
ZEBRA: SNARK-based Anonymous Credentials for Practical,
Private and Accountable On-chain Access Control

Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn Song
University of California, Berkeley

{deevashwer,guruvamsip,tianc.x,rcottone,dawnsong}@berkeley.edu

Abstract

Restricting access to certified users is not only desirable for many
blockchain applications, it is also legally mandated for decentralized
finance (DeFi) applications to counter malicious actors. Existing so-
lutions, however, are either (i) non-private, i.e., they reveal the link
between users and their wallets to the authority granting creden-
tials, or (ii) they introduce additional trust assumptions by relying
on a decentralized oracle to verify anonymous credentials (ACs).

To remove additional trust in the latter approach, we propose
verifying credentials on-chain in this work. We find that this ap-
proach has impractical costs with prior AC schemes, and propose
a new AC scheme ZEBRA that crucially relies on zkSNARKs to
provide efficient on-chain verification for the first time. In addi-
tion to the standard unlinkability property that provides privacy
for users, ZEBRA also supports auditability, revocation, traceabil-
ity, and theft detection, which adds accountability for malicious
users and convenience for honest users to our access control so-
lution. Even with these properties, ZEBRA reduces the gas cost
incurred on the Ethereum Virtual Machine (EVM) by 14.3× when
compared to Coconut [NDSS 2019], the state-of-the-art AC scheme
for blockchains that only provides unlinkability. This improvement
translates to a reduction in transaction fees from 176 USD to 12
USD on Ethereum in May 2023. Since 12 USD is still high for most
applications, ZEBRA further drives down credential verification
costs through batched verification. For a batch of 512 layer-1 and
layer-2 wallets, the transaction fee on Ethereum is reduced to just
0.44 USD and 0.02 USD, respectively, which is comparable to the
minimum transaction costs on Ethereum.

Keywords

Anonymous Credentials, zkSNARKs, Permissionless Blockchains,
Account-based Model, Accountability, Access Control, Decentral-
ized Finance (DeFi), Know-your-customer (KYC), Decentralized
Voting, Proof-of-personhood

1 Introduction

Over the last decade, blockchains have gained popularity over
their centralized counterparts, owing to their strong integrity and
availability, and transparent and permissionless nature. Although
permissionless access in blockchains promotes decentralization
through wider participation, there are blockchain (or on-chain) ap-
plications where it is desirable to restrict access to users and wallets
that satisfy a particular predicate. For instance, decentralized voting
and private NFT drops require single access per person, proof-of-
personhood allows a single wallet per person, certain applications
only allow access to 18+ users or users from a certain region, etc.
More importantly, there are on-chain applications where access
control is not only desirable, it is also legally mandated to counter

illicit activities. One such example is the recently proposed guide-
lines from the Financial Action Task Force (FATF) that require
decentralized finance (DeFi) applications to restrict their service to
KYC-verified users [60]. The urgency of these regulations is further
underscored by the US Treasury’s recent sanctioning of all wallets
on Ethereum [146] that interacted with a decentralized mixer called
Tornado Cash [89]. Hence, a large number of popular on-chain
applications can not operate without access control.

Prior Access Control Solutions. Majority of on-chain applica-
tions are hosted on account-based blockchains like Ethereum [146],
Avalanche [120], BNB [40], Algorand [2], etc., and that’s the setting
we’ll focus on in the rest of this paper. The existing access-control
solutions on such chains lie in one of the following two categories:

• Non-private solutions [3, 24, 51, 94, 103, 117, 136, 137, 139, 141]: a
certificate authority (CA) verifies the user and issues an on-chain
credential to a user nominated wallet, where the credential can
be thought of as a signature from the CA attesting to a user’s
attributes or access privileges. This solution, however, comes at a
huge privacy cost for users: the CA can link users to their wallets,
potentially even across chains, and this sensitive information
could even be leaked if the CA suffers from a data breach.

• Decentralized oracle-based solutions [111, 112, 115]: the CA issues
an anonymous credential (AC) to the user instead, which is a
cryptographic primitive that enables a user to prove that they
hold a valid credential in an unlinkable way, i.e., even if the
verifier and the CA collude, they cannot identify the user or
link multiple showings of the same credential. This solution
preserves privacy but the credential verification is done using a
small committee of nodes, a.k.a., a decentralized oracle, which
introduces additional trust assumptions

1 and reduces the integrity
and availability of the system to that of the oracle2.

Our Approach: On-chain Credential Verification. The oracle-
based approach solves the privacy issue using anonymous creden-
tials (ACs) but it introduces additional trust in the system. We pro-
pose a modification to this approach which removes this limitation:
instead of using a decentralized oracle, we verify the credential on-
chain. As a result, the oracle is no longer needed and the verification
is performed with the same integrity and availability guarantees as
the underlying blockchain.

1Even if the CA itself acts as the oracle, that still implies additional trust because
the CA is additionally required to ensure the integrity and availability of credential
verification, which is a stronger assumption than simply furnishing credentials that can
even be done offline. There is also a usability problem, where access request to every
single on-chain application goes through the CA, severely limiting the organizations
that can act as CAs.
2Only recently, 600 million USD were lost from an exploit on the decentralized oracle
of the Ethereum sidechain Ronin [97].



Insufficiency of ExistingAnonymousCredentials.To achieve
minimal prover costs, prior AC schemes rely on lightweight Non-
interactive Zero-Knowledge (NIZK) arguments such as Sigma pro-
tocols [56]. A downside of using these arguments is that their
verifier complexity is the same as their prover complexity, i.e., it
is linear in the size of the verification predicate, a quantity that
grows with the number of attributes and the properties supported
by the AC scheme. While this is not a problem in the traditional
setting where verification is typically done by a single machine,
credential verification becomes quite expensive in the context of
on-chain verification, where verification is performed by all nodes
of the blockchain. To make things worse, the state-of-the-art AC
schemes [29, 30, 48, 66, 82, 114, 122, 128, 151] rely on bilinear
group operations, some of which are not efficiently supported
on Ethereum Virtual Machine (EVM) [147], the de-facto runtime
environment for account-based blockchains [98]. Consequently,
on-chain verification of Coconut [128], the state-of-the-art AC
scheme for blockchains, costs 4.2M gas for the simplest predicate
on EVM (§ 7.2.2), which is equivalent to 176 USD on Ethereum in
May 2023 [63].

zkSNARK-based Anonymous Credentials. In this work, we
achieve practical on-chain verification by building an AC scheme
on top of zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs), which addresses both sources of ineffi-
ciency in existing AC schemes: SNARKs exist that can be verified
efficiently on EVM with verifier cost independent of the verification
predicate complexity. Although this approach sacrifices prover effi-
ciency to gain verifier efficiency, due to the recent advancements
in zkSNARKs, the prover costs are still practical (§ 7.2.3), especially
in our setting where credential verification is only required once
per application and wallet.

Using SNARKs already brings down the on-chain verification
cost by 14.3× to 12 USD, but this is still quite expensive for most
applications and especially for L2 wallets (see § 2.1) where the
transaction fees are on the order of a couple cents. To this end, we
further reduce the credential verification cost through batched ver-
ification. Our batched verification relies on an untrusted aggregator

to verify many credential verification proofs and recursively prove
their validity to the contract with a single SNARK proof, the cost
of which is amortized across multiple users. While this idea may
seem straightforward, it has two efficiency challenges:

• Due to restrictions imposed by EVM for efficient on-chain verifi-
cation, prior works on proof recursion either have high aggrega-
tor latency or high user overhead (§ 7.3.3).

• Each credential proof is accompanied with transaction data that
needs to be processed on-chain for each user in the batch, and this
imposes a high lower bound on the gas cost per user, especially
for L2 wallets (§ 7.3.1).

To this end, we propose a novel EVM-compatible solution with
practical aggregator and user overhead (§ 5.5) that reduces and
even removes per-user costs from batched verification of L1 and
L2 wallets, respectively (§ 5.6). Since EVM support is standard in
account-based blockchains [98], this solution is not tied to Ethereum
and is widely applicable.

Beyond Unlinkability. So far, we have only discussed the un-
linkability property of AC schemes which provides privacy to users.

Most applications, especially with legally mandated access control,
also require the following properties:
• Auditability: to ensure accountability for misbehaving users,

auditability is needed to enable authorized auditors to identify
the owner of a maliciously behaving wallet.

• Revocation: credentials are often lost or stolen, and credentials
of malicious users also need to be revoked.

• Traceability: when a credential is revoked, the wallets that were
verified with it also need to be repudiated. Traceability allows au-
ditors to identify all wallets verified with the revoked credential
and then selectively repudiate them.

Although existing AC schemes can provide all these properties,
the state-of-the-art solution for traceability [57] requires the use
of secure multiparty computation (MPC) [150] among the auditors
which (i) limits the distribution of trust, (ii) requires all parties to be
online at the same time, and (iii) restricts the number of wallets that
can be verified with a credential (see § 5.4 for details). To address
these limitations, we propose a solution that leverages SNARKs to
enable traceability without MPC, and only requires minimal inter-

action among the auditors (§ 5.4). Morevoer, we observe that our
tracing scheme also offers credential theft detection (Appendix A),
which allows a user to detect unauthorized usages of its credential.

Our final AC scheme ZEBRA3 offers practical on-chain ver-
ification and supports auditability, revocation, traceability, and
theft detection. Due to the use of SNARKs, introducing the above-
mentioned properties only marginally increases the verifier cost of
ZEBRA. In contrast, just adding revocation to Coconut increases
its on-chain verification cost by 3× (§ 7.2.1).

ZEBRA is practical. The single verification protocol requires
294K gas on EVM or 12 USD on Ethereum (§ 7.2.2). With batched
verification, the user pays a one-time cost of 56.5K (7.9K, resp.) gas
to register a credential with its L1 (L2, resp.) wallet, and then for a
batch of 512 wallets, each subsequent credential verification costs
just 10.6K (545, resp.) gas (§ 7.3.1). For perspective, the average
gas usage per transaction on Ethereum is around 93K [47] in May
2023, and the minimum transaction gas cost is 21K and 500 for L1
and L2 [154] wallets, respectively. Finally, the user takes 2 seconds
to generate a credential verification proof on a 2019 Macbook Pro
(§ 7.2.3), and the aggregator can batch verification of 512 credentials
within 1.5 minutes (§ 7.3.2) on a 64-core machine. Note that the all
of these costs only have to be paid once per wallet and application.

In summary, we make the following contributions:
• We propose a design for credential verification in account-based

blockchains that balances privacy and accountability (§ 2) with-
out introducing additional trust assumptions like prior work.

• We propose a new AC scheme ZEBRA that provides practical
on-chain verification for the first time (§ 7.2), and supports au-
ditability, revocation, and traceability (§ 5.1-§ 5.4). Our tracing
scheme avoids the use of MPC and does not suffer from limita-
tions of prior work.

• We propose a novel and EVM-compatible solution for batching
ZEBRA credentials (§ 5.5 & § 5.6). Compared to our solution,
directly using prior proof recursion works leads to 11× higher

3ZEBRA stands for zero-knowledge (or anonymous), batched, revocable, and auditable
credentials.

2



gas cost (§ 7.3.1), and either 6.6× higher aggregator latency or
11× higher user overhead (§ 7.3.3).

• We benchmark ZEBRA and demonstrate its practicality (§ 7).

2 System Overview

In this section, we first explain relevant blockchain terminology
(§ 2.1), and then discuss the various entities (§ 2.2) and protocols
(§ 2.3) in our system. Here we describe the simplest instantiation
of our system; extensions are discussed in Appendix B. Finally, we
describe the threat model in § 2.4.

2.1 (Informal) Blockchain Terminology

• Wallet: a wallet is a public-private key pair (pkW, skW) used
by the user to interact with the blockchain, i.e., sign and send
transactions to it. The wallet’s public key pkW is the user’s pseu-
donym/account on the blockchain, and a user can have many
such wallets or pseudonyms.

• Smart Contract: a program that is executed on the blockchain
(computer) when a wallet sends a transaction to it.
• Ethereum Virtual Machine (EVM): the virtual machine that exe-

cutes a smart contract on the blockchain. EVM is turing-complete
if there’s enough gas (see below) and is not tied to Ethereum. It is
the defacto VM for smart contracts [98] and is supported by most
account-based blockchains [40–42, 64, 79, 101, 116, 120, 138, 143].

• Gas: the cost (measured in gas units) paid by a user to execute
a smart contract on EVM. It includes the cost of posting the
transaction data on-chain and executing it. The price of gas
varies and is set by the blockchain nodes.

• Layer-1 (L1) solution: a solution that is implemented entirely on
the layer-1, i.e,. the blockchain itself.

• L1 wallet: L1 processes transactions from this wallet.
• Layer-2 (L2) solution: a scaling solution that offloads computation

and storage to a more scalable layer-2 network that is built on
top of the layer-1 blockchain. Importantly, we only consider L2
solutions that have data-availability on L1 [127], i.e., the state
managed by the L2 network can be reconstructed entirely using
the transaction summaries posted on L1.
We specifically focus on zk-rollups [28] in this work where the
L2 network is simply an untrusted server, which executes batches
of transactions and proves to an L1 contract that it has done so
correctly using a SNARK proof. Note that we do not trust the
rollup server for either computation (due to SNARK proof) or
storage (due to data-availability).

• L2 wallet: L2 processes transactions from this wallet.

2.2 Entities

• Access Control Contract: a contract that grants access rights to
wallets after verifying the validity of the credential used. It can
be deployed as an L1 or L2 solution.

• Application Contracts: contracts that have the application logic
and make queries to the access control contract to check if a
wallet has appropriate access rights. They can be deployed on
L1, or within the same L2 as the access control contract.

• User: a user owns multiple wallets and can use any of them to
access applications provided it has the appropriate credential.

• Certificate Authority (CA): the CA is an organization trusted to
issue credentials with attributes to the user, and revoke them if

needed. In Appendix B, we discuss how ZEBRA can be extended
to support other issuance models with weaker trust assumptions.

• Aggregator : an untrusted party that batches credential verifica-
tion transactions to reduce on-chain verification costs. For a
rollup-based L2 solution, the rollup server is the aggregator.

• Auditors: a committee of 𝑛 nodes that can do the following if 𝑡 +1
of them agree to it: (i) audit a wallet to reveal the credential used
to verify it, and (ii) track the usage of a credential to reveal the
wallets verified using it. For simplicity, we assume a single chain
and committee of auditors, and discuss the case where different
chains have different sets of auditors in Appendix B.

• System Admin: the admin is a logical entity responsible for man-
aging the access control contract, and its responsibilities include
updating the revoked credential list and repudiating wallets.
Since admin’s actions are transparent and publicly verifiable,
this role can be fulfilled by a reputed but untrusted organization,
the CA, the auditors, a cryptographic proof, or any combination
of them. In the definitions section (§ 4), we have the CA revoke
the credentials and the auditors repudiate the wallets.

2.3 Protocols

In this section, we provide a high-level description of protocols in
ZEBRA using the example summarized in Figure 1.

• Credential Issuance (Figure 1a): 1 user sends the following to the
CA: its identity𝑈 , its public key pkU, linking token 𝛽 which is a
threshold encryption of its tracing key tkU, and some auxiliary
information doc justifying the issuance of credential. 2 CA
stores the mapping from𝑈 to (pkU, 𝛽). 3 CA sends a credential
with rich attributes to the user with pkU as the identifier and
tkU as the tracing key. Importantly, this protocol does not reveal
the tracing key to the CA.

• Credential Verification (Figure 1b): 1 user 1 sends a credential
verification transaction directly to the contract using its wallet
pkW1 . 1a & 1b user 1 and 2 batch credential verification of
their wallets pkW2 and pkW3 , respectively, with the help of an
aggregator to minimize costs. Figure 1b shows batched verifica-
tion as a one-shot protocol for sake of exposition, but it actually
consists of two phases: a registration phase where credentials
are registered on-chain that is cheaper than single verification,
and a verification phase, where arbitrary many predicates can
be proven w.r.t. the registered credential at a minimal cost. 2
the access control contract verifies the credential verification
transactions and grants access to the respective wallets.

• Transaction Audit (Figure 1c): 1 & 2 auditors retrieve the
audit token 𝛼2 for wallet pkW2 from the blockchain. 3 auditors
collaboratively decrypt 𝛼2 to learn pkU1 , i.e., identifier of the
credential used to verify pkW2 . 4 auditors send pkU1 to the CA,
and 5 the CA sends user’s identity𝑈1 to the auditors.

• Credential Revocation and Wallet Repudiation (Figure 1d): CA
sends 1a identifier pkU1 of the revoked credential to the admin,

and 1b the corresponding linking token 𝛽1 to the auditors. 2
auditors collaboratively decrypt 𝛽2 to learn tracing key of the
revoked credential tkU1 . Using tk

U
1 , the auditors track wallets ver-

ified with the revoked credential, i.e,. {pkW1 , pk
W
2 }. 3 auditors

3



0!

Aggregator

0"

Access Control
Contract

pk"#

pk!#

pk$#

1

1a

1a

1b

pk"#✅
pk!#✅
pk$#✅

2

User1

User2

CA

User

𝑈, pk%,
𝛽, aux

𝑈 ⇔ (pk%, 𝛽 = Enc(tk%))

3
1

2

Identifier: pk%
Tracing Key: tk%
Attributes: …

AuditorsCA Access Control
Contract

1

2

pk!#

𝛼!

𝛼! → pk"%
3

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

5𝑈"

4 pk"%

pk"#✅
pk!#✅
pk$#✅

Auditors

CA

Access Control
Contract

Admin

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

pk"%🚫

pk$#✅

1a

1b

3

4

Revoke pk"%

5

𝛽" Repudiate 
pk"#, pk!#

𝛽" → tk"%
tk"% → pk"#, pk!#
2

(a) Credential Issuance

0!

Aggregator

0"

Access Control
Contract

pk"#

pk!#

pk$#

1

1a

1a

1b

pk"#✅
pk!#✅
pk$#✅

2

User1

User2

CA

User

𝑈, pk%,
𝛽, aux

𝑈 ⇔ (pk%, 𝛽 = Enc(tk%))

3
1

2

Identifier: pk%
Tracing Key: tk%
Attributes: …

AuditorsCA Access Control
Contract

1

2

pk!#

𝛼!

𝛼! → pk"%
3

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

5𝑈"

4 pk"%

pk"#✅
pk!#✅
pk$#✅

Auditors

CA

Access Control
Contract

Admin

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

pk"%🚫

pk$#✅

1a

1b

3

4

Revoke pk"%

5

𝛽" Repudiate 
pk"#, pk!#

𝛽" → tk"%
tk"% → pk"#, pk!#
2

(b) Credential Verification

0!

Aggregator

0"

Access Control
Contract

pk"#

pk!#

pk$#

1

1a

1a

1b

pk"#✅
pk!#✅
pk$#✅

2

User1

User2

CA

User

𝑈, pk%,
𝛽, aux

𝑈 ⇔ (pk%, 𝛽 = Enc(tk%))

3
1

2

Identifier: pk%
Tracing Key: tk%
Attributes: …

AuditorsCA Access Control
Contract

1

2

pk!#

𝛼!

𝛼! → pk"%
3

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

5𝑈"

4 pk"%

pk"#✅
pk!#✅
pk$#✅

Auditors

CA

Access Control
Contract

Admin

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

pk"%🚫

pk$#✅

1a

1b

3

4

Revoke pk"%

5

𝛽" Repudiate 
pk"#, pk!#

𝛽" → tk"%
tk"% → pk"#, pk!#
2

(c) Transaction Audit

0!

Aggregator

0"

Access Control
Contract

pk"#

pk!#

pk$#

1

1a

1a

1b

pk"#✅
pk!#✅
pk$#✅

2

User1

User2

CA

User

𝑈, pk%,
𝛽, aux

𝑈 ⇔ (pk%, 𝛽 = Enc(tk%))

3
1

2

Identifier: pk%
Tracing Key: tk%
Attributes: …

AuditorsCA Access Control
Contract

1

2

pk!#

𝛼!

𝛼! → pk"%
3

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

5𝑈"

4 pk"%

pk"#✅
pk!#✅
pk$#✅

Auditors

CA

Access Control
Contract

Admin

𝑈" ⇔ pk"%, 𝛽"
𝑈! ⇔ (pk!%, 𝛽!)

pk"%🚫

pk$#✅

1a

1b

3

4

Revoke pk"%

5

𝛽" Repudiate 
pk"#, pk!#

𝛽" → tk"%
tk"% → pk"#, pk!#
2

(d) Credential Revocation and Wallet Repudiation

Figure 1: System Overview.

send a request to repudiate these wallets to the admin. 4 ad-
min sends a transaction to the access control contract to revoke
credential pkU1 and repudiate wallets {pkW1 , pk

W
2 }. 5 the access

control contract verifies the transaction, revokes the credential
and repudiates the wallets.

2.4 Threat Model

We make the following assumptions about the entities:
• User: users are malicious and can act arbitrarily to get verified

without holding a valid credential.
• Certificate Authority (CA): the CA is trusted for integrity since

it is an authorized and reputed organization, but even if it be-
haves arbitrarily, we prove that it cannot deanonymize users. In
Appendix B, we discuss other issuance models for ZEBRA that
minimize trust in CA.

• Aggregator : the aggregator is completely untrusted. The only
malicious way it can affect the protocol is by censoring user’s
transactions. Since our L1 aggregators are stateless, users can eas-
ily switch to a different aggregator. In case of a censoring rollup
server (i.e., an L2 aggregator), censorship-resistance techniques
from zk-rollups [93, 154] are applicable.

• Auditors: as long at most 𝑡 out of 𝑛 auditors collude, the privacy
of honest users is preserved. Even if all auditors collude, they
still can not impersonate or blame an honest user. Note that
it is relatively easier to find a large committee of auditors to
sufficiently distribute trust since the auditors are called upon in-
frequently and our protocol requires minimal interaction among
the auditors.

• System Admin: the admin is not trusted to post correct updates
and since its operation is transparent, its malicious behaviour can
either be prevented through a cryptographic proof or deterred
through legal action.

3 Preliminaries

We provide high-level description of preliminaries mainly focusing
on notation in this section and defer detailed security definitions
to Appendix E.

Collision Resistant PRF. A collision resistant PRF, CR-PRF :
{0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆 satisfies the standard pseudorandom-
ness property and in addition is collision resistant where it is
computationally infeasible to find (𝐾, 𝑥) ≠ (𝐾∗, 𝑥∗) such that
CR-PRF(𝐾, 𝑥) = CR-PRF(𝐾∗, 𝑥∗).

3.1 zk-SNARKs

A zk-SNARK is a tuple of three algorithms:
• Setup(1𝜆,R) → crsR : On input security parameter 𝜆 and rela-

tion R, outputs a common reference string crsR .
• Prove(crsR , 𝑥,𝑤) → 𝜋 : On input crsR and a statement-witness

pair (𝑥,𝑤) ∈ R, outputs a proof 𝜋 .
• Verify(crsR , 𝑥, 𝜋) → {0, 1}: On input crsR , statement 𝑥 and

proof 𝜋 , outputs a bit to indicate if the proof is valid.
We use the security definitions of [76] and write zkSNARK when
we demand perfect completeness, perfect zero-knowledge, and
computational knowledge soundness from the argument system.
We will sometimes use zkNIAoK to refer to zero-knowledge non-
interactive arguments of knowledge where we do not demand
succinctness. We will also demand that the proof is straight-line
extractable [110]. This means that the extraction algorithm can,
on input a valid proof and the list of random-oracle queries made

4



by the adversary (prover), extract a witness with overwhelming
probability without rewinding the prover.

We also use simdSNARK to denote a “data-parallel” SNARK [135]
which takes as input multiple statement-witness pairs and outputs
a single succinct proof 𝜋 for all statements. Importantly, we relax
the security definition here and require all the above properties
except for zero-knowledge.

3.2 Digital Signature

We use signature schemes that are existentially unforgeable un-
der chosen message attacks (EUF-CMA). They consists of three
algorithms SIG = (Gen, Sign,Verify):

• Gen(1𝜆) → (sk, pk): on input security parameter 𝜆, outputs a
secret key sk and a public verification key pk.

• Sign(sk,𝑚) → 𝜎 : on input sk and message𝑚, output signature 𝜎 .
• Verify(pk,𝑚, 𝜎) → {0, 1}: on input pk,𝑚 and 𝜎 , outputs 1 if 𝜎 is

a valid signature for𝑚 w.r.t. pk.

3.3 Threshold Public-Key Encryption

We use threshold public key encryption (TPKE) satisfying the sim-
ulation based IND-CCA2 security notion defined in [39]. We also
restrict the syntax of TPKE to consist of five algorithms:

• Setup(1𝜆, 𝑛, 𝑡) → {pk, vk, (sk1, . . . , sk𝑛)}: on input threshold 𝑡
for 𝑛 parties, outputs the public key pk and verification key vk,
along with secret keys for each party.

• Enc(pk,𝑚; 𝜌) → ct: encrypts message 𝑚 under public key pk
using randomness 𝜌 .

• Dec(ct, sk𝑖 ) →𝑚𝑖 : computes a partial decryption of ct.
• Verify(pk, vk,𝑚𝑖 ) → {0, 1}: checks whether 𝑚𝑖 was correctly

computed using pk and vk.
• Combine(pk, vk, {𝑚𝑖 }𝑖∈𝑆⊆[𝑛] s.t. |𝑆 | ≥𝑡+1) → 𝑚: recovers mes-

sage𝑚 given 𝑡 + 1 partial decryptions which verify successfully.

3.4 Sparse Merkle Tree

Sparse Merkle trees [55] are authenticated data structuresMT on
key-value pairs (𝑘, 𝑣) supporting the following operations:

• Add(𝑘, 𝑣): inserts a key-value pair (𝑘, 𝑣) inMT. If the key already
exists, the value is updated.

• Root: outputs the current merkle-root of MT.
• MProve(𝑘) → 𝑃 : outputs a membership proof for key 𝑘 .
• MVerify(rt, 𝑘, 𝑣, 𝑃) → {0, 1}: on inputs root rt, key 𝑘 , value 𝑣 and

proof 𝑃 , outputs 1 if (𝑘, 𝑣) exists in rt.
• NMProve(𝑘) → 𝑃 : outputs a non-membership proof for key 𝑘 .
• NMVerify(rt, 𝑘, 𝑃) → {0, 1}: on inputs root rt, key 𝑘 and proof
𝑃 , outputs 1 if 𝑘 does not exist in rt.

4 Definitions

At the core of our system is an AC scheme coupled with a decen-
tralized organization which verifies user credentials and maintains
a list of pseudonyms corresponding to verified users.

In our concrete instantiation, this organization is simply a smart
contract residing on a pseudonymous blockchain. Users register on
the system using a pseudonym (such as their wallet address) and
obtain an access token for their pseudonym from the organization
by providing auxiliary information justifying the same. Concretely,

this translates to the user’s pseudonym being added to a list main-
tained by the smart contract. In any future transactions with service
providers involving this wallet, a user can prove their wallet has
been verified by simply pointing to the appropriate location in the
smart contract’s storage.

By changing the definition of what constitutes valid auxiliary in-
formation our system can be adapted to a wide range of applications.
For example:
• In the simplest case, a single CA issues credentials to users in

the form of signatures on their identity. This can be extended to
support revocation through a public revocation list.

• It is also possible to accommodate other issuance models dis-
cussed in Appendix B that minimize trust.

In our concrete instantiation we use the following policy: User must

have been issued a credential by the CA and the credential must not

been revoked.

4.1 Security

We consider two notions of security (Appendix F) with three differ-
ent corruption scenarios as follows:
• (Theorem 3) Simulation-based security against a fully malicious

adversary corrupting up to 𝑡 auditors and any number of users.
• (Theorem 4) Simulation-based security against a semi-honest

CA that does not collude with any other party.
• (Theorem 5) Privacy against against a fully malicious adversary

corrupting up to 𝑡 auditors, any number of users and the CA. In
this setting, we do not provide any correctness guarantees for
an honest party’s output but ensure that the adversary does not
learn any information about an honest party’s inputs. We do this
by introducing a weakened ideal functionality F̂ (Figure 8) that
captures the privacy guarantees when the CA is malicious.
In Figure 2 we describe the ideal functionality involving a cer-

tificate authority CA, users {𝑈1, . . . ,𝑈𝑁 } and a list of auditors
(Aud1, . . . ,Aud𝑛). Credentials are awarded to users when they
make a request to the ideal functionality. This is done by first send-
ing a message (ReqCred, doc, tkU, attr) to F , where doc justifies
the issue of a credential, tkU is a tracing key (explained later), and
attr are additional attributes in the credential. (𝑈 , doc) is then for-
warded to the CA who decides whether to approve/reject a request.
If the request is approved, the user 𝑈 , tkU, and attr are added to a
list L. Users interact with access controlled applications through
pseudonyms which have been verified. To verify a pseudonym pkW,
a user𝑈 sends a nonce 𝜂. If the pseudonym has not been verified
before, there exists (𝑈 , tkU, attr) ∈ L, and the request satisfies
the verification policy 𝜙 (attr) = 1, then the pseudonym is verified
by adding (pkW,𝑈 ) to a key-value database D where the keys
(pseudonyms) are made public but the values (users) are hidden.
The ideal functionality also publishes (𝜂,CR-PRF(tkU, 𝜂)).

Finally, there are four main maintenance operations provided
by the ideal functionality to read from the database D and handle
updates after reports of suspicious behaviour, malicious users or
credential theft amongst other things.
• Audit: Carried out by auditors, to identify the user who verified

a particular pseudonym pkW.
• Trace: Carried out by auditors in collaboration with CA to iden-

tify the list of all wallets verified by a particular user𝑈 .
5



• Revoke: Carried out by CA to revoke the credential awarded to
a particular user𝑈 .

• Repudiate: Carried out by auditors to repudiate the verification
of a pseudonym that has previously been verified. Pseudonyms
can no longer be used after repudiation.

The ideal functionality (Figure 2) captures the desired notions of
unforgeability of credentials, unlinkability of credential showings,
and consistency of credentials. Our ideal functionality evaluates a
cryptographic function PRF but this was unavoidable due to sub-
tle issues in the proof. In particular PRFs are not programmable
and hence the simulator cannot simulate audit tokens of honest
parties. However, it can be seen that despite revealing this infor-
mation, unlinkability is not affected as the output of a CR-PRF is
pseudorandom when the secret key is hidden.

F
Parties: Users {𝑈1, . . . ,𝑈𝑁 }, Certificate Authority CA and Audi-
tors (Aud1, . . . ,Aud𝑛) .
Parameters: Verification policy 𝜙 , pseudonym space N, user
space U, and a collision resistant PRF CR-PRF.
• Setup. On input (Setup, 𝜙) from the organization, publish a

verification policy 𝜙 . Maintain a database D of tuples from
the space N × U, and a database of banned pseudonyms D𝐵 .

• Credential Generation. On input (ReqCred, doc, tkU, attr)
from user𝑈 ,

– If𝑈 has previously been issued a credential, return ⊥.
– Else, forward (doc,𝑈 , attr) to CA. On input
(AprCred,𝑈 ) from CA, add (𝑈 , tkU, attr) to L,
the tuple of users who have been awarded credentials,
their tracing key and their attributes. Send accept to𝑈 .

• Pseudonym Verification. On input (ReqVer, pkW, 𝜂) from
user𝑈 ,

– If (𝑈 , tkU, attr) ∈ L, 𝜙 (attr) = 1, (pkW, ·) ∉ D, and
pkW ∉ D𝐵 , then publish (pkW, 𝜂,CR-PRF(tkU, 𝜂)) and
add (pkW,𝑈 ) to D.

– Else, return ⊥ to𝑈 .
• Audit. On input (Audit, pkW) from 𝑡 + 1 auditors and CA,

– If there exists an entry of the form (pkW,𝑈 ) ∈ D, return
𝑈 to all auditors.

– If pkW does not appear in D, then return ⊥ to auditors.
• Trace. On input (Trace,𝑈 ) from 𝑡 + 1 auditors and CA,

– If (𝑈 , tkU, ·) ∈ L, send tkU to auditors.
– If (𝑈 , ·, ·) ∉ L, then return ⊥ to auditors.

• Revoke. On input (Revoke,𝑈 ) from CA,
– If (𝑈 , ·, ·) ∈ L, remove the entry containing𝑈 from L.
– Else, return ⊥ to CA.

• Repudiate. On input (Repudiate, pkW) from 𝑡 + 1 auditors,
delete all records of the form (pkW, ·) from D, and add pkW

to D𝐵 .

Figure 2: Ideal Functionality for an AC Scheme supporting

Audits, Tracing, Revocation and Repudiation.

5 ZEBRA: Our Anonymous Credential Scheme

In this section, we present our anonymous credential scheme ZE-
BRA. We first start with a simple scheme that only provides privacy
and then incrementally improve it to add auditability, revocation

and traceability. In § 5.1-§ 5.4, we’ll focus on adding functionality,
and in § 5.5 & § 5.6, we’ll improve the efficiency of the scheme.
We defer the discussion on credential theft detection to Appen-
dix A, and finally, in Appendix B, we discuss potential extensions
to ZEBRA.

5.1 A Simple AC Scheme with Privacy

Let (skCA, pkCA) and (skU, pkU) denote the signature key-pairs of
CA and user𝑈 , respectively. Using zkSNARKs, an AC scheme that
provides unlinkability is straightforward to construct: to issue a cre-
dential credU with attributes attr for userU, the CA simply signs the
user’s public key and its attributes, i.e,. credU = SIG.Sign(pkU∥attr).
Now, user U can use credU to acquire access privileges for its wallet
pkW in a privacy-preserving way by producing a zkSNARK proof
𝜋 for the following statement:
“Given CA’s public key pkCA, wallet address pkW, and access-control

predicate 𝜙 , I know credential credU with attributes attr for public
key pkU, and signature 𝜎 such that:
• credU is a valid credential ⇔ credU is a valid signature w.r.t.

pkCA on pkU and attr: SIG.Verify(pkCA, pkU∥attr, credU) = 1.
• pkW is backed by the owner of credU ⇔ 𝜎 is a valid signature

w.r.t. pkU on pkW: SIG.Verify(pkU, pkW, 𝜎) = 1.
• Credential attributes satisfy the predicate: 𝜙 (attr) = 1.”

Note that the public part of this statement has no information
about the user’s identity. The wallet pkW then signs the proof 𝜋
and posts it for verification on-chain to get access privileges.

5.2 Adding Auditability

In the scheme described in § 5.1, users get privacy because credential
verification reveals no information about user’s identity, but this
also means there is no accountability in the system. In this section,
we add auditability to our scheme to deter malicious behaviour,
which allows identifying the owner of a misbehaving wallet. We
take the standard approach [35] of adding an encryption of the
user’s identity pkU as part of credential verification, which can
only be decrypted by the committee of auditors if at least 𝑡 + 1-out-
of-𝑛 auditors agree to decrypt. In particular, the user now creates
a zkSNARK proof for the following statement during credential
verification:
“Given pkCA, pkW, 𝜙 , auditors’ public key pkA, and audit token 𝛼 , I
know credU, attr, pkU, 𝜎 , and encryption randomness 𝜌 such that:
• All checks from § 5.1.
• 𝛼 is a well-formed encryption of pkU under pkA using random-

ness 𝜌 : 𝛼 = TPKE.Enc(pkA, pkU; 𝜌).”
Since the audit token 𝛼 is also posted on-chain by pkW during
credential verification, the auditors can collaboratively learn the
user’s public key, and from there its identity with the help of CA.

5.3 Adding Revocation

Consider the following straightforward revocation strategy [36]:
the CA maintains a list of revoked credentials on-chain, and in
each credential verification, the user is also required to prove that
its credential does not lie on the revocation list. Specifically, the
revocation list stores a unique identifier for each revoked credential
and is maintained in the form of an authenticated dictionary [16, 36,
55, 58, 90, 105, 108] that supports efficient proof of non-membership.

6



The unique identifier could be the credential owner’s public key
pkU, or an attribute which is unique to each credential, whichever
one has the smaller domain.

Concretely, we use a Sparse Merkle Tree (SMT) [55] to maintain
the list of revoked credentials since it supports efficient updates and
our AC scheme only requires non-membership proof for a single
element. SMTs are well-suited for this use-case, and with SMTs,
the proof of non-membership is already not a bottleneck in our
AC scheme. With revocation, the zkSNARK proof for credential
verification is now required to prove the following statement:

“Given pkCA, pkW, 𝜙 , pkA, 𝛼 , and revocation list Merkle root rtrl, I
know credU, attr, pkU, 𝜎 , 𝜌 , and Merkle non-membership proof 𝑃 rl

for pkU such that:
• All checks from § 5.1 and § 5.2.
• credU is not revoked⇔ pkU is not a member of Merkle tree with

root rtrl:MT.NMVerify(rtrl, pkU, 𝑃 rl) = 1.”

While the above solution prevents users whose credentials have
been revoked from verifying new wallets, they may already (and
very likely) own wallets which have already been verified. A straw-
man solution is to repudiate all wallets, and have everyone re-verify
their wallets every time a credential is revoked. But this leads to
a system that imposes penalties on honest users who pay a price
(literally) every time a user misbehaves and makes the system
susceptible to denial of service attacks. In the next section, we
introduce traceability, which enables efficient repudiation of wallets
verified using a credential that has since been revoked.

5.4 Adding Traceability

As discussed in the previous section, it is desirable to have the ability
to identify all wallets that were verified using a particular credential.
Unlike the straw-man solution in § 5.3, when the malicious user’s
credential is revoked, we will then be able to identify all wallets
associated with the revoked credential and selectively repudiate
their access. Crucially, this allows honest users to continue using
the system completely unaffected.

Our starting point is the tracing protocol of [57] where users
provide the CA with a linking token 𝛽 during credential generation,
which is basically an encryption of their secret key skU under
the auditors’ public key using a threshold public-key encryption
scheme, i.e,. 𝛽 = TPKE.Enc(pkA, skU). When verifying wallets, the
user also posts a tracing token 𝛾 := CR-PRF(skU, 𝜂) computed as
the output of a collision resistant PRF on a nonce 𝜂 ∈ [0, 𝜏], where
𝜏 is a limit on the credential usage. To trace all wallets verified
by a user using skU, any 𝑡 + 1 auditors can use secure multiparty
computation (MPC) to first decrypt 𝛽 and then compute Γ = {𝛾𝑖 =
CR-PRF(skU, 𝑖)}𝑖∈[0,𝜏 ] . The auditors now search for matches with
the posted tracing tokens to identify all wallets verified using the
corresponding key skU.

An astute reader may wonder why an expensive MPC that limits
the distribution of trust is needed, when instead the auditors can
non-interactively decrypt 𝛽 to first recover skU by using an appro-
priate threshold encryption scheme [39] and then locally evaluate
the PRF to obtain the tracing tokens. The use of MPC also requires
a threshold number of auditors to be online at the same time and
the communication is proportional to the credential usage limit 𝜏 ,

thereby limiting the number of wallets a user can verify as a large
number would be infeasible with MPC.

There are two main reasons to avoid revealing skU in the clear to
auditors: (i) a rushing malicious auditor can potentially impersonate
the user in the time it takes for the auditors to revoke the credential,
and (ii) a malicious auditor can query points outside the limited set
of the weakly-robust4 Dodis-Yampolskiy PRF [62], in which case,
we can no longer invoke the guarantees of the weakly-robust PRFs
in the security reduction.

To address the first issue, we use a separate tracing key tkU,
independent of skU, to compute the linking and tracing tokens.
Specifically, the linking token 𝛽 sent by the user to the CA during
credential generation becomes 𝛽 = TPKE.Enc(pkA, tkU), and the
tracing token 𝛾 posted during credential verification becomes 𝛾 :=
𝜂∥CR-PRF(tkU, 𝜂). Importantly, knowledge of tkU by itself does
not grant ownership of a credential, and thus, can not be used
to impersonate users. To bind the user to a specific tkU without
revealing it to the CA, we introduce a hiding commitment to tkU

as an attribute to each credential.
We resolve the second issue by using a stronger, collision-resistant

PRF (CR-PRF) (see § 3). We can do so because we use a general-
purpose proof system to prove well-formedness of the tracing token,
and hence, are not restricted to using the Dodis-Yampolskiy PRF.
Importantly, the use of a CR-PRF also allows us to not enforce any
limitation on 𝜂 except for the fact that it must be a field element.

To trace wallets verified by a user, any 𝑡 + 1 auditors can now
easily decrypt 𝛽 to recover tkU and then locally compute the set
of wallets verified by this user as {pkW | 𝜏 = CR-PRF(tkU, 𝜂) ∧
(pkW, ·, 𝛾 = 𝜂∥𝜏) ∈ T }, where T denotes the set of wallet verifica-
tion transactions. Indeed the work done to trace depends linearly
on the number of wallets but this only involves symmetric key
operations and even for 100 million wallets, it is estimated to take
approximately 15 seconds with a single thread. We will see in Ap-
pendix A that this also enables credential theft detection without
compromising ownership of one’s credential.

Overall, with traceability, the credential verification zkSNARK
proof statement is as follows:
“Given pkCA, pkW, 𝜙 , pkA, 𝛼 , rtrl, and tracing token 𝛾 , I know credU,
attr, pkU, 𝜎 , 𝜌 , 𝑃 rl, tracing key tkU, tracing nonce 𝜂, commitment 𝜁 ,

and commitment randomness 𝜔 such that:
• All checks from § 5.1, § 5.2, and § 5.3.
• 𝜁 is a credential attribute.
• 𝜁 opens to tkU with randomness 𝜔 : 𝜁 = Com(tkU;𝜔).
• 𝛾 is well-formed: 𝛾 = 𝜂∥CR-PRF(tkU, 𝜂).
In Figure 3 we describe the full credential verification protocol.

We now turn our attention to credential generation, which is
presented in detail in Figure 6. During credential generation, we
require that the user send a zkSNARK proof 𝜋 to the CA attesting to
the well-formedness of the values it provides, namely, (𝑈 , pkU, 𝛽, 𝜁 ).
Crucially, this proof 𝜋 not only protects against a malicious user,
it also preserves unlinkability against a malicious CA. In particu-
lar, the CA can learn tkU for any user 𝑈 by simply providing its
corresponding tracing token 𝛽 to the auditors during the tracing
4A PRF is weakly-robust if in addition to the pseudorandomness property, it is compu-
tationally infeasible for an adversary given oracle access to PRF𝐷𝑌 (𝐾, ·) on a limited

set of queries𝑄 , to find (𝐾∗, 𝑥∗) and 𝑥 such that PRF𝐷𝑌 (𝐾∗, 𝑥∗) = PRF𝐷𝑌 (𝐾, 𝑥) .
7



Credential Verification

User (owner of wallet pkW):
• Sample 𝜌 ← {0, 1}𝜆 and set 𝛼 := TPKE.Enc(pkA, id; 𝜌) .
• Sign pkW as 𝜎W := SIG.Sign(skU, pkW) .
• Let 𝑥 = (pkCA, pkW, 𝜙, pkA, rtrl, 𝛼,𝛾 ) .
• Let 𝑤 = (credU, attr, pkU, 𝜎, 𝜌, 𝑃 rl, 𝜂, 𝜁 ,𝜔) .
• Create a proof 𝜋 := zkSNARK.Prove(crsVER, 𝑥, 𝑤) for :

VER =

{
(𝑥, 𝑤) | SIG.Verify(pkU, pkW, 𝜎W) = 1

∧ SIG.Verify(pkCA, pkU ∥𝜁 ∥attr, credU) = 1
∧ 𝜙 (attr) = 1

∧ 𝛼 = TPKE.Enc(pkA, pkU; 𝜌)

∧MTrl .NMVerify(rtrl, pkU, 𝑃 rl) = 1

∧ 𝜁 = Com(tkU;𝜔)

∧ 𝛾 = 𝜂 ∥CR-PRF(tkU, 𝜂)
}

pkW → Smart Contract: Send 𝜋 and TX = (Verify, pkW, 𝛼,𝛾 )
Smart Contract: If zkSNARK.Verify(crsVER, 𝑥, 𝜋 ) = 1, approve
access.

Figure 3: Credential Verification Protocol

of some user𝑈 ∗, and consequently, break unlinkability for𝑈 . To
prevent this, we ask the CA to additionally send the proof 𝜋 from
credential generation to the auditors, as the CA can not generate a
valid proof for 𝛽 and𝑈 ∗ without knowledge of tkU.

5.5 Batching Credential Verification

So far, we have focused on adding desired functionality to our
AC scheme. Although our AC scheme already has a much smaller
gas cost compared to the existing AC schemes owing to the use
of zkSNARKs (§ 7.2.2), it still costs 294K gas or 12 USD despite
using the cheapest on-chain SNARK verifier [76]. The bottleneck
is the on-chain verification of the zkSNARK proof (§ 7.2.2), and
in this section, we discuss how users can significantly reduce this
cost through proof recursion [15, 17, 46, 140] and the help of an
untrusted aggregator.

The high-level idea is simple: the aggregator collects creden-
tial verification proofs from 𝑁 users, verifies them and recursively

proves to the contract that it performed the verification correctly
using another SNARK proof. Since the SNARK has sublinear verifi-
cation, the contract has to spend sublinear effort in verifying the
whole batch, and in turn, the amortized gas cost per user is much
smaller. In practice, to keep gas costs low for reasonable batch sizes,
it is desirable to have the contract verify a pairing-based SNARK
proof over the BN254 [15] curve – the only curve supported by EVM.
The problem, however, is that none of the prior approaches to proof
recursion lead to a practical solution with this restriction (§ 7.3.3).
In more detail, prior works use the following approaches:
• Pairing-based [15, 81]: requires either a 2-chain (or cycle) of

pairing-friendly elliptic curves which is not known5 for BN254,
or the use of expensive non-native arithmetic which leads to
intractable aggregator overhead.

5Even outside the context of EVM, the most efficient known 2-chain with 128-bit
security is BLS12-377/BW6-761 [81], where BW6-761 is 6× slower than BN254 [102],
albeit at a higher security level.

Verify  
(data-parallel)
∀i, π1

i

π11

π12

π13

Verify Π2

 Π2 Π1

Verify Π1

Users Aggregator Contract

Figure 4: Batched verification workflow. Circles denote com-

putations inside a SNARK and the circle labels denote the re-

spective SNARK proofs. Grey circles represent pairing-based

zkSNARK1 over BN254 and white circle represents the (data-

parallel) dlog-based simdSNARK2 over Grumpkin.

• FRI-based6 [118]: has a high recursion threshold and prover cost,
which leads to high aggregator and user overhead.
• Accumulation-based [23, 26, 27, 88]: has a linear verification step

independent of number of users, which alone imposes a huge
aggregator overhead in our setting.

Hence, none of the prior approaches are suitable for our setting
and we justify it concretely in § 7.3.

In this work, we adopt a new approach that relies on recursively
verifying a discrete-log (dlog)-based SNARK. In general, dlog-based
SNARKs are not suitable for recursion as their verifier complexity
is at least 𝑂 (

√
𝐶) for a circuit of size 𝐶 . In contrast, the verifier

complexity of pairing-based SNARKs and FRI-based SNARKs is just
𝑂 (1) and 𝑂 (log2𝐶), respectively. Despite this limitation, we still
manage to achieve a practical solution through careful use of the
dlog-based SNARK and two layers of recursion. Before we discuss
why our solution is practical, we first describe it in detail.

We use two SNARKs, namely, pairing-based zkSNARK1 (over
BN254) and dlog-based simdSNARK2 (over Grumpkin [67]), and
our batching solution (see Figure 4 for illustration) works as follows:

(1) A batch of 𝑁 users independently create credential verification
proofs {𝜋1

𝑖
}𝑖∈[𝑁 ] using zkSNARK1, and send them along with

transaction data {TX𝑖 }𝑖∈[𝑁 ] to the aggregator.
(2) First, the aggregator verifies the proofs {𝜋1

𝑖
}𝑖∈[𝑁 ] using simdSNARK2

to output Π2.
(3) Then, the aggregator verifies Π2 using zkSNARK1 to output

Π1, which is then sent to the contract for batched verification
along with {TX𝑖 }𝑖∈[𝑁 ] .

(4) Finally, the contract processes {TX𝑖 }𝑖∈[𝑁 ] and verifies Π1 to
ensure the validity of user proofs {𝜋1

𝑖
}𝑖∈[𝑁 ] before granting

access to {pkW
𝑖
}𝑖∈[𝑁 ] .

Now, we discuss the efficiency benefits of our approach:

• Unlike the pairing-based approach, there are no compatibility

issues as BN254 forms a cycle with (non-pairing-friendly) Grump-
kin, and thus, simdSNARK2 over Grumpkin can efficiently verify
zkSNARK1 proofs over BN254 and vice-versa.

6Concurrent work on ZkEVM [65, 134] improves upon the prior work on FRI-based
approach and builds a system that can batch EVM contracts. At the moment, however,
it doesn’t support cryptographic operations required for credential verification of
ZEBRA and prior AC schemes.

8



• Unlike the FRI-based approach, the users generate pairing-based
zkSNARK1 proofs with constant verifier complexity that impose
low recursion threshold and low prover overhead.

• For 𝑁 users and 𝑂 (𝑈 ) cost of verifying a single zkSNARK1

user proof, the verifier complexity of simdSNARK2 is 𝑂 (
√
𝑁 ·𝑈 ),

which corresponds to the circuit size proven by the aggrega-
tor within zkSNARK1. Unlike the accumulation-based approach
where the aggregator proves a circuit of size𝑂 (𝑈 )within zkSNARK1,
𝑂 (
√
𝑁 ·𝑈 ) is much better as 𝑁 ≪ 𝑈 in our setting. Importantly,

this step is the aggregator runtime bottleneck for our solution
as well as the accumulation-based solution.

• Since simdSNARK2 is verifying𝑁 independent zkSNARK1 proofs,
i.e., a data-parallel (or SIMD) computation, the concrete cost for
both its prover and verifier are improved. The latter helps further
reduce the circuit size proven within zkSNARK1.

As a result, we get a solution with zkSNARK1 on-chain verifica-
tion that has either 6.6× less aggregator overhead or 11× less user
overhead compared to prior solutions (§ 7.3.3).

5.6 Reducing per-user Costs in Batching

Batching SNARK verification mitigates the bottleneck in credential
verification, but there are still costs that scale with batch size and
lower-bound the amortized gas cost per user. Specifically, opera-
tions on user-specific inputs ({TX𝑖 = (pkW𝑖 , 𝛼𝑖 , 𝛾𝑖 )}𝑖∈[𝑁 ] ), such as
verifying the signature on TX𝑖 w.r.t. pkW𝑖 and SNARK input process-
ing on TX𝑖 , still scale linearly with batch size and these inputs along
with signatures also have to be posted on-chain. Even ignoring the
SNARK verification completely, this places a lower bound of 22.3K
gas per L1 wallet and 6.3K gas per L2 wallet (§ 7.3.1).

We minimize these lower bounds following the observation that
user-specific inputs posted on-chain can be made static for a given
pair of wallet and credential without affecting privacy guarantees

in account-based blockchains. In particular, the use of a credential
credU can be divided into two phases:

• Registration Phase: a wallet pkW pays a one-time cost to register
or cache an audit and tracing token (𝛼,𝛾) corresponding to credU
within the access control contract. Importantly, these tokens are
published on L1 for data availability, but they are cached on
either L1 or L2 depending on type of wallet.

• Verification Phase: subsequently, pkW retrieves the tokens from
the contract and pays much lower costs in accessing different
applications by proving different predicates w.r.t. credU.

While caching removes the cost of posting the tokens and verify-
ing a signature on them in subsequent batched verifications, there
are still two problems that need to be addressed:

(1) L1 storage is expensive: given that the total length of tokens
is 320-Bytes in our instantiation (§ 6), caching and retrieving
these tokens on L1 costs 200K and 21K gas per user, respectively.

(2) Number of SNARK inputs scales linearly with batch size: SNARK
input processing costs ≈ 9.7K gas per input in our concrete
instantiation (§ 7.3.1) which lower bounds the batched verifica-
tion of L2 wallets at ≈ 29K gas per user.

To address (1), instead of caching tokens directly, we instead cache a
short 32-Byte commitment to them, which reduces the storage costs

by 10×. Consequently, we need to change the credential verification
statement as follows:
“Given pkCA, pkW, 𝜙 , pkA, rtrl, (cached) token commitment 𝜈 , I know

credU, attr, pkU, 𝜎 , 𝜌 , 𝑃 rl, tkU, 𝜂, 𝜁 , 𝜔 , audit token 𝛼 , and tracing

token 𝛾 such that:
• All checks from § 5.1, § 5.2, § 5.3, and § 5.4.
• 𝜈 is a well-formed commitment to (𝛼,𝛾): 𝜈 = CRH(𝛼,𝛾), where

CRH is collision-resistant hash (CRH) function.”
To address (2), we make the number of SNARK inputs indepen-

dent of the batch size by moving user-specific public inputs in the
batched verification statement to private witnesses using a CRH. In
particular, the modified batched verification statement is as follows:
“Given pkCA,𝜙 , pkA, rtrl, and commitment𝐻 , I know proofs {𝜋}𝑖∈[𝑁 ] ,
wallet addresses {pkW

𝑖
}𝑖∈[𝑁 ] , token commitments {𝜈𝑖 }𝑖∈[𝑁 ] , and in-

termediate commitments {𝐻𝑖 }𝑖∈[𝑁 ] such that:
• For each 𝑖 ∈ [𝑁 ]:

– 𝐻𝑖 is well-formed: 𝐻𝑖 = CRH(pkW
𝑖
, 𝜈𝑖 ).

– 𝜋𝑖 is a valid credential verification proof:
zkSNARK1 .Verify(crsVER, (pkCA, pkW𝑖 , 𝜙, pk

A, rtrl, 𝜏, 𝜈𝑖 ), 𝜋1𝑖 ) =
1, where VER is the credential verification statement.

• 𝐻 is well-formed: 𝐻 = CRH(𝐻0, . . . , 𝐻𝑁−1).
The verification of this statement on-chain requires 𝐻 , which is
computed either on L1 or L2 depending on the wallet type.

Overall, our solution reduces the batched verification cost by up
to 14.8× and 284× for L1 and L2 wallets, respectively (Figure 5).

6 Concrete Instantiation

In this section, we discuss how we concretely instantiate the primi-
tives used in § 5 and our rationale behind these choices.

6.1 Core Protocols

Collision-Resistant Hash. We use Poseidon [75] to instantiate
the correlation-resistant hash (CRH) in our scheme.
Collision-Resistant Pseudorandom Function. Like Zcash [14],
we instantiate it with the SHA256 compression function.
zk-SNARK. We use Groth16 [76] instantiated over the BN254
curve [14, 123] as the zk-SNARK in our evaluation. The circuit-
specific trusted setup for Groth16 can be performed by the CAs and
the auditors in our setting. Alternatively, one could use PLONK [69],
a pairing-based SNARK with universal trusted setup, for more
flexibility in performing the setup. The gas costs for PLONK are
comparable to Groth16, and the prover can be made just as fast
with custom gates [142, 149]. We use Groth16 in our evaluation
because it has much better development support.
Digital Signature.We instantiate the signature scheme used by
CA with EdDSA [92] on BabyJubJub curve [144], which is efficient
to verify within Groth16 instantiated over the BN254 curve [15].

The signature scheme used to sign user messages is instantiated
with the simulation-extractable NIZKPoK+OWF signature scheme
by Bellare [12], where instead of a simulation extractable NIZK we
use Groth16 which is only weakly simulation extractable. However,
it can be shown that the scheme satisfies EUF-CMA which is suffi-
cient to prove security of our overall protocol. See Appendix G for
a full proof. The one way function is instantiated with Poseidon [1].
Threshold Public Key Encryption. We instantiate TPKE with
the threshold variant of CCA-2 secure Cramer-Shoup encryption

9



described in [39] combined with the upgrade to non-interactive
decryption via Key-Homomorphic PRFs from [22].
Sparse Merkle Tree. We instantiate the Sparse Merkle Tree with
depth 254 and Poseidon hash.

6.2 Batched and L2 Verification

We instantiate zkSNARK1 with pairing-based Groth16 [76] (over
BN254) and simdSNARK2 with discrete-log-based Spartan [125]
(over Grumpkin) optimized for data-parallelism. Both of these
SNARKs use R1CS arithmetization. In this work, we’ve focused
on R1CS because it has the best development support currently,
and the prior works in proof recursion literature are also based on
R1CS. Although our batching costs with R1CS are already practi-
cal (§ 7.3), they can be further improved significantly using plonk
arithmetization [68, 69] and its custom gates, specifically for non-
native arithmetic and MSMs [149].

7 Evaluation

In this section, we evaluate ZEBRA and answer the following:
(1) For single credential verification, how does ZEBRA compare

with prior AC schemes for blockchains in terms of:
• verification and proof complexity (§ 7.2.1),
• gas cost on EVM-compatible blockchains (§ 7.2.2), and
• computational cost imposed on users (§ 7.2.3)?

(2) For batched credential verification:
• What is the improvement in gas cost incurred per user with

batched verification (§ 7.3.1)?
• For a large enough batch, what is the computational and

monetary overhead on ZEBRA’s aggregator (§ 7.3.2)?
• How does our proof batching solution compare with prior

approaches to proof recursion (§ 7.3.3)?
Other aspects of ZEBRA like credential generation, revocation, trac-
ing, and transaction audit are lightweight in terms of cryptographic
tools and not time-sensitive.

For EVM-compatible blockchains, we use gas cost as our on-
chain cost metric as it includes the cost of computation, memory,
storage, as well as transaction size, and it is also the sole metric
used by prior works (Coconut, BASS). The throughput of an EVM-
compatible blockchain is also defined in terms of gas usage per
second, and thus, the lower the gas cost of a transaction, the higher
its throughput.

7.1 Implementation and Experimental Setup

We defer the implementation details to Appendix C and our code
is available at https://github.com/deevashwer/zebra. The details of
our experimental setup are as follows:
• EVM Gas Cost for Contracts: ganache v7.8.0 [130] and truffle

suite v5.8.4 [129]
• User Overhead: 2019 MacBook Pro (2.4 GHz 8-Core Intel Core i9

processor, 16 GB RAM)
• Aggregator Overhead: m6i.32xlarge AWS instance (3.5 GHz

Intel Xeon processor, 128 vCPUs, 512 GB RAM)

7.2 Credential Verification and Comparison

In this section, we evaluate ZEBRA’s single credential verification
and compare it with the following prior AC schemes for blockchains:

• Coconut [77, 128]: the state-of-the-art AC scheme; does not pro-
vide revocation, auditability or traceability.

• BASS [151]: a subsequent work that adds revocation to Coconut.
• Concordium’s AC scheme [57]: a recent AC scheme in the con-

text of permissioned blockchains that provides auditability and
traceability, but not revocation.

We include BASS and Concordium to highlight the high cost of
supporting properties beyond unlinkability in existing AC schemes.
Table 1 summarizes the supported properties, verifier and proof
complexity, estimated verifier runtime, proof size, and EVM gas
cost for ZEBRA and the above-mentioned AC schemes. We esti-
mate verifier time from the runtime of individual BN254 curve
operations, which we benchmark using the gnark backend, i.e., the
backend we use to generate user proofs. To estimate the gas cost
of prior AC schemes, we used the costs from EIP-1108 [145] for
G1 and pairing operations, and the benchmarks from Coconut’s
code [99] for G2 operations. For G𝑇 operations, we assume the cost
to be equal to that of G2 operations to favor prior works as there’s
no implementation available and our benchmarks show that G𝑇
operations are 4×more expensive than G2 operations in BN254. As
suggested by Coconut, we swapped the G1 and G2 operations for
both Coconut and BASS to reduce their respective gas costs. Now,
we first analyze the verifier and proof complexity.

7.2.1 Verification and Proof Complexity. Since the verifier and
proof complexity of prior AC schemes is linear in the verification
predicate, it scales linearly with the number of attributes𝑚 and gets
significantly worse as we add more properties to the AC scheme.
For instance, Table 1 shows that complexity of Coconut becomes
3× worse by just adding revocation support. Similarly, to support
auditability and traceability, Concordium’s AC scheme incurs a cost
that even grows with the number of auditors.

In contrast, ZEBRA has a constant verifier complexity irrespec-
tive of the number of attributes and the properties supported. ZE-
BRA’s proof complexity remained the same with revocation and
only grew by 10 F𝑝 elements to support auditability and traceability.
Concretely, ZEBRA’s verifier time and proof size are comparable to
the simplest instantiation of Coconut that only provides unlinka-
bility. Since any typical blockchain deployment requires more than
just unlinkability, this shows that ZEBRA is the most efficient AC
scheme for on-chain verification.

7.2.2 EVM Gas Cost. A credential verification transaction in ZE-
BRA costs 294K gas, out of which, around 235K gas is for SNARK
verification (including input processing), making it the bottleneck.
Other than that, base transaction fee is 21K gas, signature verifica-
tion on the tokens and wallet address takes 6K gas, updating the
access map takes 20K gas, and finally, posting the proof, the tokens,
and the signature on-chain requires another 10K gas; the remaining
gas cost is due to miscellaneous factors. With the current average
gas price of 23 Gwei and the price of Ethereum (1826.03 USD) on
May 27, 20237, our credential verification would require 12.34 USD
for 294K gas, which is reasonable for some users and applications.

Now, we compare the gas cost of ZEBRA with prior AC schemes.
Table 1 shows that the gas cost of Coconut credential verification

7This price was recommended by https://ethereumprice.org/gas/ for transaction con-
firmation within 5 minutes.

10

https://github.com/deevashwer/zebra
https://ethereumprice.org/gas/


Table 1: Comparison of ZEBRA’s single verification with prior AC works in context of blockchains for𝑚 private attributes. The

properties beyond unlinkability (see § 1) are abbreviated as follows: Rv (Revocation), Au (Auditability), and Tr (Traceability).

The bilinear group is instantiated over the BN254 curves, where the scalar field size |F𝑝 | = 32 Bytes, |G1 | = 64 Bytes, |G2 | = 128
Bytes, |G𝑇 | = 384 Bytes. The verifier runtime is estimated by benchmarking BN254 curve operations with a single thread on

MacBook Pro 2019. All metrics for Concordium [57] only represent a part of the credential verification computation.

Scheme Properties Proof Complexity Verifier Complexity Estimated Time (ms) Gas CostRv Au Tr / Proof Size (Bytes)
ZEBRA ✓ ✓ ✓ |G2 | + 2|G1 | + 10|F𝑝 | 3 exp-G1, 3 op-G1, 4 Pairings 1.54 / 576 294K

Coconut [128] ✗ ✗ ✗
3|G2 | + |G1 |
+ (𝑚 + 2) |F𝑝 |

(𝑚 + 3) exp-G1, (𝑚 + 3) op-G1,
2 exp-G2, 2 op-G2, 2 Pairings

1.44 + 0.08𝑚
/ 512 + 32𝑚

4.2M
+𝑚 · 6K

BASS [151] ✓ ✗ ✗
|G𝑇 | + 5|G2 | + 4|G1 |
+ (𝑚 + 8) |F𝑝 |

(𝑚 + 5) exp-G1, (𝑚 + 4) op-G1,
2 exp-G2, 2 op-G2, 8 Pairings,

4 exp-G𝑇 , 5 op-G𝑇

5.77 + 0.08𝑚
/ 1536 + 32𝑚

12.6M
+𝑚 · 6K

Concordium [57]
𝑛: #Auditors
(lower bound)

✗ ✓ ✓

(𝑚 + 3) |G𝑇 |
+ (7𝑛 + 2) |G1 |
+ (𝑚 + 3) |F𝑝 |

8𝑛 exp-G1, 5𝑛 op-G1,
(𝑚 + 6) Pairings,

(4𝑚 + 13) exp-G𝑇 , (3𝑚 + 9) op-G𝑇

11.0 + 3.07𝑚 + 0.61𝑛
/ 1376 + 416𝑚 + 448𝑛

26.57M
+𝑚 · 8.1M
+ 𝑛 · 48K

is at least 4.2𝑀 , which is 14× larger than ZEBRA and translates
to 176.5 USD on Ethereum. An astute reader might wonder why
Coconut’s gas cost is much higher than ZEBRA’s even though their
estimated verifier time and proof size are comparable. This is due an
EVM artefact as we alluded to in § 1: verifier of existing AC schemes
rely on G2 and G𝑇 operations that are not natively supported by
EVM and cost more than 300× compared to G1 operations.

7.2.3 User Overhead. As discussed in § 1, the prover time in prior
AC schemes is minimal (i.e., in the order of tens to hundreds of
milliseconds) as they rely on lightweight and customized NIZK
arguments. In contrast, ZEBRA sacrifices prover efficiency to gain
verifier efficiency by relying on general-purpose zkSNARKs. Al-
though ZEBRA’s prover is orders of magnitude slower than prior
AC schemes, we found that it is still practical. In particular, we eval-
uated the SNARK proof generation overhead on the user, which is
the bottleneck in generating a credential verification transaction.
The total R1CS constraints in our credential verification circuit are
386K, which requires 2s to prove on a Macbook Pro 2019 using 16
threads. Most of the constraints are due to the use of SHA256, a
single call of which costs 60K constraints on a 64-Byte input. While
this is already practical for laptops, especially given that these
proofs need to be generated once per application and wallet, it can
be made more accessible to weak-client devices like smartphones.
For instance, we can (i) replace SHA256 with a SNARK-friendly
hash function like Poseidon [75], (ii) delegate proof generation in
a secure manner [45, 70, 107], and (iii) use plonk arithmetization
instead of R1CS to reduce SHA256 constraints [149].

7.3 Batched Verification

7.3.1 Gas Costs. Figure 5 compares the gas cost per user for five
kinds of credential verification: (i) ZEBRA’s single verification as
evaluated in § 7.2 (Single), (ii) L1 batched verification without to-
ken caching (L1-Naïve), (iii) ZEBRA’s L1 batched verification with
caching (L1-Cached), (iv) L2 batched verification without caching
(L2-Naïve), and finally, (v) ZEBRA’s L2 batched verification with
caching (L2-Cached). We include (ii) and (iv) as baselines in this
graph to highlight the significance of token caching (§ 5.6), and the

gas costs reported for batched verification with caching assume
that the token is already cached.

We first analyze the gas cost for L1 batching. The figure demon-
strates that ZEBRA’s L1 batching reduces the gas cost by up to
27.8× and requires just 14.1K and 10.6K gas per user for a batch of
64 and 512 users, respectively. For a batch of 512 users, this trans-
lates to just 0.44 USD on Ethereum. Without caching, the gas cost
improvement is just 2×, which is largely due to expensive SNARK
input processing with Groth16 which costs around 9.7K gas per
32-Byte input. Even ignoring the cost from Groth16 entirely, the
gas cost without caching would still be around 22.3K. This shows
that our caching technique is essential for batching with Groth16,
and it leads to at least 2× improvement in gas cost for L1 batching.

Now, we focus on the gas cost for ZEBRA’s L2 batching. The gas
for L2 is reduced linearly with batch size and the reduction is up to
539× for a batch of 512 users. For the same, the gas cost is just 545,
which costs 0.02 USD and is comparable with the L2 transaction gas
costs for ZkSync [154] and Loopring [93], the most cost-efficient L2
solutions [104]. Again, the benefit from batching is minimal without
caching due to Groth16. However even ignoring Groth16 in this
case, the gas cost is still as high as 6.3K from just posting the tokens
on-chain. This is at least 11.5× worse than ZEBRA, demonstrating
that caching is crucial for batching L2 wallets.

Previously we assumed that tokens were already cached, and
now we report the gas costs for caching tokens, a.k.a., registering
the credential. The gas cost for caching is just 56.5K and 7.9K for
L1 and L2 wallets, respectively, given a batch of 512 users. This
translates to just 2.37 USD and 0.33 USD on Ethereum, respectively,
and only has to be paid once per credential and wallet.

7.3.2 Aggregator Overhead. We first focus on aggregator overhead
for L1 batching: Table 2 summarizes the aggregator runtimes for
generating both proofs as well as the number of R1CS constraints
they prove for a batch of 64 and 512 users. The aggregator runtime
is just 50 seconds for 64 users, which already leads to a good amor-
tization of gas costs. For a better amortization with 512 users, the
total runtime grows sub-linearly to around 1.5 minutes, which is
still quite practical given credential verification is required once per

11



Figure 5: Gas cost per user comparison of single and batched

verification of L1 and L2 wallets for batches of 64 and 512
users. The numbers next to the bars represent the improve-

ment w.r.t. single verification.

1.9x

20.9x

2.5x

67.3x

2x

27.8x

2.6x

538.6x

0 50 100 150 200 250 300

Single

L1-Naïve

L1-Cached

L2-Naïve

L2-Cached

L1-Naïve

L1-Cached

L2-Naïve

L2-Cached

64
51

2

Gas Cost / User (x1K)

Ba
tc

h 
Si

ze

Table 2: Aggregator overhead for 𝑁 users. Times are in sec-

onds (s) and R1CS constraints are in millions (M).

SNARK Metric 𝑁 = 64 𝑁 = 512
Spartan

(data-parallel)
Time 14.6 s 33.9 s

#Constraints 7M 57M

Groth16 Time 34.7 s 50.4 s
#Constraints 65M 105M

Total Aggregator Time 49.4 s 84.4 s

application. Even though Spartan has a linear prover, the runtime
doesn’t scalar linearly with𝑁 due to imperfect parallelization in our
implementation. The runtimes can be further improved with better
parallelization of our Spartan implementation, and by replacing
R1CS with plonk arithmetization as summarized in § 6.2.

The additional overhead for L2 batching on top of L1 is just a
lookup into the rollup state and a signature verification. This does
not affect the total runtime significantly, and thus, the rollup server
overhead for L2 batching is similar to the L1 batching overhead.

Now, we analyze the monetary cost of batched verification. The
m6i.32xlarge we rented from AWS has a spot price of 2.3437
USD/hour (US East - Ohio). We can batch around 21.8K users an
hour with this instance, 512 at a time. Thus, the compute cost
incurred by the aggregator per user is just 0.000107 USD. This cost
is negligible compared to the minimum price of gas cost per user
we achieve which is 0.02 USD, underscoring the significance of
minimizing gas costs.

7.3.3 Cost of Prior Recursion Approaches. We discussed why prior
approaches to recursion are not suitable in our setting in § 5.5,
and now we concretely justify our claim. For prior approaches,
we consider number of constraints proven within Groth16 as rep-
resentative of the aggregator cost, and compare that against the
total constraints proven by ZEBRA’s aggregator for 𝑁 = 512. Note
that this is a fair comparison because (i) we’re comparing part of
the baselines with our entire solution, and (ii) the prover time of
Spartan is better than Groth16 [125].

First, we have the pairing-based approach that requires use
of non-native arithmetic which introduces ≈ 1000× overhead in
R1CS [6]. As a result, this approach requires ≈ 226 · 𝑁 constraints
for 𝑁 users, or ≈ 235 constraints for 𝑁 = 512. Second, the FRI-
based approach has a recursion threshold of 220 constraints for our
credential verification circuit [118], resulting in 229 constraints for
𝑁 = 512. Finally, the cost of just the decider in accumulation-based
recursion is > 213 · 𝑛 [7], where 𝑛 is the number of constraints in
each accumulated instance. In our setting, 𝑛 ≈ 217 (see Spartan con-
straints in Table 2), and thus, the decider cost is > 230 constraints.

In contrast, the total overhead in our solution is just 227.27 con-
straints (226.65 within Groth16), which is at least 212× and 6.6×
better than pairing and accumulation-based approach, respectively.
Similarly, the FRI-based approach is also 3.3× worse, and it addi-
tionally imposes an 11× higher prover overhead on users (Figure
7 in [125]). Thus, prior approaches to recursion either increase
aggregator overhead by 6.6× or the user overhead by 11×.

8 Related Work

AnonymousCredentials. Following the initial work of Chaum [44],
there has been a long line of work [11, 21, 25, 30, 30, 35, 37, 48,
66, 78, 82, 122, 133] with successively more efficient and expres-
sive anonymous credentials that have been widely deployed in
a number of real-world applications [4, 31, 59, 109]. Today, we
have credentials that can be used a limited number of times [9,
25, 32], revoked [33, 34, 36], audited [35], traced [57], delegated
[10, 18, 29, 43, 54], updated [19, 52], and issued by a decentralized
organization [71, 77, 121, 128]. Recent years have also witnessed
a synergy between ACs and blockchains. ACs are being used in
permissioned blockchains for identity management [5, 20, 57, 126],
and blockchains are being leveraged as a verifiable data registry to
improve off-chain certificates [50, 86, 106, 119].

Private On-chain Access Control. Like ZEBRA, several concur-
rentworks, namely, iden3 [85], Polygon ID [119] and Semaphore [124],
enable a private on-chain access control solution using zkSNARKs.
Thus, they can achieve similar gas cost as ZEBRA’s single verifica-
tion by instantiating the underlying zk-SNARK with Groth16 [76]
or PLONK [69]. However, unlike ZEBRA, they don’t support au-
ditability, traceability, and batching, which are necessary for ac-
countability, efficient revocation, and practical verification costs.

Similarly, Espresso Systems’s CAPE [131, 132] is a concurrent
work that also relies on zkSNARKs to enable anonymous asset
transfer on Ethereum with configurable policies per asset. One
such policy can be ownership of a valid credential. However, unlike
our solution, CAPE works in the UTxOmodel, and does not support
batching, revocation and traceability.

Other Works. Azeroth [87] provides privacy-preserving trans-
actions with auditing. In a similar vein, there are works adding
auditability and regulation to existing privacy-preserving cryp-
tocurrencies like ZCash [72] and Monero [91], and central bank
digital currencies (CBDCs) [148]. Finally, zkLedger [100] proposed
privacy-preserving ledgers that can be used by banks to settle cross-
organization transactions while also allowing third-party auditing.

12



References

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In ASIACRYPT. Springer.

[2] Algorand. 2022. https://www.algorand.com/.
[3] Ian Allison. 2021. Aave’s Push for Institutional DeFi Gets Second KYC Provider

Proposal. https://www.coindesk.com/business/2021/12/03/aaves-push-for-
institutional-defi-gets-second-kyc-provider-proposal/. CoinDesk (2021).

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In EuroSys.

[5] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Björn Tackmann. 2020. Privacy-Preserving Auditable Token
Payments in a Permissioned Blockchain System (AFT ’20). Association for
Computing Machinery.

[6] arkworks rs. 2021. nonnative. https://github.com/arkworks-rs/nonnative.
[7] arkworks rs. 2021. r1cs-std. https://github.com/arkworks-rs/r1cs-std.
[8] arkworks rs. 2022. arkworks-rs. https://github.com/arkworks-rs.
[9] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous credentials light.

In CCS. ACM.
[10] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-
mous Credentials. In CRYPTO. Springer.

[11] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2008.
P-signatures and noninteractive anonymous credentials. In TCC. Springer.

[12] Mihir Bellare. 2021. Lectures on NIZKs: A Concrete Security Treatment. https:
//cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf

[13] Mihir Bellare, Sarah Meiklejohn, and Susan Thomson. 2014. Key-versatile
signatures and applications: RKA, KDM and joint enc/sig. In EUROCRYPT.
Springer.

[14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. In IEEE S&P. IEEE.

[15] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Scal-
able Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO. Springer.

[16] Josh Benaloh and Michael de Mare. 1993. One-way accumulators: A decentral-
ized alternative to digital signatures. In EUROCRYPT. Springer.

[17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In STOC.
ACM.

[18] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anony-
mous Credentials from Dynamically Malleable Signatures. In ACNS (Lecture

Notes in Computer Science). Springer.
[19] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. 2019. Updatable

Anonymous Credentials and Applications to Incentive Systems. In CCS. ACM.
[20] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.

2021. Anonymous Transactions with Revocation and Auditing in Hyperledger
Fabric. CANS (2021).

[21] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.
In EUROCRYPT. Springer.

[22] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
2013. Key Homomorphic PRFs and Their Applications. In CRYPTO (1) (Lecture

Notes in Computer Science, Vol. 8042). Springer, 410–428.
[23] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Recursive Proof Composition

without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
[24] Pelle Braendgaard. 2019. EIP-1812: Ethereum Verifiable Claims. https://github.

com/ethereum/EIPs/pull/1812
[25] Stefan Brands and Frédéric Légaré. 2002. Digital Identity Management based

on Digital Credentials. In GI Jahrestagung (LNI). GI.
[26] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas

Spooner. 2021. Proof-Carrying Data Without Succinct Arguments. In CRYPTO.
Springer.

[27] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
2020. Recursive Proof Composition from Accumulation Schemes. In TCC.
Springer.

[28] Vitalik Buterin. 2018. On-chain scaling to potentially 500 tx/sec through mass
tx validation. (2018). https://ethresear.ch/t/on-chain-scaling-topotentially-
500-tx-sec-through-mass-tx-validation

[29] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. 2017. Practical
UC-secure delegatable credentials with attributes and their application to
blockchain. In CCS.

[30] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. 2015. Composable and Modular Anonymous Credentials: Defi-
nitions and Practical Constructions. In ASIACRYPT. Springer.

[31] Jan Camenisch and Els Van Herreweghen. 2002. Design and implementation of
the idemix anonymous credential system. In CCS. ACM.

[32] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya,
and Mira Meyerovich. 2006. How to win the clonewars: efficient periodic
n-times anonymous authentication. In CCS. ACM.

[33] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2009. AnAccumulator
Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials.
In PKC. Springer.

[34] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2010. Solving Revo-
cation with Efficient Update of Anonymous Credentials. In SCN. Springer.

[35] Jan Camenisch and Anna Lysyanskaya. 2001. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
EUROCRYPT. Springer.

[36] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and
Application to Efficient Revocation of Anonymous Credentials. In CRYPTO.
Springer.

[37] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anony-
mous credentials from bilinear maps. In CRYPTO. Springer.

[38] Ran Canetti. 2001. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS. IEEE.

[39] Ran Canetti and Shafi Goldwasser. 1999. An efficient threshold public key
cryptosystem secure against adaptive chosen ciphertext attack. In EUROCRYPT.
Springer.

[40] BNB Smart Chain. 2022. https://www.bnbchain.org/en/smartChain.
[41] Gnosis Chain. 2022. https://www.gnosis.io/.
[42] HECO Chain. 2022. https://www.hecochain.com/en-us/.
[43] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2014. Malleable Signatures: New Definitions and Delegatable Anonymous
Credentials. In CSF. IEEE.

[44] David Chaum. 1985. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM (1985).

[45] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. 2023.
Eos: Efficient Private Delegation of zkSNARK Provers. In USENIX Security

Symposium.
[46] Alessandro Chiesa and Eran Tromer. 2010. Proof-Carrying Data and Hearsay

Arguments from Signature Cards. In ICS. Tsinghua University Press.
[47] Coin Metrics Network Chart. 2022. https://charts.coinmetrics.io/.
[48] Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. 2022. Im-

proved Constructions of Anonymous Credentials from Structure-Preserving
Signatures on Equivalence Classes. In PKC. Springer.

[49] ConsenSys. 2021. gnark. https://github.com/ConsenSys/gnark.
[50] World Wide Web Consortium et al. 2019. Verifiable Credentials Data Model

v1.1. W3C First Public Working Draft, https://www.w3.org/TR/vc-data-model/

(2019).
[51] Ben Cooper. 2021. Announcing Alkemi Network & KYC-Chain Partner-

ship. https://medium.com/alkemi/announcing-alkemi-network-kyc-chain-
partnership-f87aa1f27700. Medium (2021).

[52] Scott E. Coull, Matthew Green, and Susan Hohenberger. 2009. Controlling
Access to an Oblivious Database Using Stateful Anonymous Credentials. In
PKC. Springer.

[53] Ronald Cramer and Victor Shoup. 1998. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. InCRYPTO. Springer.

[54] Elizabeth C Crites and Anna Lysyanskaya. 2019. Delegatable anonymous
credentials from mercurial signatures. In CT-RSA. Springer.

[55] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. 2016. Efficient sparse merkle
trees. In NordSec. Springer.

[56] Ivan Damgård. 2002. On Σ-protocols. Lecture Notes, University of Aarhus,

Department for Computer Science (2002), 84.
[57] Ivan Damgård, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and

Luisa Siniscalchi. 2021. Balancing Privacy and Accountability in Blockchain
Identity Management. In CT-RSA. Springer.

[58] Ivan Damgård and Nikos Triandopoulos. 2008. Supporting Non-membership
Proofs with Bilinear-map Accumulators. IACR Cryptol. ePrint Arch. (2008), 538.

[59] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.
PETS (2018).

[60] Nikhilesh De. 2021. State of Crypto: FATF’s New Guidance Takes Aim at
DeFi. https://www.coindesk.com/policy/2021/03/30/state-of-crypto-fatfs-new-
guidance-takes-aim-at-defi/. CoinDesk (2021).

[61] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
2010. Efficient public-key cryptography in the presence of key leakage. In
ASIACRYPT. Springer.

[62] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Func-
tion with Short Proofs and Keys. In Public Key Cryptography (Lecture Notes in

Computer Science, Vol. 3386). Springer, 416–431.
[63] Ethereum Gas Charts. 2022. https://ethereumprice.org/gas/.
[64] Fantom. 2022. https://fantom.foundation/.
[65] Brendan Farmer. 2022. Introducing Plonky2. https://blog.polygon.technology/

introducing-plonky2/. Polygon Blog (2022).

13

https://www.algorand.com/
https://www.coindesk.com/business/2021/12/03/aaves-push-for-institutional-defi-gets-second-kyc-provider-proposal/
https://www.coindesk.com/business/2021/12/03/aaves-push-for-institutional-defi-gets-second-kyc-provider-proposal/
https://github.com/arkworks-rs/nonnative
https://github.com/arkworks-rs/r1cs-std
https://github.com/arkworks-rs
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://github.com/ethereum/EIPs/pull/1812
https://github.com/ethereum/EIPs/pull/1812
https://ethresear.ch/t/on-chain-scaling-topotentially-500-tx-sec-through-mass-tx-validation
https://ethresear.ch/t/on-chain-scaling-topotentially-500-tx-sec-through-mass-tx-validation
https://www.bnbchain.org/en/smartChain
https://www.gnosis.io/
https://www.hecochain.com/en-us/
https://charts.coinmetrics.io/
https://github.com/ConsenSys/gnark
https://www.w3.org/TR/vc-data-model/
https://medium.com/alkemi/announcing-alkemi-network-kyc-chain-partnership-f87aa1f27700
https://medium.com/alkemi/announcing-alkemi-network-kyc-chain-partnership-f87aa1f27700
https://www.coindesk.com/policy/2021/03/30/state-of-crypto-fatfs-new-guidance-takes-aim-at-defi/
https://www.coindesk.com/policy/2021/03/30/state-of-crypto-fatfs-new-guidance-takes-aim-at-defi/
https://ethereumprice.org/gas/
https://fantom.foundation/
https://blog.polygon.technology/introducing-plonky2/
https://blog.polygon.technology/introducing-plonky2/


[66] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-
Preserving Signatures on Equivalence Classes and Constant-Size Anonymous
Credentials. J. Cryptol. (2019).

[67] Ariel Gabizon, Zac Williamson, and Tom Walton-Pocock. 2021. Aztec Yellow
Paper. https://hackmd.io/@aztec-network/ByzgNxBfd. hackmd (2021).

[68] Ariel Gabizon and Zachary J. Williamson. 2020. plookup: A simplified polyno-
mial protocol for lookup tables. Cryptology ePrint Archive, Paper 2020/315.

[69] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Cryptology ePrint Archive, Report 2019/953.

[70] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi
Sekar. 2023. zkSaaS: Zero-Knowledge SNARKs as a Service. In USENIX Security

Symposium.
[71] Christina Garman, Matthew Green, and Ian Miers. 2013. Decentralized anony-

mous credentials. Cryptology ePrint Archive, Report 2013/622. (2013).
[72] Christina Garman, Matthew Green, and Ian Miers. 2016. Accountable Privacy

for Decentralized Anonymous Payments. In Financial Cryptography. Springer.
[73] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.

Cambridge university press.
[74] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan

Song. 2020. Storing and Retrieving Secrets on a Blockchain. Cryptology ePrint
Archive, Report 2020/504.

[75] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-
Knowledge Proof Systems. In USENIX Security Symposium. USENIX Association,
519–535.

[76] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
EUROCRYPT. Springer.

[77] Harry Halpin. 2020. Nym credentials: Privacy-preserving decentralized identity
with blockchains. In CVCBT. IEEE.

[78] Lucjan Hanzlik and Daniel Slamanig. 2021. With a Little Help from My Friends:
Constructing Practical Anonymous Credentials. In CCS.

[79] Harmony. 2022. https://www.harmony.one/.
[80] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive secret sharing or: How to cope with perpetual leakage. In annual interna-

tional cryptology conference. Springer, 339–352.
[81] Youssef El Housni and Aurore Guillevic. 2020. Optimized and secure pairing-

friendly elliptic curves suitable for one layer proof composition. Cryptology
ePrint Archive, Paper 2020/351.

[82] Chloé Hébant and David Pointcheval. 2020. Traceable Constant-Size Multi-
Authority Credentials. Cryptology ePrint Archive, Report 2020/657.

[83] iden3. 2023. Library of basic circuits for circom. https://github.com/iden3/
circomlib.

[84] iden3. 2023. zkSnark circuit compiler. https://github.com/iden3/circom.
[85] iden3 On-chain Verification Contracts. 2022. https://github.com/iden3/

contracts/tree/master/contracts/validators.
[86] iden3.io. 2022. https://iden3.io/.
[87] Gweonho Jeong, Nuri Lee, Jihye Kim, and Hyunok Oh. 2022. Azeroth: Auditable

Zero-knowledge Transactions in Smart Contracts. Cryptology ePrint Archive,
Report 2022/211.

[88] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2021. Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes. Cryptology ePrint Archive,
Report 2021/370.

[89] Ravie Lakshmanan. 2022. U.S. Sanctions Virtual Currency Mixer Tornado
Cash for Alleged Use in Laundering. https://thehackernews.com/2022/08/us-
sanctions-virtual-currency-mixer.html. The Hacker News (2022).

[90] Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal accumulators with efficient
nonmembership proofs. In International Conference on Applied Cryptography

and Network Security. Springer.
[91] Yannan Li, Guomin Yang, Willy Susilo, Yong Yu, Man Ho Au, and Dongxi

Liu. 2021. Traceable Monero: Anonymous Cryptocurrency with Enhanced
Accountability. IEEE Trans. Dependable Secur. Comput. (2021).

[92] Ilari Liusvaara and Simon Josefsson. 2017. Edwards-curve digital signature
algorithm (EdDSA). IETF (2017).

[93] Loopring. 2022. Loopring. URL: https://loopring.org/ (2022).
[94] Lukso. 2022. https://www.lukso.network/.
[95] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander

Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.
2021. CanDID: Can-do decentralized identity with legacy compatibility, Sybil-
resistance, and accountability. In IEEE S&P. IEEE.

[96] Sai Krishna DeepakMaram, Fan Zhang, LunWang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. CHURP: dynamic-committee proactive secret
sharing. In CCS. 2369–2386.

[97] Michael McSweeney. 2022. Axie Infinity’s Ethereum sidechain Ronin hit by $600
million exploit. https://www.theblockcrypto.com/post/139761/axie-infinitys-
ethereum-sidechain-ronin-hit-by-600-million-exploit. The Block Crypto (2022).

[98] MetisDAO. 2021. EVM Equivalence vs. EVM Compatibility. https://metisdao.
medium.com/evm-equivalence-vs-evm-compatibility-199bd66f455d. Medium

(2021).
[99] musalbas. 2018. coconut-ethereum. https://github.com/musalbas/coconut-

ethereum.
[100] Neha Narula, Willy Vasquez, and Madars Virza. 2018. zkLedger: Privacy-

Preserving Auditing for Distributed Ledgers. In NSDI. USENIX Association.
[101] Celo Network. 2022. https://celo.org/.
[102] Celer Network. 2023. The Pantheon of Zero Knowledge Proof Develop-

ment Frameworks. https://blog.celer.network/2023/03/01/the-pantheon-of-
zero-knowledge-proof-development-frameworks/. Celer Network Blog (2023).

[103] Brian Newar. 2022. Aave launches its permissioned pool Aave Arc, with 30
institutions set to join. https://cointelegraph.com/news/aave-launches-its-
permissioned-pool-aave-arc-with-30-institutions-set-to-join. Cointelegraph
(2022).

[104] Bitpush News. 2022. Which Layer 2 Rollup for Ethereum is the
Best? https://bitpushnews.medium.com/which-layer-2-rollup-for-ethereum-
is-the-best-f7ac047c1ac6. Medium (2022).

[105] Kobbi Nissim and Moni Naor. 1998. Certificate Revocation and Certificate
Update. In USENIX Security Symposium. USENIX Association.

[106] N Otto, S Lee, B Sletten, D Burnett, M Sporny, and K Ebert. 2019. Verifiable
Credentials Use Cases. W3C First Public Working Draft, https://www.w3.org/TR/

vc-use-cases/ (2019).
[107] Alex Ozdemir and Dan Boneh. 2022. Experimenting with Collaborative zk-

SNARKs: Zero-Knowledge Proofs for Distributed Secrets. In USENIX Security

Symposium. USENIX Association, 4291–4308.
[108] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011.

Optimal Verification of Operations on Dynamic Sets. In CRYPTO (Lecture Notes

in Computer Science, Vol. 6841). Springer, 91–110.
[109] Christian Paquin. 2011. U-prove technology overview v1. 1. Microsoft Corpora-

tion Draft Revision 1 (2011).
[110] Rafael Pass. 2003. Simulation in Quasi-Polynomial Time, and Its Application

to Protocol Composition. In EUROCRYPT (Lecture Notes in Computer Science,

Vol. 2656). Springer, 160–176.
[111] Pieter Pauwels. 2021. zkKYC: A solution concept for KYC without knowing

your customer, leveraging self-sovereign identity and zero-knowledge proofs.
Cryptology ePrint Archive, Report 2021/907.

[112] Pieter Pauwels, Joni Pirovich, Peter Braunz, and Jack Deeb. 2022. zkKYC in DeFi:
An approach for implementing the zkKYC solution concept in Decentralized
Finance. Cryptology ePrint Archive, Report 2022/321.

[113] Alexey Pertsev, Roman Semenov, and Roman Storm. 2019. Tornado Cash Privacy
Solution Version 1.4. (2019).

[114] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures.
In CT-RSA. Springer.

[115] Polkadex. 2022. What is Decentralized KYC and why Polkadex is implement-
ing it. https://medium.com/polkadex/what-is-decentralized-kyc-and-why-
polkadex-is-implementing-it-88f01c4c3e9a. Medium (2022).

[116] Polygon. 2022. https://polygon.technology/.
[117] Chaitanya Potti and Partha Bhattacharya. 2018. EIP-1261: Membership Verifi-

cation Token. https://github.com/ethereum/eips/issues/1261
[118] Fractal Protocol. 2021. Fractal Protocol. https://protocol.fractal.id/
[119] Andjela Radmilac. 2022. A look at Polygon ID, a new zk-proof based Web3

identity solution. https://cryptoslate.com/polygons-new-zk-proof-based-web3-
identity-service/. CryptoSlate (2022).

[120] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün
Sirer. 2019. Scalable and probabilistic leaderless BFT consensus throughmetasta-
bility. arXiv preprint arXiv:1906.08936 (2019).

[121] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. 2022.
zk-creds: Flexible Anonymous Credentials from zkSNARKs and Existing Iden-
tity Infrastructure. Cryptology ePrint Archive, Paper 2022/878.

[122] Olivier Sanders. 2020. Efficient Redactable Signature and Application to Anony-
mous Credentials. In PKC. Springer.

[123] scipr lab. 2020. libsnark. https://github.com/scipr-lab/libsnark.
[124] Semaphore V2. 2022. https://semaphore.appliedzkp.org/.
[125] Srinath T. V. Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs

Without Trusted Setup. In CRYPTO. Springer.
[126] Wei Shao, Chunfu Jia, Yunkai Xu, Kefan Qiu, Yan Gao, and Yituo He. 2020.

Attrichain: Decentralized traceable anonymous identities in privacy-preserving
permissioned blockchain. Computers & Security (2020).

[127] Corwin Smith, Alex Beckett, Paul Wackerow, and AlehNat. 2023. Data Avail-
ability. https://ethereum.org/en/developers/docs/data-availability/. Ethereum
Docs (2023).

[128] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Cre-
dentials withApplications toDistributed Ledgers. InNDSS. The Internet Society.

[129] Truffle Suite. 2018. Truffle Suite - Your Ethereum Swiss Army Knife. URL:

http://truffleframework.com/ (2018).
[130] Truffle Suite. 2022. Ganache. https://github.com/trufflesuite/ganache.
[131] Espresso Systems. 2022. CAPE Overview. https://docs.cape.tech/espresso-

systems/cape/overview.

14

https://hackmd.io/@aztec-network/ByzgNxBfd
https://www.harmony.one/
https://github.com/iden3/circomlib
https://github.com/iden3/circomlib
https://github.com/iden3/circom
https://github.com/iden3/contracts/tree/master/contracts/validators
https://github.com/iden3/contracts/tree/master/contracts/validators
https://iden3.io/
https://thehackernews.com/2022/08/us-sanctions-virtual-currency-mixer.html
https://thehackernews.com/2022/08/us-sanctions-virtual-currency-mixer.html
https://www.lukso.network/
https://www.theblockcrypto.com/post/139761/axie-infinitys-ethereum-sidechain-ronin-hit-by-600-million-exploit
https://www.theblockcrypto.com/post/139761/axie-infinitys-ethereum-sidechain-ronin-hit-by-600-million-exploit
https://metisdao.medium.com/evm-equivalence-vs-evm-compatibility-199bd66f455d
https://metisdao.medium.com/evm-equivalence-vs-evm-compatibility-199bd66f455d
https://github.com/musalbas/coconut-ethereum
https://github.com/musalbas/coconut-ethereum
https://celo.org/
https://blog.celer.network/2023/03/01/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/03/01/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://cointelegraph.com/news/aave-launches-its-permissioned-pool-aave-arc-with-30-institutions-set-to-join
https://cointelegraph.com/news/aave-launches-its-permissioned-pool-aave-arc-with-30-institutions-set-to-join
https://bitpushnews.medium.com/which-layer-2-rollup-for-ethereum-is-the-best-f7ac047c1ac6
https://bitpushnews.medium.com/which-layer-2-rollup-for-ethereum-is-the-best-f7ac047c1ac6
https://www.w3.org/TR/vc-use-cases/
https://www.w3.org/TR/vc-use-cases/
https://medium.com/polkadex/what-is-decentralized-kyc-and-why-polkadex-is-implementing-it-88f01c4c3e9a
https://medium.com/polkadex/what-is-decentralized-kyc-and-why-polkadex-is-implementing-it-88f01c4c3e9a
https://polygon.technology/
https://github.com/ethereum/eips/issues/1261
https://protocol.fractal.id/
https://cryptoslate.com/polygons-new-zk-proof-based-web3-identity-service/
https://cryptoslate.com/polygons-new-zk-proof-based-web3-identity-service/
https://github.com/scipr-lab/libsnark
https://semaphore.appliedzkp.org/
https://ethereum.org/en/developers/docs/data-availability/
https://github.com/trufflesuite/ganache
https://docs.cape.tech/espresso-systems/cape/overview
https://docs.cape.tech/espresso-systems/cape/overview


[132] Espresso Systems. 2022. Specification: Configurable Asset Privacy. https:
//github.com/EspressoSystems/cap/blob/main/cap-specification.pdf. Github
(2022).

[133] Syh-Yuan Tan and Thomas Groß. 2020. MoniPoly - An Expressive q-SDH-Based
Anonymous Attribute-Based Credential System. In ASIACRYPT. Springer.

[134] Polygon Team. 2022. The Future is Now for Ethereum Scaling: Introducing Poly-
gon zkEVM. https://blog.polygon.technology/the-future-is-now-for-ethereum-
scaling-introducing-polygon-zkevm/. Polygon Blog (2022).

[135] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In
CRYPTO (2) (Lecture Notes in Computer Science, Vol. 8043). Springer, 71–89.

[136] Andrew Thurman. 2021. Aave Proposal Enlists Fireblocks to Aid DeFi Protocol’s
Mainstream Finance Push. https://www.coindesk.com/tech/2021/09/27/aave-
proposal-enlists-fireblocks-to-aid-defi-lenders-mainstream-finance-push/.
CoinDesk (2021).

[137] Joel Torstensson. 2017. EIP-780: Ethereum Claims Registry. https://github.
com/ethereum/EIPs/issues/780

[138] TRON. 2022. https://tron.network/.
[139] Matan Tsuberi, Ben Kaufman, Adam Levi, and Oren Sokolowsky. 2018. EIP-1480:

Access Control Standard. https://github.com/ethereum/EIPs/issues/1481
[140] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowl-

edge Imply Time/Space Efficiency. In TCC (Lecture Notes in Computer Science).
Springer.

[141] Fabian Vogelsteller. 2017. EIP-735: Claim Holder. https://github.com/ethereum/
eips/issues/735

[142] ThomasWalton-Pocock. 2019. PLONK Benchmarks I — 2.5x faster than Groth16
on MiMC. https://medium.com/aztec-protocol/plonk-benchmarks-2-5x-faster-
than-groth16-on-mimc-9e1009f96dfe. Medium (2019).

[143] Tracy Wang. 2022. Algorand Pushes for Ethereum Compatibility With $20M In-
centive Program. https://www.coindesk.com/tech/2022/02/18/algorand-pushes-
for-ethereum-compatibility-with-20m-incentive-program/. CoinDesk (2022).

[144] Barry WhiteHat, Marta Belles, and Jordi Baylina. 2020. EIP-2494: Baby Jubjub
elliptic curve. https://github.com/ethereum/EIPs/pull/2494.

[145] Zachary Williamson and Antonio Salazar Cardozo. 2018. EIP-1108: Reduce
alt-bn128 precompile gas costs. https://github.com/ethereum/EIPs/pull/1108.

[146] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper (2014).

[147] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper (2014).

[148] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. 2019. PRCash:
Fast, Private and Regulated Transactions for Digital Currencies. In Financial

Cryptography. Springer.
[149] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch,

Fernando Krell, and Philippe Camacho. 2022. VERI-ZEXE: Decentralized Private
Computation with Universal Setup. Cryptology ePrint Archive, Paper 2022/802.

[150] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended
Abstract). In FOCS. IEEE Computer Society, 160–164.

[151] Yong Yu, Yanqi Zhao, Yannan Li, Xiaojiang Du, Lianhai Wang, and Mohsen
Guizani. 2019. Blockchain-based anonymous authentication with selective
revocation for smart industrial applications. IEEE Trans. Industr. Inform. (2019).

[152] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
crier: An authenticated data feed for smart contracts. ACM. In CCS.

[153] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
2020. Deco: Liberating web data using decentralized oracles for tls. In CCS.
ACM.

[154] ZKSync. 2022. ZKSync. URL: https://zksync.io/ (2022).

A Credential Theft Detection

Credential theft detection allows a user to detect unauthorized us-
age of its credential, which implies that the credential has been
stolen. Such an ability is possible in the first place due to the trans-
parent nature of the blockchain. We observe that the scheme de-
scribed so far already enables theft detection: since the user also
knows the tracing key tkU for its credential, it can trace all the wal-
lets that have used its credential using the same strategy as in § 5.4.
Moreover, since tkU does not grant ownership of the credential,
users with weak devices can also share it with a service to do the
tracing on their behalf, at the cost of losing privacy to this service.
We argue that this is still better than non-private solutions where
the privacy is lost to the CA for the following reasons: (i) users are
not forced to trust a particular institution to protect their privacy,

Credential Generation

Parameters: SIG defines a key-pair relation R.
User𝑈 :
• Sample (skU, pkU) := SIG.Gen(1𝜆) and tkU ← {0, 1}𝜆 .
• Sample𝜓 ∈ {0, 1}𝜆 and set 𝛽 = TPKE.Enc(pkA, tkU;𝜓 ) .
• Sample 𝜔 ∈ {0, 1}𝜆 and set 𝜁 = Com(tkU;𝜔) .
• Let 𝑥 = (pkA, pkU, 𝛽, 𝜁 ,𝑈 ) and 𝑤 = (skU, tkU,𝜓,𝜔) .
• Create a proof 𝜋 := zkSNARK.Prove(crsGEN, 𝑥, 𝑤) for :

GEN =

{
(𝑥, 𝑤) | 𝛽 = TPKE.Enc(pkA, tkU;𝜓 )

∧ (skU, pkU) ∈ R

∧ 𝜁 = Com.Open(𝜁 , tkU;𝜔) = 1
}

𝑈 → CA: pkU, 𝛽, 𝜁 , doc, attr

Cerification Authority CA:
• Validate doc w.r.t. issuance policy and attributes attr.
• If zkSNARK.Verify(crsGEN, (pkA, pkU, 𝛽, 𝜁 ,𝑈 ), 𝜋 ) = 1:

– Create a credential credU = SIG.Sign(pkU ∥𝜁 ∥attr) .
– Store mapping from𝑈 → (pkU, 𝛽, doc) .

CA→𝑈 : credU

Figure 6: Credential Generation Protocol

and (ii) anyone with access to compute resources equivalent to a
commodity grade laptop can start a tracing service.

After detecting credential theft, the user informs the CA that its
credential has been stolen, and then the CA revokes this credential
and grants a new one to the user8. In addition, the user also provides
the CA with tkU, using which all wallets that were verified with
the revoked credential are traced and repudiated. Note that the
user loses its privacy in this process, but we argue that privacy
was already compromised when the credential was stolen since the
adversary learns tkU.

B Extensions to ZEBRA

In this section, we discuss some potential extensions to ZEBRA
which are orthogonal to our work:

• We’ve considered a simple issuance model where a CA is trusted
to issue credentials (Figure 6). Credential issuance is orthog-
onal to our work and our credential generation protocol can
easily be extended to support different issuance models as our
CA does not store any private state and we can easily support
different flavors of signature schemes due to the use of general-
purpose zkSNARKs. Thus, ZEBRA’s credential issuance can be
made decentralized [71, 121], legacy-compatible [95, 152, 153],
threshold/hierarchical [20, 29, 128], etc.

• We observe that ZEBRA can provide a lot of flexibility in limiting
the use of credential. Each application can independently set its
own credential usage limit after the credential has already been

issued without any changes. This is achieved by having each
application choose a disjoint range of tracing nonces {𝜂𝑖 } for
which the tracing token is valid, and reject transactions with

8Appropriate validation checks and rate-limiting must be applied here to prevent
denial of service but we view this as tangential to the focus of this work.

15

https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://blog.polygon.technology/the-future-is-now-for-ethereum-scaling-introducing-polygon-zkevm/
https://blog.polygon.technology/the-future-is-now-for-ethereum-scaling-introducing-polygon-zkevm/
https://www.coindesk.com/tech/2021/09/27/aave-proposal-enlists-fireblocks-to-aid-defi-lenders-mainstream-finance-push/
https://www.coindesk.com/tech/2021/09/27/aave-proposal-enlists-fireblocks-to-aid-defi-lenders-mainstream-finance-push/
https://github.com/ethereum/EIPs/issues/780
https://github.com/ethereum/EIPs/issues/780
https://tron.network/
https://github.com/ethereum/EIPs/issues/1481
https://github.com/ethereum/eips/issues/735
https://github.com/ethereum/eips/issues/735
https://medium.com/aztec-protocol/plonk-benchmarks-2-5x-faster-than-groth16-on-mimc-9e1009f96dfe
https://medium.com/aztec-protocol/plonk-benchmarks-2-5x-faster-than-groth16-on-mimc-9e1009f96dfe
https://www.coindesk.com/tech/2022/02/18/algorand-pushes-for-ethereum-compatibility-with-20m-incentive-program/
https://www.coindesk.com/tech/2022/02/18/algorand-pushes-for-ethereum-compatibility-with-20m-incentive-program/
https://github.com/ethereum/EIPs/pull/2494
https://github.com/ethereum/EIPs/pull/1108


repeated tracing tokens9. This is especially important for applica-
tions like decentralized voting and proof-of-personhood, where
the credential should only be used once per application.

• We consider a simple layout for our credentials, where the at-
tributes are stored as leaves of a Merkle tree. It is straightforward
to extend our scheme to support the credential/claim schemas
defined by W3C [50] and iden3 [86, 119] for interoperability.

• In our simple scheme, we focus on the single chain setting, but
in practice, we imagine applications on multiple chains that rely
on the same credential but have different sets of auditors. In
such a setting, it is important that auditors of a chain can only
audit transactions and track credential usage within that chain.
The former is straightforward to support by having the audit
token encrypted under the appropriate public key. For the latter,
each chain could require that the users prove that they used
KDF(tkU) as the tracing key, where KDF is a domain-separated

key-derivation function (KDF) specific to that chain. This takes
care of audits and tracing within a chain, but we also need to
trace wallets across all chains to handle credential revocation.
To this end, we introduce a linking committee, which can be a
subset of all auditors, provided that it is larger than the sets of
auditors per chain. At the time of credential issuance, the user
now provides the CA with an encryption of its tracing key under
the public key of the linking committee.

• Like any threshold system, a major concern in our scheme is
that if a threshold number of auditors are corrupted then privacy
of all users is lost. This can be mitigated by refreshing shares
regularly [74, 80, 96] to protect against mobile adversaries that
can eventually corrupt all parties over time.

C Implementation

We benchmark10 the following aspects of ZEBRA:
• Credential Verification Contracts: we implement the credential

verification contracts in Solidity for single, batched-L1 and batched-
L2 verification. Each contract requires a Groth16 verification key
that is circuit-dependent to verify Groth16 proofs on-chain. For
the sake of benchmarking, we use verification keys of dummy
circuits that have the same number of public inputs as the actual
circuits. This gives us accurate gas costs as Groth16 verification
only depends on the number of public inputs and is independent
of the circuit.

• User Overhead: we need the number of R1CS constraints in the
credential verification circuit to benchmark the Groth16 proof
generation overhead, which is the bottleneck for user computa-
tion. All primitives we use in § 6.1 except the TPKE scheme are
already implemented in circomlib [83]. We additionally imple-
ment the Cramer-Shoup TPKE scheme [39] in circom [84], and
then using the constraints for the primitives, we infer the con-
straints for each sub-circuit of the credential verification circuit,
and from that, its total constraints.

• Aggregator Overhead: aggregator computation requires the fol-
lowing components: (i) Groth16 prover and constraints for its
verifier over the BN254 curve, and (ii) (data-parallel) Spartan

9This can be done efficiently using a Merkle tree, similar to how Tornado Cash [113]
and ZCash [14] reject repeated nullifiers.
10Implementation URL: https://github.com/deevashwer/zebra

prover and constraints for its verifier over the Grumpkin curve.
arkworks [8] already had the implementation of (i) and we im-
plemented (ii) in arkworks. We also optimize constraints for
multi-scalar multiplications (MSMs) in arkworks by 2.05× (Ap-
pendix D). Our arkworks implementation benchmarks the time
to generate a Spartan proof that verifies the specified number
of user proofs, and outputs the number of R1CS constraints re-
quired to verify the Spartan proof. These constraints are then
used to benchmark the Groth16 proof generation overhead.

Given the total constraints for each Groth16 circuit, we benchmark
it with gnark [49] as it has the fastest Groth16 prover [102].

D Optimized Multi-scalar Multiplication

Constraints

A multi-scalar multiplication (MSM) is defined as follows: compute
𝑔 =

∑
𝑖∈[ℓ ] 𝑠𝑖 · 𝑔𝑖 , where scalars 𝑠𝑖 ∈ F are field elements and bases

𝑔𝑖 ∈ G and result 𝑔 ∈ G are group elements. The constraints for a
multi-scalar multiplication (MSM) are naïvely implemented as fol-
lows: (i) the scalars are converted to bits (971ℓ constraints), and (ii)
each base is independently multiplied by the corresponding scalar
bits using the double-and-add algorithm and added to the result
(2869ℓ constraints). We make changes to both steps to optimize the
constraints.

First, if the scalars are computed by the verifier, then we pre-
compute them and include their bit representation in the proof.
Now, the verifier uses the scalars bits from the proof for the MSM
and checks their consistency with the computed scalars (301ℓ con-
straints). Otherwise if the scalars are supplied by the proof itself,
then we simply provide their bit representation directly instead.

Second, we scalar-multiply all bases together. In each step of
scalar-multiplication using double-and-add, the base is selectively
added to the accumulator based on the scalar bit, and then the
accumulator is doubled. Our optimized solution hoists the doubling
step and performs it once per bit for all bases, which costs 1576ℓ
constraints.

Overall, these two optimizations improve the constraints for
MSM by 2.05× from 3840ℓ to 1877ℓ .

E Extended Preliminaries

The security parameter is denoted by 𝜆 ∈ N. A function 𝑓 : N→
[0, 1] is said to be negligible if for every 𝑐 ∈ N, there exists 𝑁 ∈ N
such that for all 𝑛 > 𝑁 , 𝑓 (𝑛) < 𝑛−𝑐 , and we write negl(·) to denote
such a function. A probability is overwhelming if it is equal to
1−negl(𝜆) for some negligible function negl(𝜆). An algorithmA is
PPT (probabilistic polynomial-time) if its running time is bounded
by some polynomial in the size of its input. Given a distribution
D, we write 𝑑 ← D to indicate that 𝑑 is sampled according to
D. For two ensembles of random variables {D0,𝜆}𝜆∈N, {D1,𝜆}𝜆∈N,
we write D0 ≈𝑐 D1 to indicate that for all PPT A, it holds that���� Pr𝑑←D0,𝜆 [A(𝑑) = 1] − Pr𝑑←D1,𝜆 [A(𝑑) = 1]

���� ≤ 1
2 + negl(𝜆) .

The random oracle model. In the random oracle model (ROM),
parties are given oracle access to some function 𝐻 that is sampled
uniformly at random from the space of all functions 𝐻 : X → Y,
where X and Y are finite non-empty sets. Parties can query the
oracle on an input 𝑥 ∈ X and receive in return 𝐻 (𝑥) ∈ Y. When

16

https://github.com/deevashwer/zebra


proving security of a protocol Π in the random oracle model, the
simulator Sim is able to “control” the oracle, observing queries
made by the adversary and simulating responses.

Simulation-based security. We prove security via simulation,
following the standard real/ideal world paradigm [73] against a
static adversary corrupting parties at the beginning of the protocol.
A cryptographic scheme specifies an interactive protocol Π that
takes place between some parties 𝑃1, . . . , 𝑃𝑛 initialized with inputs
𝑥1, . . . , 𝑥𝑛 . The protocol Π is meant to emulate some ideal function-
ality F that takes an input 𝑥1, . . . , 𝑥𝑛 from each party and delivers
an output 𝑦1, . . . , 𝑦𝑛 to each party.

The real execution. In the real execution, the protocol Π is exe-
cuted in the presence of an adversary A that corrupts some subset
𝑀 ⊂ [𝑛] of 𝑛 parties. The honest parties [𝑛] \ 𝑀 follow the in-
structions of Π, while A sends messages on behalf of parties in
𝑀 . If A is malicious, these messages may be computed following
an arbitrary polynomial-time strategy, while if A is semi-honest,
these messages must be computed following the instructions of Π.
The real execution of the protocol REALΠ,A [1𝜆, ®𝑥, 𝑧,𝑀], is defined
as the output pair of honest parties and the adversary A from the
real execution of Π. We also denote the view of party 𝑖 during the
execution of Π by ViewΠ

𝑖
( ®𝑥), which consists of its input 𝑥𝑖 , inter-

nal random coins 𝑟𝑖 and messages received by party 𝑖 during the
execution.

The ideal execution. In the ideal execution, a simulator Sim con-
trolling some subset𝑀 ⊂ [𝑛] of 𝑛 parties interacts with a trusted
party IF implementing the functionality F . Sim takes as input the
security parameter 1𝜆 , a set of inputs {𝑥𝑖 }𝑖∈𝑀 , and an auxiliary
input 𝑧. Each honest party 𝑃𝑖 ∈ [𝑛] \𝑀 sends their input 𝑥𝑖 to I,
while Sim sends an input 𝑥 ′

𝑖
on behalf of each party 𝑃𝑖 ∈ 𝑀 . Let

𝑥 ′1, . . . , 𝑥
′
𝑛 be the entire set of inputs received by I. Next, I com-

putes (𝑦1, . . . , 𝑦𝑛) = F (𝑥 ′1, . . . , 𝑥
′
𝑛) and delivers {𝑦𝑖 }𝑖∈𝑀 to Sim.

The ideal execution IDEALF,Sim [1𝜆, ®𝑥, 𝑧,𝑀], is defined as the out-
put pair of the honest party and Sim from the above ideal execution.

We now present two notions of security. The first is the standard
notion of simulation-based security against malicious parties. The
second is a weaker notion that only guarantees privacy of honest
parties’ inputs. In particular, this does not guarantee correctness of
an honest party’s output against malicious parties who may tamper
arbitrarily with the output. To rule out trivial protocols we demand
that when all parties are honest, they obtain the correct output.

Definition 1. An 𝑛-party protocol Π securely emulates an ideal

functionality F in the presence of malicious (resp. semi-honest) ad-

versaries corrupting a subset of parties 𝑀 ⊂ [𝑛] if for any PPT

malicious (resp. semi-honest) A corrupting parties 𝑀 , there exists

a PPT Sim such that for any set of inputs ®𝑥 , and auxiliary input 𝑧,

REALΠ,A [1𝜆, ®𝑥, 𝑧,𝑀] ≈𝑐 IDEALF,Sim [1𝜆, ®𝑥, 𝑧,𝑀] .

zkSNARK. Given a field F, and an F-arithmetic circuit 𝐶 : F𝑛 ×
Fℎ → F𝑙 we denote a corresponding language by associated binary
relation by R𝐶 = {(𝑥,𝑤) ∈ F𝑛 × Fℎ → F𝑙 : 𝐶 (𝑥,𝑤) = 0𝑙 } and a
language L𝐶 = {𝑥 ∈ F𝑛 : ∃𝑤 ∈ Fℎ,𝐶 (𝑥,𝑤) = 0𝑙 }. A zkSNARK for
F is a triple of PPT algorithms (Setup, Prove,Verify):

• Setup(1𝜆,𝐶) → (crs, td): Takes as input a security parameter
and circuit description𝐶 , and outputs a common reference string
crs and trapdoor td.

• Prove(crs, 𝑥,𝑤) → 𝜋 : Takes as input crs and any pair (𝑥,𝑤) ∈
R𝐶 and outputs a proof 𝜋 for the statement 𝑥 ∈ L𝐶 .

• Verify(crs, 𝑥, 𝜋) → 𝑏: Takes as input crs, statement 𝑥 and proof
𝜋 and outputs a bit 𝑏 indicating whether verification has passed
or failed.

• SimProve(crs, td, 𝑥) → 𝜋 : Takes as input crs, trapdoor td and
statement 𝑥 and outputs a simulated proof 𝜋 .

A zkSNARK satisfies Completeness if a proof computed from any
(𝑥,𝑤) ∈ R𝐶 will verify correctly with overwhelming probability.
In addition it satisfies the following properties:
• Perfect Completeness. A zkSNARK is perfectly complete if for any
(𝑥,𝑤) ∈ R𝐶 , we have

Pr
[
(crs, td) ← Setup(1𝜆,𝐶)

𝜋 ← Prove(crs, 𝑥,𝑤) : Verify(crs, 𝑥,𝑤) = 1
]
= 1

• Proof of knowledge (and soundness). For every PPT adversary
A, there is a PPT extractor 𝜀 such that Verify(crs, 𝑥, 𝜋) = 1
and (𝑥,𝑤) ∉ R𝐶 with probability negl(𝜆) where (crs, td) ←
Setup(1𝜆,𝐶), (𝑥, 𝜋) ← A(crs) and𝑤 ← 𝜀 (crs).

• Perfect Zero-knowledge. There exists a simulator Sim such that
for all stateful distinguishers A the following probabilities are
equal:

Pr
 (𝑥,𝑤) ∈ R𝐶A(𝜋) = 1 :

(crs, td) ← Setup(1𝜆,𝐶)
(𝑥,𝑤) ← A(crs)

𝜋 ← Prove(crs, 𝑥,𝑤)


= Pr

 (𝑥,𝑤) ∈ R𝐶A(𝜋) = 1 :
(crs, td) ← Setup(1𝜆,𝐶)

(𝑥,𝑤) ← A(crs)
𝜋 ← SimProve(crs, td, 𝑥)


• Weak Simulation-Extractability. For every PPT adversary A,

there exists a PPT extractor 𝜀 such that

Pr


(crs, td) ← Setup(1𝜆,R)
(𝑥, 𝜋) ← ASimProve(crs,td,·) (crs)

𝑤 ← 𝜀

:
Verify(crs, 𝑥, 𝜋) = 1
∧ (𝑥,𝑤) ∉ R
∧𝑥 ∉ 𝑄


≤ negl(𝜆)

where A has oracle access to SimProve(crs, td, ·), and 𝑄 is a list
of queries made by the adversary.

Finally, a zk-SNARK also satisfies succinctness where an honestly-
generated proof 𝜋 has 𝑂 (1) bits and Verify(vk, 𝑥, 𝜋) runs in time
𝑂 ( |𝑥 |) up to a fixed polynomial factor in 𝜆. If a proof system satisfies
all the above properties except succinctness we refer to it as a Non-
Interactive Argument of Knowledge (NIAoK).

Digital Signature.We use signature schemes that are existentially
unforgeable under chosen message attacks. They consists of three
algorithms (Gen, Sign,Verify), where Gen(1𝜆) outputs a secret key
sk and a public verification key pk, Sign(sk,𝑚) outputs a signature
𝜎 on themessage𝑚, andVerify(pk,𝑚, 𝜎) outputs either 1 to indicate
that 𝜎 is a valid signature on𝑚, or 0 otherwise.

17



Definition 2. A signature scheme (Gen, Sign,Verify) is existentially
unforgeable under chosen message attacks if for any PPT adversary

A, the following probability is negligible

Pr
[
𝑚 ∉ 𝑄 ∧
Verify(pk,𝑚, 𝜎) = 1 : (pk, sk) ← Gen(1𝜆)

(𝑚,𝜎) ← ASign(sk,·) (pk)

]
where 𝑄 is the set of message queries that A makes to Sign(sk, ·).

Threshold Public-Key Encryption.We use a simulation based
definition of adaptive CCA secure Threshold Public-Key Encryption
(TPKE) as defined by Canetti and Goldwasser [39]. However, we
restrict protocols ΠTPKE for TPKE to consist five PPT algorithms
(Setup, Enc,Dec,Verify,Combine) as defined below:
• Setup(1𝜅 , 𝑛, 𝑡) → {pk, vk, (sk1, . . . , sk𝑛)}: Takes as input a secu-

rity parameter and positive integers 𝑛, 𝑡 and outputs a public,
verification key and secret keys with threshold 𝑡 + 1.

• Enc(pk,𝑚; 𝜌) → ct: Takes as input the public key pk, a message
𝑚 and randomness 𝜌 and outputs a ciphertext ct.
• Dec(ct, 𝑠𝑘𝑖 ) →𝑚𝑖 : Takes as input a secret key and a ciphertext

Dec(𝑠𝑘𝑖 , ct) and outputs a partial decryption of the message𝑚𝑖 .
• Verify(pk, vk,𝑚𝑖 ) → {0, 1}: Takes as input the public key, verifi-

cation key and a partial decryption of message and outputs 0/1.
If it outputs 1, we say the share is a valid decryption.

• Combine(pk, vk, {𝑚𝑖 }𝑖∈𝑆⊆[𝑛] ) →𝑚 takes as input 𝑡 + 1 partial
decryptions of the message and reconstructs𝑚.

We require the above restriction as we create proofs of knowledge
about ciphertexts in conjunction with proving predicates on the
message which requires an algorithmic description of the protocol.
We also demand perfect correctness of the above protocol where
for all 0 < 𝑡 ≤ 𝑛, {pk, vk, (sk1, . . . , sk𝑛)} ← Setup(1𝜅 , 𝑛, 𝑡),
• For any ciphertext 𝑐 , if𝑚𝑖 = Dec(pk, sk𝑖 , 𝑐), then

Verify(pk, vk, 𝑐,𝑚𝑖 ) = 1.

• If 𝑐 = Enc(pk,𝑚), and {𝑚 𝑗 } 𝑗 ∈𝑆 where 𝑆 ⊂ [𝑛] is a 𝑡 + 1 sized
subset such that𝑚 𝑗 = Dec(pk, sk𝑗 , 𝑐), then

Combine(pk, vk, 𝑐, {𝑚 𝑗 } 𝑗 ∈𝑆 ) =𝑚.

For a protocol ΠTPKE to be 𝑡-secure, it must emulate the following
ideal functionality as described in Definition 111.

FTPKE
Parties: Encrypting user 𝐸 and Servers (𝑆1, . . . , 𝑆𝑛) .
Parameters: Space of receipts C, number of servers 𝑛 and thresh-
old 0 < 𝑡 ≤ 𝑛.
• Setup. Adversary specifies a distribution Γ over C.
• Encryption.When 𝐸 sends (Enc,𝑚) , sample a receipt 𝑐 ← Γ

and store (𝑐,𝑚) . Send 𝑐 to 𝐸.
• Decryption.When 𝑡+1 servers send (Dec, 𝑐) , if a tuple (𝑐,𝑚)

has been stored, send𝑚 to the servers. Else, send ⊥ to the
servers.

Figure 7: Ideal Functionality for Threshold Public-Key En-

cryption scheme.

11In the original paper the authors actually define and construct protocols satisfying
the stronger Universally Composable notion of security [38]

Canetti and Goldwasser show that the Cramer-Shoup cryptosys-
tem [53] can be modified by having servers prove correctness of
partial decryptions using zero knowledge proofs to achieve the
above definition.

F Proof of Security

We first focus on a static adversary A that corrupts fewer than a
threshold number of auditors and arbitrary many clients. The de-
centralized organization (smart contract) does not have any private
state and is trusted to faithfully follow the protocol.

We provide a proof sketch for the security of our scheme by
describing a simulator 𝑆 that interacts with the ideal functionality
(Figure 2) such that the transcript ofA interacting with honest par-
ties in the real world is computationally indistinguishable from the
transcript produced whenA interacts with the simulator. We use a
simple verification policy: User must have been issued a credential by

CA and the credential must not been revoked. But this can easily be
extended to any arbitrary policy expressed as an arithmetic circuit
depending on the needs of the application.

F.1 Security against a malicious adversary

corrupting auditors and users

Theorem 3. ZEBRA securely emulates the ideal functionality F (Fig-

ure 2) for any PPT malicious adversary A, corrupting 𝑡 auditors,

and an arbitrary number of users, provided straight-line simulation-

extractable zkNIAoK, collision resitant PRFs, and adaptive CCA (CCA2)

secure Public-Key Encryption schemes exist in the Random Oracle

Model.

The adversary begins by corrupting 𝑡 auditors {Aud𝑗 } 𝑗 ∈𝑆 for 𝑆 ⊂
[𝑛], |𝑆 | = 𝑡 along with an arbitrary number of users. We now
describe the simulator.

Setup. Sim runs the TPKE simulator SimTPKE to simulate the view
of A during the setup phase of TPKE FTPKE which contains the
public key and secret keys of malicious parties {pkA, {skA

𝑖
}𝑖∈𝑆 }.

The simulator also runs (crs, td) ← NIAoK.Setup(1𝜆, ·) for the
relevant circuits and publishes the crs. Next, it simulates the CA by
sampling (pkCA, skCA) ← Sig.Gen(1𝜆) and publishing pkCA.

Credential Generation.When Sim receives a request for a creden-
tial from a corrupt user 𝑈 containing (pkU, 𝛽, 𝜁 , doc, attr, 𝜋) (Fig-
ure 6), it checks if 𝜋 verifies successfully. If so, it then decrypts 𝛽
which is possible because Sim knows 𝑡 + 1 simulated auditor secret
keys to learn tkU. Sim then sends (ReqCred, doc, tkU, attr) to F on
behalf of𝑈 . If Sim receives accept as response from F indicating
the credential was approved, then Sim creates a credential using
the secret key of the simulated CA by faithfully following the pro-
tocol (Figure 6) and sends it to 𝑈 . Otherwise Sim sends ⊥ to 𝑈 .
During this time Sim also stores a user–key mapping between the
corrupted party𝑈 and its public key pkU and tracing key tkU. This
is possible because Sim knows 𝑡 + 1 simulated auditor secret keys
and can hence decrypt 𝛽 .

Pseudonym Verification. When a corrupt user 𝑈 attempts to
verify a pseudonym, it sends a proof 𝜋 along with an audit token 𝛼 ,
tracing token 𝛾 and wallet address pkW, Sim simulates SmrtCont
by faithfully following the protocol. That is, Sim adds pkW to the

18



public list of verified pseudonyms, if the proof provided passes
verification.

Sim then extracts pkU by running SimTPKE on the audit token
which outputs the underlying message pkU to be sent to FTPKE. It
then finds the corresponding user by checking the user–key map-
ping it created earlier. This is sufficient for Sim to send (ReqVer, pkW, 𝜂)
to F on behalf of𝑈 .

When an honest party verifies a pseudonym, Sim must simulate
the view ofA which contains a proof 𝜋 , audit token 𝛼 , and tracking
token 𝛾 . Note that Sim does not know the identity of the honest
party that requested verification. Care must be taken as when an
honest party is audited, the tracing tokens of all wallets verified
by an honest user must be consistent with the tracing key and the
audit token must decrypt to the corresponding public key.

When the ideal functionality announces that a pseudonym pkW

has been verified by an honest party, Sim receives 𝛾 . Next, it runs
the simulator of the TPKE scheme SimTPKE to compute 𝛼 which
is used to simulate the adversary’s view of the audit token. The
final component to be created is a proof 𝜋 as described in Fig-
ure 3, which is again simulated using SimProve(𝑥, td) as it does not
know the witness attributes attr used by the honest party which
includes tkU used to compute 𝛾 . In particular the statement is
𝑥 = (pkCA, pkW, 𝜙, pkA, rtrl, 𝛼,𝛾), where 𝛼 and 𝛾 are computed as
above.

Audit.When an audit of a pseudonym pkW occurs, Sim forwards
all messages from corrupt auditors to F and receives the user(s)
that requested a verification of pkW from the ideal functionality (in
some canonical ordering). Sim now needs to simulate the view of
A during threshold decryption of audit tokens. For all of the tokens
created by corrupt parties, Sim follows the protocol faithfully as
the tokens indeed contain the corresponding party’s public key.
For the tokens corresponding to honest parties, Sim first samples a
fresh key pair (pkU, skU) for each user 𝑈 that has not previously
appeared in an audit. In all future audits, the same key pair will be
used for that particular user. Finally, Sim runs SimTPKE with the
corresponding honest party’s public key pkU (which it sampled) as
input so as to obtain the same as the decrypted message.

Trace. When a user’s pseudonyms are being traced, Sim forwards
all messages from auditors to the ideal functionality and receives
tkU in return which it forwards to the corrupt auditors.

Revocation. When a user is banned they appear on a public list
L𝐵 maintained by the ideal functionality. When this happens, Sim
updates the revocation list ofCA by faithfully following the protocol
and adding the public key of the corresponding user to the merkle
tree MTrl.

Repudiation.When a pseudonym pkW is repudiated, Sim forwards
forwards all messages from auditors to the ideal functionality.

Argument for successful simulation. In the initial hybrid, the
adversary is in the real world interacting with honest parties. The
next hybrid is identical except that Sim runs the Setup for the
NIAoK to obtain the td instead of the trusted party. This hybrid is
computationally indistinguishable from the previous hybrid.

In the next hybrid, Sim simulates the CA as described during cre-
dential generation and revocation. This is computationally indistin-
guishable from the previous hybrid because Sim approves/revokes
a credential only when done by the honest CA and the rest of the
simulation is carried out in a manner identical to the real execution.

Now Sim simulates the honest auditors by simulating the trusted
party who distributes keys and then responding to audit requests
as described in the protocol. This hybrid is computationally indis-
tinguishable from the previous hybrid as the simulator samples the
keys in manner identical to the trusted party and the simulated
auditors follow the protocol faithfully.

Next, Sim simulates the honest parties and their verification
requests as described earlier. First note that even though Sim simu-
lates proofs for statements {𝑥1, . . . , 𝑥𝑘 } (say), the Weak Simulation-
Extractability property of the NIAoK guarantees that for any proof
provided by the adversary for a statement 𝑥 ∉ {𝑥1, . . . , 𝑥𝑘 }, the
PPT extractor 𝜀A outputs a valid witness. Indeed, the adversary
may be able to create new proofs for statements 𝑥 ∈ {𝑥1, . . . , 𝑥𝑘 }
such that verification passes but the extractor does now output a
valid witness. However, this is not an issue as Sim only simulates
proofs to verify a pseudonym pkW that has already been verified
by an honest party. A can re-submit verification requests for pkW
but it will simply be rejected by the smart contract as it is is either
already verified or repudiated. Due to the zero-knowledge property
of the NIAoK, and the fact that SimTPKE is a good simulator for the
TPKE scheme emulating Figure 7, this hybrid is computationally
indistinguishable from the previous hybrid.

Finally, Sim simulates SmrtCont. It can be seen that the con-
straints in Figure 3 capture the verification policy outlined earlier,
therefore if 𝜋 passes verification, then the verification policy is satis-
fied. However, Simmust still determine the user who submitted this
request and then submit the verification request on behalf of that
user12. This can be determined by running SimTPKE and decrypting
the audit token to obtain pkU. Due to the proof of knowledge and
soundness property of the NIAoK scheme, there exists an extractor
that outputs the witness. We require that this extractor can extract
from polynomially many instances in polynomial time. This is not
always true, as if rewinding is involved the simulator may run in
time exponential in the number of proofs. However, we demand
that the NIAoK has a straight-line extractor and this is true for the
groth16 and Spartan proof systems in the Algebraic Group Model.
This ensures that the extractor and hence the simulator will run in
polynomial time. From the EUF-CMA property, collision resistance
of CRH, perfect correctness of the TPKE scheme and the security
property of accumulators, the same pkU that results from decrypt-
ing the audit token must have been awarded a credential by CA
that has also not been revoked.

F.2 Security against a semi-honest CA

Theorem 4. ZEBRA securely emulates the ideal functionality F (Fig-

ure 2) for any PPT semi-honest adversary A, corrupting the CA,

provided straight-line simulation-extractable zkNIAoK, collision resi-

tant PRFs, and adaptive CCA (CCA2) secure Public-Key Encryption

schemes exist in the Random Oracle Model.

12Note that this user is not necessarily the same malicious user𝑈 who communicated
with Sim as𝑈 ′ could have prepared a proof and𝑈 could have sent it on behalf of𝑈 ′.

19



We also guarantee security against a semi-honest CA, by con-
structing a simulator. Here Sim only needs to prepare the view of
the CA for credential requests, which it can do by sampling a fresh
public-key pair and tracing key for each request that arrives from an
honest user via the ideal functionality and then preparing a proof as
done in Figure 6 and attaching doc, attr that were received from F .
This is a good simulator as the keys generated are indistinguishable
from those generated by an honest party in a real execution of the
protocol.

F.3 Privacy against colluding CA, Auditors and

Users

Finally, we argue privacy against an adversary A that corrupts the
CA, up to 𝑡 auditors and an arbitrary number of users. To do so, we
introduce a weakened ideal functionality F̂ which fully captures
the capabilities of a malicious CA. An important point to note here
is that the CA is the only party who has a mapping between users
and their public keys. Therefore, a malicious CA could frame honest
users as the proponents of fraudulent transactions. However, even
a malicious CA cannot violate the privacy of transactions in our
system viz. the adversary cannot identify the user who verified a
pseudonym without the help of a threshold number of auditors.

Importantly, we note that there are no longer meaningful secu-
rity guarantees that can be captured for malicious users. Hence, we
enforce that the weaker ideal functionality’s (Figure 8) correctness
and privacy guarantees of credential generation, pseudonym verifi-
cation, auditing, tracing, revocation and repudiation only apply on
honest users. When the adversary (malicious user) interacts with
the ideal functionality we provide no guarantees. On top of this,
we weaken audits and tracing as follows:
• During audits, the ideal functionality now takes as input a user
𝑈 ′ from the adversary which is sent to auditors instead of the
user𝑈 such that (pkW,𝑈 ) ∈ D.

• Similarly, during tracing, the adversary is given the option to
replace the tracing key with another key of it’s own choice.

Note that despite the adversary being more powerful now, there
is no way for the adversary to identify the user who verified a
pseudonym without an audit for which it requires the help of a
threshold number of auditors. We will now provide a proof sketch
for why our scheme securely emulates this ideal functionality.

Theorem 5. ZEBRA securely emulates the ideal functionality F̂ (Fig-

ure 8) for any PPT malicious adversary A, corrupting the CA, 𝑡

auditors, and an arbitrary number of users, provided straight-line

simulation-extractable zkNIAoK, collision resitant PRFs, and adap-

tive CCA (CCA2) secure Public-Key Encryption schemes exist in the

Random Oracle Model.

Note that the simulator longer need to extract the inputs of
malicious users. However, it does need to extract inputs from a
malicious CA. The simulator simulates the honest auditors and
users as done previously. During credential generation, if and only
if the CA issues a valid signature, the simulator forwards an approve
credential message to the ideal functionality. Next, during the audit
phase, the simulates auditors decrypting the audit token to recover
the public key of the user and send this to the adversary. The
adversary can now choose to respond with any user of it’s choice

F̂
Parties: Users {𝑈1, . . . ,𝑈𝑁 }, Certificate Authority CA and Audi-
tors (Aud1, . . . ,Aud𝑛) .
Parameters: Verification policy 𝜙 , pseudonym space N, user
space U, and a collision resistant PRF CR-PRF.
• Setup. On input (Setup, 𝜙) from the organization, publish a

verification policy 𝜙 . Maintain a database D of tuples from
the space N × U, and a database of banned pseudonyms D𝐵 .

• Credential Generation. On input (ReqCred, doc, tkU, attr)
from an honest user𝑈 , forward (doc,𝑈 , attr) to CA. On input
(AprCred,𝑈 ) from CA, add (𝑈 , tkU, attr) to L, the tuple of
users who have been awarded credentials, their tracing key
and their attributes. Send accept to𝑈 .

• Pseudonym Verification. On input (ReqVer, pkW, 𝜂) from
an honest user 𝑈 , if (𝑈 , tkU, attr) ∈ L, 𝜙 (attr) =

1, (pkW, ·) ∉ D, and pkW ∉ D𝐵 , then publish
(pkW, 𝜂,CR-PRF(tkU, 𝜂)) and add (pkW,𝑈 ) to D. The ad-
versary can choose to censor by rejecting valid requests.

• Audit. On input (Audit, pkW) from 𝑡 + 1 auditors and CA, if
there exists an entry of the form (pkW,𝑈 ) ∈ D, return 𝑈
to the adversary. The adversary then responds with any user
𝑈 ′ (possibly𝑈 ) of its choice (or ⊥) which is then sent to all
auditors.

• Trace. On input (Trace,𝑈 ) of an honest party𝑈 , from 𝑡 + 1
auditors and CA, the adversary receives𝑈 and can respond
in three possible ways:

– Choose any tkU
′
, which is then sent to auditors.

– If (𝑈 , tkU, ·) ∈ L, then the auditor can choose to have
auditors receive the honest party𝑈 ’s tkU.

– Send ⊥ to auditors.
• Revoke. On input (Revoke,𝑈 ) of an honest user𝑈 from CA,

– If (𝑈 , ·, ·) ∈ L, remove the entry containing𝑈 from L.
– Else, return ⊥ to CA.

• Repudiate. On input (Repudiate, pkW) from 𝑡 + 1 auditors,
delete all records of the form (pkW, ·) from D, and add pkW

to D𝐵 .

Figure 8: Ideal Functionality for an Anonymous Credential

Scheme supporting Audits, Tracing, Revocation and Repudi-

ation with a malicious CA.

or not respond at all which the simulator forwards to the ideal
functionality.

When tracing occurs, we need to argue that the only power of
the adversary is to either allow all auditors to learn the tkU cor-
responding to the honest party being traced or choose some tkU

′

which will be revealed instead. During the simulation, the mali-
cious CA will supply all information it has pertaining to user 𝑈 ,
which includes the tracing token 𝛽 , public key pkU, and the proof
sent by the user as outlined in § 5.4. All auditors verify this proof
before decrypting 𝛽 . Now note that the simulator has simulated
all the honest users and auditors and therefore knows can always
decrypt the ciphertext. Furthermore, since the adversary provides
a proof of knowledge of randomness used during encryption and
the cramer-shoup system is perfectly correct, the ciphertext is valid
with overwhelming probability. Now the simulator can simply de-
crypt to recover the tracing key tkŨ. Note that this tkŨ is either
the tracing key chosen by the simulator for the honest party𝑈 or

20



something chosen by the adversary. Note that it can’t have been
a related-key because we use a CCA2 secure encryption scheme
and the proof is weakly simulation extractable. When simulating
the honest party, recall that the simulator ran SimTPKE to simu-
late the honest party’s ciphertexts in such a way that they can be
equivocated later. Sim now runs SimTPKE with the corresponding
honest party’s tracing key tkU (which it received from the ideal
functionality) as input in order to convince the adversary that the
decrypted message was tkU. Importantly, such a simulation strat-
egy will only work if the ciphertext retains semantic security until
the user is traced. This holds true because we use a CCA2 secure
encryption scheme, despite being able query the decryption oracle
on any ciphertexts the adversary sees.

Revocation can be handled by relying on the extractor of the
zkNIAoK to extract the user being revoked and then sending this
to the ideal functionality. Repudiation can be handled as done pre-
viously.

G EUF-CMA fromWeak-SE NIZKs + OWF

It is know that standard simulation extractability combined with
one way functions can be used to create Strongly Unforgeable sig-
natures under Chosen Message Attacks (SUF-CMA) [12, 13, 61]. In
this section we show how to build an Existentially Unforgeable Sig-
nature scheme secure against Chosen Message Attacks (EUF-CMA)
using a weak Simulation-Extractable NIAoK (weak-SE NIAoK) com-
bined with One Way Functions.

In standard (strong) Simulation-Extractability the adversarymust
not be able to produce a new proof on a statement it has previously
queried, whereas here, the adversary needs to produce a proof on
an entirely new statement that has not been previously queried.

Our construction of EUF-CMA signatures is identical to the
construction of SUF-CMA signatures found in [12], except that we
use weak-SE NIAoKs in place of SE NIAoKs. For completeness, we
describe the scheme in Figure 9.

NIAoK based EUF-CMA signature

Parameters: A weak-SE NIAoK NIAoK, a family of one-way
functions F : {0, 1}𝑘 (𝜆) × {0, 1}𝑑 (𝜆) , message space M and
relation R := {( (𝐾,𝑌,𝑚), sk) | 𝑌 = 𝐹 (𝐾, sk) }.
• Gen(1𝜆) → (vk, sk) :

– 𝐾 ← {0, 1}𝑘 (𝜆) ; sk← {0, 1}𝑑 (𝜆) ; 𝑌 ← 𝐹 (𝐾, sk) .
– crs← NIAoK.Setup(1𝜆, R) ; vk← (𝐾,𝑌 ) .
– Return (vk, sk) .

• Sign(vk, sk,𝑚) → 𝜎 :
– Return 𝜎 ← NIAoK.Prove(crs, (𝐾,𝑌,𝑚), sk)) .

• Verify(vk,𝑚, 𝜎) → {0, 1}:
– Return NIAoK.Verify(crs, (𝐾,𝑌,𝑚), 𝜎) .

Figure 9: EUF-CMA signature scheme fromweak Simulation-

Extractable NIZK and one way functions

Theorem 6. The protocol described in Figure 9 is an EUF-CMA

signature scheme assuming the existence of weak-SE NIAoKs.

Proof. To prove security of the above scheme we provide a
reduction from an adversary AEUF that violates the EUF-CMA

property of the NIAoK based signature scheme to an adversary
Aowf that inverts one way functions with non-negligible property.
The EUF-CMA game between a challenger 𝐶 and adversary AEUF
is defined as follows:
(1) 𝐶 sends (vk, sk) ← Gen(1𝜆) to AEUF.
(2) AEUF asks 𝐶 for signatures on message𝑚𝑖 .
(3) 𝐶 responds with 𝜎𝑖 = Sign(vk, sk,𝑚𝑖 ) and adds𝑚 to the list of

queries 𝑄 .
(4) Repeat steps 2 and 3 as long as AEUF desires.
(5) AEUF provides a final answer (𝑚∗, 𝜎∗).
AEUF wins the game if 𝑚∗ ∉ 𝑄 and Verify(vk,𝑚∗, 𝜎∗) = 1. The
advantage of AEUF is defined as the probability that AEUF wins
the game. For a protocol to be secure the advantage of every PPT
adversary AEUF in the above game must be negligible.

Suppose there exists a PPT adversaryAEUF that has non-negligible
advantage 𝜖 in the EUF-CMA game when instantiated with the
scheme in Figure 9, then we give below an adversaryAowf that can
successfully invert a one way function with probability negligibly
close to 𝜖 .
(1) 𝐶owf samples a one way function and sends a challenge (𝐾,𝑌 )

to Aowf computed as 𝑌 = 𝐹 (𝐾,𝑋 ) where 𝑋 ← {0, 1}𝑑 (𝜆) .
(2) Aowf generates (crs, td) ← NIAoK.Setup(1𝜆,R)
(3) Aowf sets vk := (𝐾,𝑌 ).
(4) Aowf internally runsAEUF with vk and crs computed as above.
(5) Aowf creates signatures as 𝜎 ← NIAoK.Sim(crs, td, (𝐾,𝑌,𝑚))

in response to queries made by AEUF.
(6) AEUF outputs (𝑚∗, 𝜎∗) where𝑚∗ ∉ 𝑄 and verification passes

NIAoK.Verify(crs, (𝐾,𝑌,𝑚), 𝜎) with non-negligible probability.
NowAowf runs the extractor 𝜀Aowf and obtains𝑋

∗. From the weak-
SE property of the NIAoK, the probability that ((𝐾,𝑌,𝑚∗), 𝑋 ′) ∉ R
is negligible. Thus, 𝐹 (𝐾,𝑋 ′) = 𝑌 with probability negligibly close to
𝜖 . Hence by contradiction, Figure 9 is a signature scheme satisfying
EUF-CMA security. □

21


	Abstract
	1 Introduction
	2 System Overview
	2.1 (Informal) Blockchain Terminology
	2.2 Entities
	2.3 Protocols
	2.4 Threat Model

	3 Preliminaries
	3.1 zk-SNARKs
	3.2 Digital Signature
	3.3 Threshold Public-Key Encryption
	3.4 Sparse Merkle Tree

	4 Definitions
	4.1 Security

	5 ZEBRA: Our Anonymous Credential Scheme
	5.1 A Simple AC Scheme with Privacy
	5.2 Adding Auditability
	5.3 Adding Revocation
	5.4 Adding Traceability
	5.5 Batching Credential Verification
	5.6 Reducing per-user Costs in Batching

	6 Concrete Instantiation
	6.1 Core Protocols
	6.2 Batched and L2 Verification

	7 Evaluation
	7.1 Implementation and Experimental Setup
	7.2 Credential Verification and Comparison
	7.3 Batched Verification

	8 Related Work
	References
	A Credential Theft Detection
	B Extensions to ZEBRA
	C Implementation
	D Optimized Multi-scalar Multiplication Constraints
	E Extended Preliminaries
	F Proof of Security
	F.1 Security against a malicious adversary corrupting auditors and users
	F.2 Security against a semi-honest CA
	F.3 Privacy against colluding CA, Auditors and Users

	G EUF-CMA from Weak-SE NIZKs + OWF

