performance even though our hardware
is implemented on a low-power and modest SoC FPGA. We
also note that FALCON’s Gaussian sampler execution is not
constant-time for its software implementations. Therefore, the
cycle count numbers of the software execution might slightly
vary for different runs.

Next, we quantify the impact of the improvement on the
whole digital signature scheme, not just on the discrete Gaus-
sian distribution. Table V compares the performance between
FALCON’s reference implementation vs. our performance-
optimized design for discrete Gaussian sampling. We first
profiled the SamplerZ function by running reference imple-
mentation and then run the same function by enabling our
accelerator. The result shows that our accelerator improves
the SamplerZ execution time by 89%. Since the Gaussian
sampler is called 2n times during the ffSampling, our design
decreased the Gaussian sampler’s execution cycle count from
99M to 10M cycles. FALCON’s signature generation heavily
depends on the performance of the Gaussian sampler. During
the signing procedure, FALCON spends 72% of execution
time on the Gaussian sampling [15]. Therefore, our design
improves the entire signature generation by 63%, from 136M
cycles down to 50M.

Table VI presents a comparison between the proposed
design and prior Gaussian samplers. There are earlier sam-
pler designs for BLISS [16], [17], LP [16], [18], [19],
FrodoKEM [20] and qTESLA [21]. These hardware imple-
mentations are fixed for a single σ, µ parameter setting;
hence, they cannot support FALCON. An earlier FALCON
implementation [9] proposed a ‘design-time’ flexible hardware
for σ, µ parameters—this hardware cannot support run-time
flexibility and thus is limited to FALCON key generation
(i.e., cannot support FALCON signature generation). Other
FALCON implementations include FALCON’s verification
steps [22], which excludes Gaussian sampling, and SIMD
acceleration on software [23] 3. Likewise, another prior work
passes FALCON software implementation through an HLS
tool but does not provide a performance or area profiling
for the Gaussian sampler sub-routine [24]. These results show
that, despite our hardware optimizations, FALCON’s sampling
needs still incur more time and area overheads compared to
other lattice-based cryptosystems. FALCON has also a GPU
implementation4 [25]. However, this work does not provide
a performance result for FALCON’s Gaussian sampler. As a
result, we cannot provide a discussion about comparing our

3Unfortunately, the discrete Gaussian sampling sub-routine latency is not
provided in this work; hence, a comparison is infeasible

4This paper has not been officially published but posted in IACR.

TABLE VI: Comparison with prior works

Work FALCON
σ/λ Platform LUT/FF/ FMax Cyc

Support BRAM (MHz) Cnt

This Work Full varying XC7Z020 3683/2107/2 121 1807
Area Opt. Support

[9] KeyGen 2/53 Virtex-7 151/7/0 322 1
only

√
5/200 455/8/0 317 1

[21] No 8.5/64 Artix-7 907/812/3 115 111
[26] 8.5/64 Artix-7 511/343/0 353 1
[16]

No
3.33/64 Virtex-6 112/19/0 297 5

[18] 3.33/90 Virtex-5 43/33/1 259 3
[19] 3.33/80 Virtex-6 863/6/0 61 1
[27] No 215/128 Spartan-6 928/1121/0 129 8
[28]

No
4.41/112 Spartan-6 426/123/1 102 8

[29] 4.41/112 Spartan-6 463/45/0 80 30

work with GPU platforms.

VI. DISCUSSIONS

Implementation Security. We do not cover implementation
attacks and associated defenses in this work. There are various
attack vectors including fault injection attacks, power/EM side-
channel attacks, microarchitectural attacks, acoustic/photonic
side-channel attacks, and cold-boot attacks, among others.
These attacks have to be evaluated and related defenses could
be added on top of our solution. Note that we propose
the first-ever hardware acceleration of FALCON sampling
procedure. The natural steps in this line of work are to
first develop hardware/software solutions for algorithms and
then to consider such attacks in follow on studies. This is
exemplified in many previous works, including the hardware
design of discrete Gaussian samplers without implementation
security [30], hardware design of lightweight cryptography
algorithms without implementation security [31], and software
design for fully homomorphic encryption without implemen-
tation security [32], among others.

Performance Comparison on Lower-End FPGA Devices.
If ported on lower-end devices that contain an embedded
microcontroller without floating-point hardware support, the
software side can take longer. In such cases, the floating point
arithmetic (i.e., the entire sampling process) can be moved
to FPGA for acceleration, provided that the FPGA contains
sufficient space. This work demonstrates a novel hardware-
software co-design method for accelerating FALCON’s dis-
crete Gaussian sampling sub-routine. This work does not aim
to optimize and accelerate the AXI components because we
argue that this optimization effort does not contribute to the
novelty of the proposed method.

VII. CONCLUSIONS

FALCON is one of the algorithms that NIST chose yet its
implementation has been omitted in prior work. Implementing
FALCON efficiently requires accelerating its discrete Gaussian
sampling algorithm, which is non-trivial because it includes
different components compared to other Gaussian samplers
used in lattice cryptography. This paper demonstrates that a

8

hardware-software co-design method is suitable for addressing
both the efficiency and flexibility needs used in FALCON.
Our solution accelerates the reference sampling software by
89%, which corresponds to a total improvement of 63% for
the signature generation.

REFERENCES

[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-
natures and public-key cryptosystems,” Communications of the ACM, vol. 21,
no. 2, pp. 120–126, 1978.

[2] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transac-
tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[3] P. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–
332, 1999.

[4] J. Proos et al., “Shor’s discrete logarithm quantum algorithm for elliptic
curves,” Quantum Info. Comput., vol. 3, no. 4, pp. 317–344, Jul. 2003.

[5] The National Institute of Standards and Technology, “Post-quantum cryptog-
raphy pqc,” https://csrc.nist.gov/projects/post-quantum-cryptography.

[6] P. A. Fouque et al., “Falcon: Fast-fourier lattice-based compact signatures over
NTRU.”

[7] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler,
D. Stehlé, and S. Bai, “Crystals-dilithium,” Submission to the NIST Post-
Quantum Cryptography Standardization [NIS], 2017.

[8] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The sphincs+ signature framework,” Cryptology ePrint Archive,
Paper 2019/1086, 2019, https://eprint.iacr.org/2019/1086. [Online]. Available:
https://eprint.iacr.org/2019/1086

[9] E. Karabulut, E. Alkim, and A. Aysu, “Efficient, flexible, and constant-time
gaussian sampling hardware for lattice cryptography,” IEEE Transactions on
Computers, 2021.

[10] 7 Series DSP48E1 Slice, Xilinx Inc, 3 2018, v1.10.
[11] T. Prest, “falcon.py,” 12 2022. [Online]. Available: https://github.com/tprest/

falcon.py.git
[12] J. Howe and B. Westerbaan, “Benchmarking and analysing nist pqc lattice-

based signature scheme standards on the arm cortex m7.”
[13] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,

T. Ricosset, G. Seiler, W. Whyte, Z. Zhang et al., “Fast-fourier lattice-based
compact signatures over ntru,” https://falcon-sign.info/.

[14] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-
K. Liu, C. Miller, D. Moody, R. Peralta et al., “Status report on the second
round of the nist post-quantum cryptography standardization process,” US
Department of Commerce, NIST, vol. 2, 2020.

[15] T. Oder, J. Speith, K. Höltgen, and T. Güneysu, “Towards practical micro-
controller implementation of the signature scheme falcon,” in International
Conference on Post-Quantum Cryptography. Springer, 2019, pp. 65–80.

[16] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill, “On practical
discrete gaussian samplers for lattice-based cryptography,” IEEE Transactions
on Computers, vol. 67, no. 3, pp. 322–334, 2016.

[17] T. Pöppelmann and T. Güneysu, “Area optimization of lightweight lattice-
based encryption on reconfigurable hardware,” in 2014 IEEE international
symposium on circuits and systems (ISCAS). IEEE, 2014, pp. 2796–2799.

[18] C. Du and G. Bai, “Towards efficient discrete gaussian sampling for lattice-
based cryptography,” in 2015 25th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2015, pp. 1–6.

[19] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in International Conference on
Selected Areas in Cryptography. Springer, 2013, pp. 68–85.

[20] J. Howe, T. Oder, M. Krausz, and T. Güneysu, “Standard lattice-based key
encapsulation on embedded devices,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 372–393, 2018.

[21] S. Tian, W. Wang, and J. Szefer, “Merge-exchange sort based discrete gaussian
sampler with fixed memory access pattern,” in 2019 International Conference
on Field-Programmable Technology (ICFPT). IEEE, 2019, pp. 126–134.

[22] P. Karl, J. Schupp, T. Fritzmann, and G. Sigl, “Post-quantum signatures
on risc-v with hardware acceleration,” Cryptology ePrint Archive, Paper
2022/538, 2022, https://eprint.iacr.org/2022/538. [Online]. Available: https:
//eprint.iacr.org/2022/538

[23] K. Kiningham, P. Levis, M. Anderson, D. Boneh, M. Horowitz, and M. Shih,
“Falcon — a flexible architecture for accelerating cryptography,” in 2019 IEEE
16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
2019, pp. 136–144.

[24] D. Soni, K. Basu, M. Nabeel, N. Aaraj, M. Manzano, R. Karri, D. Soni,
K. Basu, M. Nabeel, N. Aaraj et al., “Falcon,” Hardware Architectures for
Post-Quantum Digital Signature Schemes, pp. 31–41, 2021.

[25] W.-K. Lee, R. K. Zhao, R. Steinfeld, A. Sakzad, and S. O. Hwang, “High
throughput lattice-based signatures on gpus: Comparing falcon and mitaka,”
Cryptology ePrint Archive, 2023.

[26] L. Kong, R. Liu et al., “High-performance constant-time discrete gaussian
sampling,” IEEE Transactions on Computers, 2020.

[27] T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced lattice-based signatures
on reconfigurable hardware,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2014, pp. 353–370.

[28] C. Zhang, Z. Liu, Y. Chen, J. Lu, and D. Liu, “A flexible and generic gaussian
sampler with power side-channel countermeasures for quantum-secure internet
of things,” IEEE Internet of Things Journal, 2020.

[29] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A resource-efficient
and side-channel secure hardware implementation of ring-lwe cryptographic
processor,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 66, no. 4, pp. 1474–1483, 2018.

[30] R. Agrawal, L. Bu, and M. A. Kinsy, “A post-quantum secure discrete gaussian
noise sampler,” in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2020, pp. 295–304.

[31] A. A. Ayoub and M. D. Aagaard, “Application-specific instruction set architec-
ture for an ultralight hardware security module,” in 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2020, pp. 69–
79.

[32] T. Morshed, M. M. A. Aziz, and N. Mohammed, “Cpu and gpu accelerated
fully homomorphic encryption,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2020, pp. 142–153.

9

https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2019/1086
https://eprint.iacr.org/2019/1086
https://github.com/tprest/falcon.py.git
https://github.com/tprest/falcon.py.git
https://falcon-sign.info/
https://eprint.iacr.org/2022/538
https://eprint.iacr.org/2022/538
https://eprint.iacr.org/2022/538

	Introduction
	Background
	Discrete Gaussian Sampling
	FALCON Post-Quantum Digital Signature Scheme
	Sampling in FALCON

	System Architecture and Hardware-Software Partitioning
	Hardware Design
	A Half Gaussian Sampling with BaseSampler
	Rejection Sampling with BerExp
	Optimizations in Large Multiplications

	Implementation Results
	Discussions
	Conclusions
	References

