
How to Construct CSIDH on Edwards Curves

Tomoki Moriya1, Hiroshi Onuki1, and Tsuyoshi Takagi1

Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan

{tomoki moriya,onuki,takagi}@mist.i.u-tokyo.ac.jp

Abstract. CSIDH is an isogeny-based key exchange protocol proposed
by Castryck et al. in 2018. It is based on the ideal class group action
on Fp-isomorphism classes of Montgomery curves. The original CSIDH
algorithm requires a calculation over Fp by representing points as x-
coordinate over Montgomery curves. There is a special coordinate on
Edwards curves (the w-coordinate) to calculate group operations and
isogenies. If we try to calculate the class group action on Edwards curves
by using the w-coordinate in a similar way on Montgomery curves, we
have to consider points defined over Fp4 . Therefore, it is not a trivial task
to calculate the class group action on Edwards curves with w-coordinates
over only Fp.
In this paper, we prove some theorems about the properties of Edwards
curves. By these theorems, we construct the new CSIDH algorithm on
Edwards curves with w-coordinates over Fp. This algorithm is as fast as
(or a little bit faster than) the algorithm proposed by Meyer and Reith.
This paper is an extend version of [25]. We added the construction of
a technique similar to Elligator on Edwards curves. This technique con-
tributes the efficiency of the constant-time CSIDH algorithm. We also
added the construction of new formulas to compute isogenies in Õ(

√
ℓ)

times on Edwards curves. It is based on formulas on Montgomery curves
proposed by Bernstein et al. (

√
élu’s formulas). In our analysis, these for-

mulas on Edwards curves is a little bit faster than those on Montgomery
curves.

Keywords: Isogeny-based cryptography · Montgomery curves · Edwards
curves · CSIDH · Post-quantum cryptography.

1 Introduction

This paper is an extend version of [25]. The first additional content is the con-
struction of Elligator [6] on Edwards curves. Using Elligator makes the constant-
time CSIDH algorithm faster. The second additional content is the construction
of
√
élu’s formulas on Edwards curves. In both results, our proposal is as fast as

(or a little faster than) those on Montgomery curves.
Currently, there are two popular public-key cryptosystems: RSA [28], whose

security is based on the computational complexity of the Prime Factorization
Problem, and Elliptic Curve Cryptography [22, 19], whose security is based on



2 T. Moriya et al.

Table 1. Comparing CSIDH algorithms on Montgomery curves and Edwards curves

group operations calculation of isogenies kernel points

Montgomery ✓ ✓ ✓
Edwards (y-coordinate) ✓ ✓ ✓
Edwards (w-coordinate) ✓ ✓ not trivial

the computational complexity of the Discrete Logarithm Problem. However, Shor
pointed out in 1994 that both the Prime Factorization Problem and the Discrete
Logarithm Problem can be solved in polynomial time by using a quantum com-
puter [29, 30]. This means we should develop new cryptosystems which cannot
be broken by quantum computers. We call such cryptosytems post quantum
cryptography (PQC).

Isogeny-based cryptography is a branch of public-key cryptography based
on the computational complexity of the Isogeny Problem, which is a problem
arising when we calculate isogenies between given two elliptic curves. It is consid-
ered to be a candidate of PQC. Jao and De Feo proposed a Diffie-Hellman type
isogeny-based key exchange protocol, called SIDH (Supersingular Isogeny Diffie-
Hellman), in 2011 [17]. SIKE (Supersingular Isogeny Key Encapsulation) [2],
which is derived from SIDH, is a round 3 alternate candidate in the NIST PQC
standardization competition [26]. The SIDH calculation uses supersingular ellip-
tic curves over Fp2 . Castryck, Lange, Martindale, Panny, and Renes proposed an-
other Diffie-Hellman type of isogeny-based key exchange protocol, called CSIDH
(Commutative Supersingular Isogeny Diffie-Hellman), in 2018 [8]. Its calculation
uses supersingular elliptic curves over Fp.

CSIDH is based on a commutative group action on Fp-isomorphism classes
of supersingular Montgomery curves defined over Fp. In order to calculate this
group action, we need to generate a point in ker (πp − 1) or in ker (πp + 1) and
determine which set the point belongs to, where πp is the p-Frobenius map.
Castryck, Lange, Martindale, Panny, and Renes showed that if we take a random
element from Fp as an x-coordinate of a point in a Montgomery curve and
determine whether y-coordinate of the point belongs to Fp or not, then we can
get a point in ker (πp − 1) or in ker (πp + 1) and determine which set the point
belongs to [8]. They also showed that a Montgomery coefficient is unique up to
Fp-isomorphism [8]. Since it is known that a group operation of a Montgomery
curve can be calculated using only the x-coordinates of the points [23] and that
isogenies between Montgomery curves can be also calculated by using only the
x-coordinates of the points of the kernel [10, 21], we can compute a CSIDH group
action using only Fp-arithmetic.

Meyer and Reith proposed a faster CSIDH algorithm in 2018 [21]. This algo-
rithm calculates isogenies over Edwards curves instead of Montgomery curves, by
using a birational map between a Montgomery curve and an Edwards curve. In
this algorithm, the method for generating a point in ker (πp − 1) or in ker (πp + 1)
and determining which set the point belongs to is the same as in the original



How to Construct CSIDH on Edwards Curves 3

CSIDH algorithm [8]. Hence, a question arises: How do we calculate the CSIDH
algorithm on purely Edwards curves over Fp?

There are two special coordinates (the y-coordinate and the w-coordinate)
on Edwards curves for efficiently calculating the group operation [9, 14] and
isogenies [24, 9, 18] respectively. For a point P in an Edwards curve, if the y-
coordinate of P is in Fp, then P always belongs to ker (πp − 1) or ker (πp + 1).
Therefore, it is not difficult to construct the CSIDH algorithm on Edwards curves
with y-coordinates. We detail this algorithm in Appendix C. However, if we take
a random element from Fp as the w-coordinate of a point on an Edwards curve,
the point is sometimes defined outside of Fp2 (defined over Fp4). Since the points
in ker (πp − 1) and those in ker (πp + 1) are defined over Fp2 , it is not a trivial
task to run the CSIDH algorithm using only Edwards curves over Fp with w-
coordinates. We summarize the above discussion in Table 1.

The computational costs of the CSIDH group action depend on its secret
key. Therefore, CSIDH is vulnerable to side-channel attacks. There are some
proposals for constant-time CSIDH algorithms [20, 27, 9]. They use a special map
named Elligator [6]. Elligator makes these algorithms more efficient. Elligator
can be used for x-coordinates of Montgomery curves; however, there are no
techniques similar to Elligator for w-coordinates of Edwards curves.

In 2020, Bernstein, De Feo, Leroux, and Smith proposed the new formulas
for computing ℓ-isogenies in Õ(

√
ℓ) times [5]. Moreover, Adj, Chi-Domı́nguez,

and Rodŕıguez-Henŕıquez improved these formulas in [1]. We call these formulas√
élu’s formulas. Bernstein et al. showed that by using these formulas, the CSIDH

algorithm gets more efficient. These formulas are constructed by using the x-
coordinates of Montgomery curves. There is no result about

√
élu’s formulas on

Edwards curves.

1.1 Our results

In this paper, we prove four important theorems about the w-coordinate on Ed-
wards curves and use them to construct a new implementation of the CSIDH
key exchange. First, we show that if we take a random element from the set of
square elements in Fp as the w-coordinate of a point P and determine whether
the w-coordinate of 2P is square in Fp or not, then we can generate a point
in ker (πp − 1) or in ker (πp + 1) and determine which set the point belongs to.
Specifically, if the w-coordinate of 2P is square, then this coordinate repre-
sents a point in ker (πp + 1), and if the w-coordinate of 2P is not square, then
the reciprocal of this coordinate represents a point in ker (πp − 1). Second, we
show that there is no difference between the probability of generating a point
in ker (πp − 1) and the probability of generating a point in ker (πp + 1) in the
previous way. Third, we prove the probability that we get a point of order ℓi is
1− 1/ℓi, like Montgomery curves. Finally, we show that an Edwards coefficient
is unique up to an Fp-isomorphism, like a Montgomery coefficient.

From these theorems, we construct a non-trivial new implementation of the
CSIDH key exchange that uses w-coordinates on Edwards curves non-trivially
(Algorithm 3). We show that our algorithm is as fast as (or a little bit faster



4 T. Moriya et al.

than) the algorithm proposed by Meyer and Reith [21]. This fact can be also
confirmed from data obtained by the implementation (Table 2).

Moreover, we realize the technique similar to Elligator on Edwards curves
with using w-coordinates. This technique is more efficient than that on Mont-
gomery curves. Therefore, the constant-time CSIDH algorithm on Edwards curves
is as fast as (or a little bit faster than) that on Montgomery curves.

Furthermore, we propose the new
√
élu’s formulas on Edwards curves. These

formulas are constructed by the w-coordinates on Edwards curves. In our anal-
ysis, those on Edwards curves are a little bit faster than those on Montgomery
curves.

2 Preliminaries

2.1 Basic mathematical concepts

Here, we explain basic mathematical concepts behind isogeny-based cryptogra-
phy.

Let L be a field, and L′ be an algebraic extension field of L. An elliptic
curve E defined over L is a non-singular algebraic curve defined over L of genus
one. Denote by E(L′) the L′-rational points of the elliptic curve E. E(L′) is
an abelian group [31, III. 2]. A supersingular elliptic curve E over a finite field
L of characteristic p is defined as an elliptic curve which satisfies #E(L) ≡ 1
(mod p), where #E(L) is the cardinality of E(L).

Let E,E′ be elliptic curves defined over L. Define an isogeny ϕ : E → E′

over L′ to be a rational map over L′ which is a non-zero group homomorphism
from E(L) to E′(L), where L is the algebraic closure of L. A separable isogeny
with #kerϕ = ℓ is called an ℓ-isogeny. Denote by EndL′(E) the endomorphism
ring of E over L′. It is represented as Endp(E) when L′ is a prime field Fp. An
isogeny ϕ : E → E′ defined over L′ is called an isomorphism over L′ if ϕ has an
inverse isogeny over L′.

If G is a finite subgroup of E(L), then there exists an isogeny ϕ : E → E′

whose kernel is G, and E′ is unique up to an L-isomorphism [31, Proposition II
I.4.12]. This isogeny can be efficiently calculated by using Vélu’s formulas [32].
We denote a representative of E′ by E/G.

E[k] (k ∈ Z>0) is defined as the k-torsion subgroup of E(L). For an endo-
morphism ϕ of E, we sometimes denote kerϕ by E[ϕ].

Let L be a number field, and O be an order in L. A fractional ideal a of
O is a finitely generated O-submodule of L which satisfies αa ⊂ O for some
α ∈ O \ {0}. An invertible fractional ideal a of O is defined as a fractional ideal
of O which satisfies ab = O for some fractional ideal b of O. The fractional ideal
b is represented as a−1. If a fractional ideal a is contained in O, then a is called
an integral ideal of O.

Let I(O) be a set of invertible fractional ideals of O. I(O) is an abelian
group derived from multiplication of ideals with the identity O. Let P (O) be a
subgroup of I(O) defined by P (O) = {a | a = αO (for some α ∈ L×)}. We call
the abelian group cl(O) defined by I(O)/P (O) the ideal class group of O.



How to Construct CSIDH on Edwards Curves 5

The Fp-endomorphism ring Endp(E) of a supersingular elliptic curve E de-
fined over Fp is isomorphic to an order in an imaginary quadratic field [12].
Denote by Eℓℓp(O) the set of Fp-isomorphism classes of elliptic curves E whose
Fp-endomorphism ring Endp(E) is isomorphic to O.

2.2 Montgomery curves

Let L be a field whose characteristic is odd. An elliptic curve E defined by the
following equation is called a Montgomery curve:

E : bY 2Z = X3 + aX2Z +XZ2 (a, b ∈ L and b(a2 − 4) 6= 0).

In this paper, we denote the Montgomery curve Y 2Z = X3 + aX2Z + XZ2

by EM,a. The identity of E is (0 : 1 : 0), and the inverse of (X : Y : Z) is
(X : −Y : Z).

Montgomery showed that the group operations on Montgomery curves can
be efficiently computed by using x-coordinates [23]. Define a function x as

x(X : Y : Z) =
X

Z
.

The function x is not defined at the point (0 : 1 : 0). If P and Q satisfy x(P ) =
x(Q), then P = Q or P = −Q. Next define a function x as x(X : Y : Z) = (X :
Z). We call x(P ) the projective x-coordinates of P .

Let P be a point on E. Let A/C = a and B/C = b. Let (X : Z) = x(P ).
The projective x-coordinates (X ′ : Z ′) of 2P are calculated as follows [23]:

X ′ = 4C(X + Z)2(X − Z)2, Z ′ = 4XZ(4C(X − Z)2 + (A+ 2C)4XZ). (1)

The computational cost is 4M + 2S + 4a. If Z = 1, the computational cost is
4M+1S+5a. (We denote field multiplications by M, field squarings by S, and
field additions, subtractions, or doublings by a.)

Let P1 and P2 be points on E, and (X1 : Z1) = x(P1), (X2 : Z2) = x(P2).
Let (X0 : Z0) = x(P1 − P2). The projective x-coordinates (X3 : Z3) of P1 + P2

are calculated as follows [23]:

X3 = Z0(X1X2 − Z1Z2)
2, Z3 = X0(X1Z2 −X2Z1)

2. (2)

The computational cost is 4M + 2S + 6a. If Z0 = 1, the computational cost is
3M+ 2S+ 6a.

Costello and Hisil proposed efficient calculations for odd-degree isogenies by
using x-coordinates [10], and Meyer and Reith improved them [21]. Let ℓ be
an odd integer and s be the integer which satisfies that ℓ = 2s + 1. Let P
be a point on E, and (X : Z) = x(P ). Let Q be an order-ℓ point on E, and
(X1 : Z1) = x(Q). Let (Xk : Zk) = x(kQ). Let E′ = E/〈Q〉 and ϕ be an isogeny
ϕ : E → E′ with kerϕ = 〈Q〉. The projective x-coordinates (X ′ : Z ′) of ϕ(P ) are
calculated as follows [10]:

X ′ = X ·
s∏

i=1

(XXi − ZZi)
2, Z ′ = Z ·

s∏
i=1

(XZi − ZXi)
2. (3)



6 T. Moriya et al.

The computational cost is (4s)M + 2S + (4s + 2)a. Let A/C = a. The curve
coefficient a′ = A′/C ′ of E′ is calculated as follows [21]:

ã = A+ 2C, d̃ = A− 2C, ã′ = ãℓ ·
s∏

i=1

(Xi + Zi)
8,

d̃′ = d̃ℓ ·
s∏

i=1

(Xi − Zi)
8, A′ = 2(ã′ + d̃′), C ′ = ã′ − d̃′.

(4)

The computational cost is (2s + 2)M + 6S + (2s + 6)a and that of the two s-
th powers. Since Xi + Zi and Xi − Zi are also used for calculating ϕ(P ), the
computational cost of calculating ϕ(P ) and E′ is (6s+2)M+8S+(4s+8)a and
that of the two s-th powers. Appendix A. 1 describes why the computational
costs are as above.

Furthermore, for a high-degree isogeny ϕ, there are more efficient methods
to compute ϕ(P ) and (A′, C ′) on Montgomery curves [5, 1]. These formulas can
be computed in Õ(

√
ℓ) times. We call them

√
élu’s formulas. The equations (3)

and (4) can be rewritten as follows:

X ′ = X · (hS(Z,X))2, Z ′ = Z · (hS(X,Z))2. (5)

ã = A+ 2C, d̃ = A− 2C, ã′ = ãℓ · (hS(1, 1))8,
d̃′ = d̃ℓ · (hS(−1, 1))8, A′ = 2(ã′ + d̃′), C ′ = ã′ − d̃′.

(6)

Here, hS is a polynomial in Fp[T1, T2] defined as hS(T1, T2) :=
∏

i∈S(ZiT1 −
XiT2), and S is a set {1, 3, . . . , ℓ − 2}. By using resultants, we can compute
hS(α, β) for some α, β. Appendix A. 3 describes more details about the above
method.

2.3 Edwards curves

In 2007, Edwards introduced a new form of an elliptic curve [13]. Bernstein and
Lange extended these curves to another form in 2007, called Edwards curves [7].
For representing points at infinity, Hisil, Wong, Carter, and Dawson proposed
projective closures of Edwards curves in P3 in 2018 [16].

Let L be a field. If an elliptic curve E is defined by the following equations,
E is called an Edwards curve [16]:

E : X2 + Y 2 = Z2 + dT 2, XY = ZT (d ∈ L and d 6= 0, 1).

In this paper, we denote the Edwards curve X2+Y 2 = Z2+dT 2, XY = ZT by
Ed. The identity of Ed is (0 : 1 : 1 : 0), which we will denote by 0d for simplicity,
while the inverse of (X : Y : Z : T ) is (−X : Y : Z : −T ). We obtain the group
addition formulas as follows [16]:

(X1 : Y1 : Z1 : T1) + (X2 : Y2 : Z2 : T2)

= ((X1Y2 + Y1X2)(Z1Z2 − dT1T2) : (Y1Y2 −X1X2)(Z1Z2 + dT1T2)

: (Z1Z2 − dT1T2)(Z1Z2 + dT1T2) : (Y1Y2 −X1X2)(X1Y2 + Y1X2)).

(7)



How to Construct CSIDH on Edwards Curves 7

For simplicity, we will sometimes consider an Edwards curve to be an affine curve
defined by the following equation:

E : x2 + y2 = 1 + dx2y2 (d ∈ L and d 6= 0, 1),

where x = X/Z and y = Y/Z. In this equation, only (±
√
d : 0 : 0 : 1) and

(0 : ±
√
d : 0 : 1) are points at infinity. (±

√
d : 0 : 0 : 1) are points of order 2,

and (0 : ±
√
d : 0 : 1) are points of order 4. Hence, if the order of a point P on

Ed is neither 2 nor 4, P can be represented in affine coordinates (x, y).
In [24, 9] it was showed that the group calculations of Edwards curves can

be efficiently performed by using the y-coordinate. Define a function y as

y(X : Y : Z : T ) =

{
Y
Z (if Z 6= 0)

∞ (if Z = 0 (points at infinity))
.

We call y(P ) the y-coordinate of P . If P and Q satisfy that y(P ) = y(Q), then
P = Q or P = −Q. Define a function y as y(X : Y : Z : T ) = (Y : Z). We call
y(P ) the projective y-coordinates of P .

Let P be a point on Ed, and (Y : Z) = y(P ). Let D/C = d. The projective
y-coordinates (Y ′ : Z ′) of 2P are calculated as follows [9]:

Y ′ = (C −D)Y 2Z2 − (Z2 − Y 2) · ((C −D)Y 2 + C(Z2 − Y 2)),

Z ′ = (C −D)Y 2Z2 + (Z2 − Y 2) · ((C −D)Y 2 + C(Z2 − Y 2)).
(8)

The computational cost is 4M + 2S + 5a. If Z = 1, the computational cost is
3M+ 1S+ 5a.

Let P1 and P2 be points on Ed, and (Y1 : Z1) = y(P1), (Y2 : Z2) = y(P2).
Let (Y0 : Z0) = y(P1 − P2). The projective y-coordinates (Y3 : Z3) of P1 + P2

are calculated as follows [9]:

Y3 = (Z0 − Y0)(Y1Z2 + Y2Z1)
2 − (Z0 + Y0)(Y1Z2 − Y2Z1)

2,

Z3 = (Z0 − Y0)(Y1Z2 + Y2Z1)
2 + (Z0 + Y0)(Y1Z2 − Y2Z1)

2.
(9)

The computational cost is 4M + 2S + 6a. In the case that Z0 = 1, the compu-
tational cost is also 4M+ 2S+ 6a.

In [9] efficient calculations were proposed for odd-degree isogenies by using
projective y-coordinates. Let ℓ be an odd integer and s be the integer which
satisfies ℓ = 2s + 1. Let P be a point on Ed, and (Y : Z) = y(P ). Let Q
be an order-ℓ point on Ed, and (Y1 : Z1) = y(Q). Let (Yk : Zk) = y(kQ).
Let Ed′ = Ed/〈Q〉, and ϕ be an isogeny ϕ : Ed → Ed′ with kerϕ = 〈Q〉. The
projective y-coordinates (Y ′ : Z ′) of ϕ(P ) are calculated as follows [9]:

Y ′ =(Z + Y ) ·
s∏

i=1

(ZYi + ZiY )2 − (Z − Y ) ·
s∏

i=1

(ZYi − ZiY )2,

Z ′ =(Z + Y ) ·
s∏

i=1

(ZYi + ZiY )2 + (Z − Y ) ·
s∏

i=1

(ZYi − ZiY )2.

(10)



8 T. Moriya et al.

The computational cost is (4s)M+2S+(2s+4)a. The projective curve coefficient
d′ = D′/C ′ is calculated as follows [24]:

D′ = Dℓ ·
s∏

i=1

(Yi)
8, C ′ = Cℓ ·

s∏
i=1

(Zi)
8. (11)

The computational cost is (2s+2)M+6S and that of the two s-th powers. The
computational cost of calculating ϕ(P ) and Ed′ is (6s + 2)M + 8S + (2s + 4)a
and that of the two s-th powers.

Farashahi and Hosseini showed that the group calculations of Edwards curves
can be efficiently performed by using the w-coordinate [14]. Define a function w
as

w(X : Y : Z : T ) =

{
dT 2

Z2 (if Z 6= 0)

∞ (if Z = 0 (points at infinity))
.

In affine coordinates, w(x, y) = dx2y2. We call w(P ) the w-coordinate of P . If
P and Q satisfy that w(P ) = w(Q), then P +Q or P −Q is an element of

{0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)}.

In this paper, we will denote {0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)}
by G4 for simplicity. Note that G4 is a cyclic group of order 4. Define a function
w as w(X : Y : Z : T ) = (dT 2 : Z2). We call w(P ) the projective w-coordinates
of P .

Let P be a point on Ed, and (W : Z) = w(P ). Let D/C = d. The projective
w-coordinates (W ′ : Z ′) of 2P are calculated as follows [14]:

W ′ = 4WZ(D(W + Z)2 − 4CWZ), Z ′ = D(W + Z)2(W − Z)2. (12)

The computational cost is 4M + 2S + 4a. If Z = 1, the computational cost is
4M+ 1S+ 5a.

Let P1 and P2 be points on Ed, and (W1 : Z1) = w(P1), (W2 : Z2) = w(P2).
Let (W0 : Z0) = w(P1 −P2). The projective w-coordinates (W3 : Z3) of P1 +P2

are calculated as follows [14]:

W3 = Z0(W1Z2 −W2Z1)
2, Z3 =W0(W1W2 − Z1Z2)

2. (13)

The computational cost is 4M + 2S + 6a. If Z0 = 1, the computational cost is
3M+ 2S+ 6a.

Kim, Yoon, Park, and Hong proposed efficient calculations for odd-degree
isogenies by using projective w-coordinates [18]. Let ℓ be an odd integer and s
be the integer which satisfies ℓ = 2s + 1. Let P be a point on Ed, and (W :
Z) = w(P ). Let Q be an order-ℓ point on Ed, and (W1 : Z1) = w(Q). Let
(Wk : Zk) = w(kQ). Let Ed′ = Ed/〈Q〉, and ϕ be an isogeny ϕ : Ed → Ed′ with
kerϕ = 〈Q〉. The projective w-coordinates (W ′ : Z ′) of ϕ(P ) are calculated as
follows [18]:

W ′ =W ·
s∏

i=1

(ZWi − ZiW )2, Z ′ = Z ·
s∏

i=1

(WWi − ZZi)
2. (14)



How to Construct CSIDH on Edwards Curves 9

The computational cost is (4s)M+2S+(4s+2)a. The projective curve coefficient
d′ = D′/C ′ is calculated as follows [18]:

D′ = Dℓ ·
s∏

i=1

(Wi + Zi)
8, C ′ = Cℓ ·

s∏
i=1

(2Zi)
8. (15)

The computational cost is (2s + 2)M + 6S + (s + 4)a and that of the two s-th
powers. Since Wi + Zi is also used for calculating ϕ(P ), the computational cost
of calculating ϕ(P ) and Ed′ is (6s+ 2)M+ 8S+ (4s+ 6)a and that of the two
s-th powers. Appendix A. 2 describes why the computational costs are as above.

Furthermore, we found the method to compute ℓ-isogenies on Edwards curves
in Õ(

√
ℓ) times as on Montgomery curves. We explain these formulas in section

9.
An Edwards curve has a following property.

Theorem 1. Let p be a prime and p ≥ 3. The Edwards curve Ed defined over
Fp is Fp-isomorphic to the Montgomery curve,

EM :
4

1− d
Y 2Z = X3 +

2(1 + d)

1− d
X2Z +XZ2.

Proof. Bernstein, Birkner, Joye, Lange, and Peters show that there is a birational
map between Ed and EM [4]. This birational map becomes an isomorphism.

The proof of this theorem is given in Appendix Appendix B. ut

It is known that there is a birational map between a Montgomery curve and
an Edwards curve [4]. However, we need an isomorphism for constructing the
CSIDH algorithm using only Edwards curves.

Corollary 1. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 4). An Edwards curve
Ed defined over Fp is Fp-isomorphic to the Montgomery curve,

EM : Y 2Z = X3 + χ(1− d) · 2(1 + d)

1− d
X2Z +XZ2,

where the map χ : Fp → Fp is defined as χ(a) := a(p−1)/2.

Corollary 1 is easily proven from Theorem 1.

Corollary 2. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 8). Let EM,a be a
supersingular Montgomery curve Y 2Z = X3 + aX2Z +XZ2 defined over Fp. If
a− 2 is square, then EM,a is Fp-isomorphic to the Edwards curve,

E a+2
a−2

: X2 + Y 2 = Z2 +
a+ 2

a− 2
T 2, XY = ZT,

and if a− 2 is not square, then EM,a is Fp-isomorphic to the Edwards curve,

E a−2
a+2

: X2 + Y 2 = Z2 +
a− 2

a+ 2
T 2, XY = ZT.



10 T. Moriya et al.

Proof. As EM,a is supersingular, #EM,a(Fp) = #ẼM,a(Fp) = p + 1 ≡ 4

(mod 8), where ẼM,a is a quadratic twist of EM. From Table 1 of [11], (a −
2)(a+ 2) is not square.

If a − 2 is square, the Edwards curve E a+2
a−2

is Fp-isomorphic to EM,a by

Corollary 1. If a−2 is not square, since a+2 is square, the Edwards curve E a−2
a+2

is Fp-isomorphic to EM,a by Corollary 1.
This completes the proof of Corollary 2. ut

By using Corollary 1 and Corollary 2, it is easy to convert an Edwards curve
into a Montgomery curve and convert a Montgomery curve into an Edwards
curve.

3 CSIDH [8]

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) was proposed by
Castryck, Lange, Martindale, Panny, and Renes in 2018 [8].

CSIDH is based on the action of cl(Z[πp]) on Eℓℓp(Z[πp]). Let the prime p
be 4 · ℓ1 · · · ℓn − 1, where the ℓ1, . . . , ℓn are small distinct odd primes, for Alice
and Bob to calculate the action efficiently. Alice and Bob let random elements of
cl(Z[πp]) be secret keys and calculate the actions on EM,0 : Y

2Z = X3 +XZ2.
They publish the obtained elliptic curves as public keys. Finally, they calculate
the actions on the public keys, respectively. The obtained elliptic curves are
identical up to Fp-isomorphism by the commutativity of cl(Z[πp]); therefore, the
values of the Montgomery coefficients are the same from Theorem 3. Let their
values be SKshared.

3.1 CSIDH protocol

Before explaining the protocol of CSIDH, we should state the following important
theorems.

Theorem 2 ([33, Theorem 4.5]). Let O be an order of an imaginary quadratic
field and E be an elliptic curve defined over Fp. If Eℓℓp(O) contains the Fp-
isomorphism class of supersingular elliptic curves, then the action of the ideal
class group cl(O) on Eℓℓp(O),

cl(O)× Eℓℓp(O) −→ Eℓℓp(O)
([a], E) 7−→ E/E[a]

is free and transitive, where a is an integral ideal of O, and E[a] is the intersec-
tion of the kernels of elements in the ideal a.

Denote a representative of E/E[a] by [a]E.

Theorem 3 ([8, Proposition 8]). Let p be a prime satisfying p ≡ 3 (mod 8).
Let E be a supersingular elliptic curve defined over Fp. Then, Endp(E) = Z[πp]
holds if and only if there uniquely exists a ∈ Fp such that E is Fp-isomorphic to
a Montgomery curve EM,a, where πp is the p-Frobenius map.



How to Construct CSIDH on Edwards Curves 11

The exact protocol is as follows. Suppose that Alice and Bob want to share
a secret key denoted by SKshared.

Setup. Let p be a prime which satisfies p = 4 · ℓ1 · · · ℓn− 1, where ℓ1, . . . , ℓn are
small distinct odd primes. Let the public parameters be p and EM,0.

Key generation. One randomly chooses a integer vector (e1, . . . , en) from
{−m, . . . ,m}n. Define [a] = [le11 · · · lenn ] ∈ cl(Z[πp]), where li = (ℓi, πp − 1),
l−1
i = (ℓi, πp + 1), and m is the smallest integer which satisfies 2m + 1 ≥
n
√

#cl(Z[πp]) ≈ p1/2n. One calculates the action of [a] on EM,0 and the
Montgomery coefficient a ∈ Fp of [a]EM,0 : Y

2Z = X3 + aX2Z +XZ2.
Let the integer vector (e1, . . . , en) be the secret key, and a ∈ Fp be the public
key.

Key exchange. Alice and Bob have pairs of keys, ([a], a) and ([b], b), respec-
tively. Alice calculates the action [a]EM,b = [a][b]EM,0. Bob calculates
the action [b]EM,a = [b][a]EM,0. Denote the Montgomery coefficient of
[a][b]EM,0 by SKAlice and the Montgomery coefficient of [b][a]EM,0 by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 3, SKAlice = SKBob holds.
Let these values be the shared key SKshared.

3.2 Evaluating the class group action on Montgomery curves

In this subsection, we explain how to evaluate the class group action on Mont-
gomery curves [8]. Algorithm 1 is an algorithm for evaluating the class group
action.

Let p be a prime satisfying p = 4 · ℓ1 · · · ℓn − 1, where ℓ1, . . . , ℓn are small
distinct odd primes. The inputs of the algorithm are a Montgomery coefficient
a ∈ Fp and a list of integers (e1, . . . , en). The output is a Montgomery coefficient
a′ ∈ Fp that satisfies EM,a′ = [le11 · · · lenn ]EM,a.

We calculate a′ by repeating the calculations of the actions of [li] or [li]
−1

(i.e., repeating the calculations of ℓi-isogenies).

Sampling points (line 2-8 in Algorithm 1) For calculating the class group
action, we first sample a point which belongs to ker (πp − 1) or ker (πp + 1). We
take a uniformly random element of Fp. Let the element be x, and P be a point
in EM,a such that x(P ) = x. We calculate x3 + ax2 + x, which is a square of
y(P ), where y(P ) is the y-coordinate of P . If x3 + ax2 + x is square in Fp, then
P ∈ ker (πp − 1), and if x3 + ax2 + x is not square in Fp, then P ∈ ker (πp + 1).
If x3 + ax2 + x is square, we define S to be a set of i such that the sign of ei is
+1, and if x3 + ax2 + x is not square, we define S to be a set of i such that the
sign of ei is −1. If S = ∅, we repeat this procedure with another sample point.

Scalar multiplication (line 9 in Algorithm 1) Next, we calculate P1 =
p+1
k P , where k =

∏
i∈S ℓi. The calculation uses the Montgomery ladder algo-

rithm [23].



12 T. Moriya et al.

Calculation of isogenies (line 10-16 in Algorithm 1) We calculate P2 =
k
ℓi
P1. The order of P2 is 1 or ℓi. The probability that P2 is not the identity is

1 − 1
ℓi

[8]. Therefore, with highly probability, we get a point of order ℓi. Then,
we calculate an ℓi-isogeny,

ϕ : EM,a −→ EM,a/〈P2〉,

by using the formulas in [10, 21]. Denote the Montgomery coefficient of EM,a/〈P2〉
by a′ ∈ Fp. From Theorem 3, a′ is unique. We redefine ei as ei − 1 (if ei > 0) or
ei + 1 (if ei < 0), k as k/ℓi, P1 as ϕ(P1), and a as a′.

We repeat this calculation for all i ∈ S. After that, if the list of integers
(e1, . . . , en) is not the zero vector, we return to the Sampling points part.

Output (line 18 in Algorithm 1) If the list of integers (e1, . . . , en) is the
zero vector, we output the Montgomery coefficient a′ ∈ Fp.

Algorithm 1 Evaluating the class group action on Montgomery curves [8]

Input: a ∈ Fp such that EM,a is supersingular and a list of integers (e1, . . . , en)
Output: a′ such that [le11 · · · lenn ]EM,a = EM,a′

1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp

3: x(P )← (x : 1)
4: Set s← +1 if x3 + ax2 + x is a square in Fp, else s← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ←

∏
i∈S ℓi, x(P )← x(((p+ 1)/k)P )

10: for all i ∈ S do
11: x(Q)← x((k/ℓi)P )
12: if Q ̸= (0 : 1 : 0) then
13: Compute an ℓi-isogeny ϕ : EM,a → EM,a′ with kerϕ = ⟨Q⟩
14: a← a′, x(P )← x(ϕ(P )), k ← k/ℓi, ei ← ei − s
15: end if
16: end for
17: end while
18: return a

3.3 Elligator on Montgomery curves

In this subsection, we explain Elligator in detail. Elligator (specifically Elligator
2 in [6]) is used as a technique mapping some points in ker (πp ± 1) to points
in ker (πp ∓ 1) over Montgomery curves. Meyer, Campos, and Reith used this
technique for implementations of constant-time CSIDH algorithms for efficiency



How to Construct CSIDH on Edwards Curves 13

[20]. By using Elligator, we can sample a pair of points in ker (πp − 1) and points
in ker (πp + 1) efficiently. Elligator reduces the number of computing Legendre
symbol in the constant-time CSIDH algorithm, and makes the algorithm more
efficient.

First, we take a random value u from {2, 3, . . . , (p − 1)/2}. We compute
v := a/(u2 − 1), and output (v,−v − a). If v3 + av2 + v is square, then v is the
x-coordinate of the point in ker (πp − 1), and −v − a is the x-coordinate of the
point in ker (πp + 1). If not square, then v is the x-coordinate of the point in
ker (πp + 1), and −v − a is the x-coordinate of the point in ker (πp − 1). These
facts can be easily checked.

Moreover, Cervantes-Vázquez et al. proposed the constant-time projective
Elligator for the constant-time CSIDH algorithm [9]. We show this algorithm in
Algorithm 2.

Algorithm 2 Constant-time projective Elligator on Montgomery curves [9]

Input: A,C ∈ Fp such that EM,A/C is supersingular and an random element u from
{2, 3, . . . , (p− 1)/2}

Output: The projective x-coordinate of P ∈ ker (πp − 1) and the projective x-
coordinate of Q ∈ ker (πp + 1)

1: t← A((u2 − 1)u2A2C + ((u2 − 1)C)3)
2: ϵ← isequal(t, 0)
3: α, β ← u, 0
4: cswap(α, β, ϵ)
5: t′ ← t+ α(u2 + 1)
6: ζ ← Legendre symbol(t′, p)
7: ϵ′ ← isequal(ζ,−1)
8: cswap((X : Z), (X ′ : Z′), ϵ′)
9: return (X : Z), (X ′ : Z′)

4 Main theorems used for our algorithm

Here, we state and prove four theorems needed to construct the algorithm for
evaluating the class group action based on Edwards curves.

First, we prove important lemmas in order to prove four main theorems.
Let Ed be a supersingular Edwards curve defined over Fp, and p be a prime.

Lemma 1. Let p ≡ 3 (mod 8). If Ed satisfies Endp(Ed) ∼= Z[πp], then d is not
square.

Proof. There exists a Montgomery curve EM which is Fp-isomorphic to Ed, by
Corollary 1. If EM[2] ⊂ EM(Fp), Table 1 of [11] shows that the order of EM or its
quadratic twist can be divided by 8; however, both orders are p+1 ≡ 4 (mod 8).
EM has the only one point of order 2 over Fp. Therefore, Ed also has only one
point of order 2 over Fp.



14 T. Moriya et al.

Points of order 2 in Ed are (0 : −1 : 1 : 0) and (±
√
d : 0 : 0 : 1). Since

(0 : −1 : 1 : 0) is a Fp-rational point, d is not square. ut

Lemma 2. Let p ≡ 3 (mod 8). If Ed satisfies Endp(Ed) ∼= Z[πp], then 1− d is
not square.

Proof. As p ≡ 3 (mod 8), #Ed(Fp) = p+ 1 ≡ 4 (mod 8).
By Lemma 1, there are no points at infinity on Ed(Fp). Hence, in this proof,

we consider Ed to be an affine curve.
If a point (x, y) belongs to Ed(Fp), the points,

(−x, y), (x,−y), (−x,−y), (y, x), (−y, x), (y,−x), (−y,−x),

also belong to Ed(Fp). If x 6= 0, y 6= 0, x 6= y, and x 6= −y hold, these eight
points are different. If x = 0 or y = 0, the four points,

(0, 1), (0,−1), (1, 0), (−1, 0),

are different. If x = y or x = −y, x is a root of the equation,

2x2 = 1 + dx4.

Therefore,

x2 =
1±
√
1− d
d

.

Assume that 1− d is square. Note that

1 +
√
1− d
d

· 1−
√
1− d
d

=
1− (1− d)

d2
=

1

d
.

By Lemma 1, d is not square. Hence, one of 1+
√
1−d
d or 1−

√
1−d
d is square, and

the other one is not square. Therefore, if x = y or x = −y, the four points,

(x, x), (x,−x), (−x, x), (−x,−x),

are different, where x is

√
1+

√
1−d
d or

√
1−

√
1−d
d .

From the above, #Ed(Fp) ≡ 4+4 ≡ 0 (mod 8) holds. This is a contradiction.
Therefore, 1− d is not square. ut

Lemma 3. If P is a point of Ed such that w(P ) ∈ Fp, then (πp + 1)(P ) ∈ G4
or (πp − 1)(P ) ∈ G4.

Proof. Since πp(w(P )) = w(πp(P )), w(πp(P )) = w(P ). Therefore, (πp+1)(P ) ∈
G4 or (πp − 1)(P ) ∈ G4. ut

Lemma 4 and Lemma 5 describe the relationship between points in Ed[πp±1]
and their w-coordinates.



How to Construct CSIDH on Edwards Curves 15

Lemma 4. Let p ≡ 3 (mod 8). Let P be a point of Ed, not a point at infinity,
and w(P ) 6= 0. If P ∈ Ed[πp + 1], then w(P ) ∈ Fp and is square in Fp, and if
P ∈ Ed[πp − 1], then w(P ) ∈ Fp and is not square in Fp.

Proof. Denote the coordinates of P by (x, y) (affine coordinates). As w(P ) 6= 0,
x 6= 0 and y 6= 0. If P ∈ Ed[πp + 1], then (xp, yp) = (−x, y). Therefore, xp = −x
and y ∈ Fp. As (x2)

p
= x2 and x 6∈ Fp, x

2y2 ∈ Fp and x2y2 is not square. If
P ∈ Ed[πp−1], then (xp, yp) = (x, y). Therefore, x, y ∈ Fp. Thus, x

2y2 ∈ Fp and
x2y2 is square. Since d is not square by Lemma 1, Lemma 4 holds. ut

Lemma 5. Let p ≡ 3 (mod 8). Let P ∈ Ed[πp − 1] or Ed[πp + 1], not a point
at infinity, and w(P ) 6= 0. If w(P ) is square in Fp, then P ∈ Ed[πp + 1], and if
w(P ) is not square in Fp, then P ∈ Ed[πp − 1].

Proof. This lemma obviously holds by Lemma 4. ut

Lemma 6. Let P be a point of Ed. Then, points Podd and P2power uniquely exist
such that P = Podd +P2power, the order of Podd is odd, and the order of P2power

is a power of 2.

Proof. Note that P ∈ Ed(Fq), where q is a power of p. Therefore, P has finite
order. By the fundamental theorem of finite abelian groups, there exist points
Podd and P2power such that P = Podd + P2power, the order of Podd is odd, and
the order of P2power is a power of 2.

Assume that Podd + P2power = P ′
odd + P ′

2power, where the orders of Podd

and P ′
odd are odd, and the orders of P2power and P ′

2power are powers of 2. As
Podd − P ′

odd = −P2power + P ′
2power,

Podd − P ′
odd = 0d and P2power − P ′

2power = 0d.

Therefore, uniqueness holds. ut

Lemma 7 states the property of Podd and P2power in Lemma 6. In particular,
it is argued that Podd belongs to Ed[πp ± 1].

Lemma 7. Let P be a point of Ed such that w(P ) ∈ Fp. Let Podd and P2power

be points of Ed such that P = Podd + P2power, the order of Podd is odd, and the
order of P2power is a power of 2. Then, one of the following holds.

– Podd ∈ Ed[πp − 1] and (πp − 1)(P2power) ∈ G4.
– Podd ∈ Ed[πp + 1] and (πp + 1)(P2power) ∈ G4.

Proof. By Lemma 3, (πp ± 1)(P ) ∈ G4. In the case that (πp − 1)(P ) ∈ G4,
(πp − 1)(Podd) = 0d, since the order of Podd is odd and G4 is a cyclic group of
order 4. Then, (πp − 1)(P2power) = (πp − 1)(P ) ∈ G4.

Similarly, in the case that (πp + 1)(P ) ∈ G4, Podd ∈ Ed[πp + 1] and (πp +
1)(P2power) ∈ G4 hold. ut

Lemma 8. Let P be a point in Ed whose order is not a power of 2. Then, the
number of points Q which satisfies w(Q) = w(P ) is 8.



16 T. Moriya et al.

Proof. Assume that the number of points Q which satisfies w(Q) = w(P ) is not
8. Since a set ±P + G4 does not have 8 elements, there are points G1, G2 ∈ G4
which satisfy P +G1 = −P +G2. However, the order of −G1 +G2 is a power of
2, and the order of 2P is not a power of 2. This is a contradiction.

This completes the proof of Lemma 8. ut

Lemma 9. Let p ≡ 3 (mod 8). There exists a bijection,

f : Ed[πp + 1] ∩ Ed[(p+ 1)/4] −→ Ed[πp − 1] ∩ Ed[(p+ 1)/4],

such that f(0d) = 0d.

Proof. We will prove that the cardinality of Ed[πp + 1] ∩ Ed[(p+ 1)/4] and the
cardinality of Ed[πp− 1]∩Ed[(p+1)/4] are finite and equal and that 0d belongs
to both sets.

Since Ed is supersingular and πp−1 and π2
p−1 are separable, deg (π2

p − 1) =
#Ed(Fp2) = (p+1)2 and deg (πp − 1) = #Ed(Fp) = p+1. Therefore, deg (πp + 1) =
p+1. As πp−1 and πp+1 are separable, #Ed[πp−1] = p+1 and #Ed[πp+1] =
p+ 1. As the set Ed[πp − 1] ∩ Ed[(p+ 1)/4] is the set of all points of order odd
in Ed[πp − 1],

#(Ed[πp − 1] ∩ Ed[(p+ 1)/4]) =
p+ 1

4
.

Similarly,

#(Ed[πp + 1] ∩ Ed[(p+ 1)/4]) =
p+ 1

4
.

We have proven that #(Ed[πp+1]∩Ed[(p+1)/4]) and #(Ed[πp−1]∩Ed[(p+1)/4])
are finite and equal.

It is obvious that 0d belongs to Ed[πp + 1] ∩ Ed[(p+ 1)/4] and Ed[πp − 1] ∩
Ed[(p+ 1)/4].

This completes the proof of Lemma 9. ut

We now prove four main theorems.
Roughly speaking, Theorem 4 claims that by examining a value w(2P ), we

can get the w-coordinate of a point in Ed[πp ± 1]. This theorem leads to a
sampling method.

Theorem 4. Let p ≡ 3 (mod 8). Let P be a point on an Edwards curve Ed

such that the w-coordinate w(P ) ∈ Fp, the order of P is not a power of 2, and
w(P ) is square. If w(2P ) is square, there exists P ′ such that P ′ ∈ Ed[πp + 1],
w(2P ) = w(P ′), and p+1

4 P ′ = 0d. If w(2P ) is not square, there exists P ′ such

that P ′ ∈ Ed[πp − 1], 1/w(2P ) = w(P ′), and p+1
4 P ′ = 0d.

Proof. Let (x, y) be the coordinates of P . Let Podd and P2power be points of Ed

such that P = Podd+P2power, the order of Podd is odd, and the order of P2power

is a power of 2. The existence of Podd and P2power are guaranteed by Lemma 6.
By Lemma 7, one of the following holds.

– (πp − 1)(P2power) ∈ G4 and Podd ∈ E[πp − 1].



How to Construct CSIDH on Edwards Curves 17

– (πp + 1)(P2power) ∈ G4 and Podd ∈ E[πp + 1].

It is easy to check that (πp + 1)G4 = {0d, (0,−1)} and (πp − 1)G4 = {0d}.
Therefore,

(π2
p − 1)(P2power) =

{
0d (if Podd ∈ E[πp + 1]),

0d or (−1, 0) (if Podd ∈ E[πp − 1]).

As π2
p + p = 0, π2

p − 1 = −p− 1. Since P2power is a point whose order is a power
of 2,

4P2power =

{
0d (if Podd ∈ E[πp + 1]),

0d or (−1, 0) (if Podd ∈ E[πp − 1]).

Hence, if Podd ∈ E[πp + 1], then

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1),

and if Podd ∈ E[πp − 1], then

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1), (1, 0), (−1, 0), (0 : ±

√
d : 0 : 1).

It is easy to check that if w(2P2power) = 0, then w(2P ) = w(2Podd), and if
w(2P2power) = ∞, then w(2P ) = 1/w(2Podd). Therefore, if w(2P ) is square,
then w(2Podd) is square, and if w(2P ) is not square, then w(2Podd) is not square.
By Lemma 5, if w(2P ) is square, then 2Podd ∈ Ed[πp + 1], and if w(2P ) is not
square, then 2Podd ∈ Ed[πp − 1].

Denote w(P ) by w. By the Edwards addition formula (7), we have

w(2P ) =
4dx2y2(y2 − x2)2

(1− dx2y2)2(1 + dx2y2)2
=

4w(y2 − x2)2

(1− w)2(1 + w)2
.

Since w is square, if w(2P ) is square, then y2 − x2 ∈ Fp, and if w(2P ) is not
square, then y2 − x2 6∈ Fp. As

2P =

(
2xy

1 + dx2y2
,
y2 − x2

1− dx2y2

)
,

if w(2P ) is square, then the y-coordinate of 2P is an element of Fp, and if w(2P )
is not square, then the y-coordinate of 2P is not an element of Fp.

In the case that w(2P ) is square, y(2P ) ∈ Fp and 2Podd ∈ Ed[πp + 1].

Therefore, y(2Podd) ∈ Fp. Assume that 2P2power = (
√
d : 0 : 0 : 1) or (−

√
d : 0 :

0 : 1). It is easy to check that

y(2P ) = ± 1√
d · y(2Podd)

.

As y(2Podd) ∈ Fp, y(2P ) 6∈ Fp by Lemma 1. This is a contradiction. We
conclude that 2P2power is 0d or (0,−1). Therefore, w(2P ) = w(2Podd). As
(π2

p − 1)(2Podd) = 0d,
p+ 1

4
(2Podd) = 0d.



18 T. Moriya et al.

In the case that w(2P ) is not square, y(2P ) 6∈ Fp and 2Podd ∈ Ed[πp − 1].
Therefore, y(2Podd) ∈ Fp. Assume that

2P2power = 0d, (0,−1), (1, 0), (−1, 0).

It is easy to check that y(2P ) = ±y(2Podd). As y(2Podd) ∈ Fp, y(2P ) ∈ Fp.

This is a contradiction. We conclude that 2P2power is (±
√
d : 0 : 0 : 1) or

(0 : ±
√
d : 0 : 1). Therefore, it is easy to check that w(2P ) = 1/w(2Podd). As

(π2
p − 1)(2Podd) = 0d,

p+ 1

4
(2Podd) = 0d.

Let P ′ be 2Podd. This completes the proof of Theorem 4. ut

Theorem 5 shows that there is no bias in the points generated by the sampling
method derived from Theorem 4.

Theorem 5. Let p ≡ 3 (mod 8). Let P be a point on an Edwards curve Ed

such that the w-coordinate w(P ) ∈ Fp, the order of P is not a power of 2, and
w(P ) is square. The number of w(P ) such that w(2P ) is square is the same as
the number of w(P ) such that w(2P ) is not square.

Proof. Let the coordinates of P be (x, y). Let Podd and P2power be points of Ed

such that P = Podd+P2power, the order of Podd is odd, and the order of P2power

is a power of 2. The existence of Podd and P2power are guaranteed by Lemma 6.
As shown in the proof of Theorem 4, we have

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

If 2P2power is 0d or (0,−1), w(P2power) is 0 or ∞, since it is easy to check that

P2power = 0d, (0,−1), (±1, 0), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

If 2P2power is (±
√
d : 0 : 0 : 1) or (0 : ±

√
d : 0 : 1), w(P2power) is ±1 since

w(2P2power) =
4w(P2power)((1 + w(P2power))

2 − 4w(P2power)/d)

(1− w(P2power))2(1 + w(P2power))2
.

Assume that w(P2power) is −1. w(2P2power) = ∞. As shown in the proof of
Theorem 4, (πp − 1)(Podd) = 0d. Let the coordinates of Podd be (xo, yo). It is
easy to check that

P2power =

√√1

d
,

√
−
√

1

d

+Q′,

where Q′ is a point of Ed such that w(Q′) = 0 or w(Q′) =∞. From the addition
formula of Edward curves,

P = Podd + P2power =

xo
√
−
√

1
d + yo

√√
1
d

1 + dxoyo

√
−1
d

,
yo

√
−
√

1
d − xo

√√
1
d

1− dxoyo
√

−1
d

+Q′.



How to Construct CSIDH on Edwards Curves 19

Therefore,

w(P ) =
(2xoyo + (y2o − x2o)

√
−1)2

(1 + dx2oy
2
o)

2
or

(1 + dx2oy
2
o)

2

(2xoyo + (y2o − x2o)
√
−1)2

.

As p ≡ 4 (mod 3), −1 is not square. Since Podd is not 0d, xo 6= 0 and yo 6= 0. If
we assume that x2o = y2o , then it is easy to check that 2x2o = 1 + dx4o, and

x2o =
1±
√
1− d
d

6∈ Fp (by Lemma 2).

Since x2o ∈ Fp, x
2
o 6= y2o . Therefore, (2xoyo + (y2o − x2o)

√
−1)2 does not belong to

Fp. Hence, w(P ) 6∈ Fp. This is a contradiction. We conclude w(P2power) is 0 or
∞ or 1.

If w(2P ) is square, as shown in the proof of Theorem 4, w(Podd) is square
and 2P2power = 0d or (0,−1). Therefore, w(P2power) is 0 or ∞. If w(2P ) is
not square, as shown in the proof of Theorem 4, w(Podd) is not square and
2P2power = (±

√
d : 0 : 0 : 1) or (0 : ±

√
d : 0 : 1). Therefore, w(P2power) is 1.

We prove that if Podd ∈ Ed[πp − 1], then w(Podd +Q) is square for all points
Q at which w(Q) is 1. It is easy to check that

Q =

(√
1 +
√
−1r,

√
1−
√
−1r

)
+Q′,

where r =
√

1−d
d , and Q′ is a point such that w(Q′) = 0 or w(Q′) = ∞. By

Lemma 1 and Lemma 2, r ∈ Fp. Let the coordinates of Podd be (xo, yo). Denote(√
1 +
√
−1r,

√
1−
√
−1r

)
by R. Note that

Podd+R =

(
xo
√
1−
√
−1r + yo

√
1 +
√
−1r

1 +
√
dxoyo

,
yo
√
1−
√
−1r − xo

√
1 +
√
−1r

1−
√
dxoyo

)
.

Therefore,

w (Podd +R) =
d(−2xoyo

√
−1r + (y2o − x2o)

√
1 + r2)2

(1− dx2oy2o)2

=
(−2xoyo

√
−dr + (y2o − x2o))2

(1− dx2oy2o)2
.

By Lemma 1,
√
−d ∈ Fp. As Podd ∈ Ed[πp−1], xo, yo ∈ Fp. Therefore, w (Podd +R)

belongs to Fp and is square. Since w(Podd+Q) = w(Podd+R) or 1/w(Podd+R),
w(Podd +Q) belongs to Fp and is square.

Let S+ be the set of points P of Ed such that both w(P ) and w(2P ) are
square and the order of P is not a power of 2, and let S− be the set of points
P of Ed such that w(P ) is square, w(2P ) is not square, and the order of P is
not a power of 2. From Lemma 8, it suffices to prove that there is a bijection
ϕ : S+ → S−. Define ϕ : S+ → S− as follows.

ϕ(P ) := f(Podd) + P2power +R,



20 T. Moriya et al.

where Podd and P2power are points of Ed such that P = Podd + P2power, the
order of Podd is odd, the order of P2power is a power of 2, R is defined as above,
and f is the bijection in Lemma 9. As has already been shown, if P ∈ S+, then
w(P2power) is 0 or∞. As f(Podd) ∈ Ed[πp−1] and w(P2power+R) = 1, w(ϕ(P ))
is square. Since w(2ϕ(P )) = 1/w(2f(Podd)) and 2f(Podd) ∈ Ed[πp−1], w(2ϕ(P ))
is not square. As f(Podd) is not 0d, the order of ϕ(P ) is not a power of 2. From
Lemma 6 and the above, ϕ is well-defined. Define ψ : S− → S+ as follows.

ψ(P ) := f−1(Podd) + P2power −R,

where Podd and P2power are points of Ed such that P = Podd + P2power, the
order of Podd is odd, and the order of P2power is a power of 2. As has already
een shown, if P ∈ S−, then w(P2power) = 1. As w(P2power − R) is 0 or ∞,
w(ψ(P )) = w(f−1(Podd)) or 1/w(f−1(Podd)). Since f

−1(Podd) ∈ Ed[πp + 1],
w(f−1(Podd)) is square by Lemma 4. Hence, w(ψ(P )) and w(2ψ(P )) are square.
As f−1(Podd) is not 0d, the order of ψ(P ) is not a power of 2. From Lemma 6
and the above, ψ is well-defined. It is easy to check that ψ = ϕ−1.

This completes the proof of Theorem 5. ut

Theorem 6 claims that the probability of success of the sampling method
derived from Thorem 4 is sufficiently large (same probability as that on Mont-
gomery curves).

Theorem 6. Let p be 4 · ℓ1 · · · ℓn−1, where the ℓ1, . . . , ℓn are small distinct odd
primes. Let P be a point on an Edwards curve Ed such that the w-coordinate
w(P ) ∈ Fp, the order of P is not a power of 2, and w(P ) is square. The proba-

bility that p+1
4ℓi

P ′ is a point of order ℓi is
(ℓi−1)N

ℓi

N−1 ≈ 1− 1
ℓi
, where P ′ is a point

in Theorem 4, and N = ℓ1 · ℓ2 · · · ℓn.

Proof. Let Podd and P2power be points of Ed such that P = Podd + P2power, the
order of Podd is odd, and the order of P2power is a power of 2. As shown in the
proof of Theorem 4, P ′ = 2Podd. As shown in the proof of Theorem 5, for each
point Q 6= 0d in Ed[πp +1]∩Ed[(p+1)/4] or Ed[πp− 1]∩Ed[(p+1)/4], there is

a point Q̃ that satisfies w(Q̃) ∈ Fp, w(Q̃) is square, and 2Q̃odd = Q. It is easy to

check that if Q1 6= Q2, then w(Q̃1) 6= w(Q̃2). Therefore, if we uniform randomly
take P that satisfies w(P ) is square, then P ′ is a uniformly random point of
Ed[πp + 1] ∩ Ed[(p+ 1)/4] \ {0d} or Ed[πp − 1] ∩ Ed[(p+ 1)/4] \ {0d}. Since

Ed[πp + 1] ∩ Ed[(p+ 1)/4] ∼= Z/((p+ 1)/4)Z ∼= Z/ℓ1Z× · · · × Z/ℓnZ,

Ed[πp − 1] ∩ Ed[(p+ 1)/4] ∼= Z/((p+ 1)/4)Z ∼= Z/ℓ1Z× · · · × Z/ℓnZ,

Theorem 6 holds. ut

Theorem 7 shows that an Edwards coefficient d is unique. Therefore, we can
use these coefficients as shared keys.



How to Construct CSIDH on Edwards Curves 21

Theorem 7. Let p ≡ 3 (mod 8) and E be a supersingular elliptic curve defined
over Fp. Then Endp(E) ∼= Z[πp] holds if and only if there exists d ∈ Fp such that
E is Fp-isomorphic to an Edwards curve Ed. Moreover, if such a d exists, then
it is unique.

Proof. The first half of this theorem follows from Corollary 1, Corollary 2, and
Theorem 3.

Let us prove the uniqueness of d. Let d1, d2 ∈ Fp such that Ed1 and Ed2

are supersingular Edwards curves, Endp(Ed1
) ∼= Z[πp], Endp(Ed2

) ∼= Z[πp], and
Ed1
∼= Ed2

over Fp.
As 1− d1 and 1− d2 are not square by Lemma 2,

Edi
∼= Y 2Z = X3 − 2(1 + di)

1− di
X2Z +XZ2 (i = 1, 2)

holds by Corollary 1. Therefore,

2(1 + d1)

1− d1
=

2(1 + d2)

1− d2

holds by the uniqueness of coefficients in Theorem 3. This equation reduces to
d1 = d2.

This completes the proof of Theorem 7. ut

Now we proved all main theorems. Though the following lemma is not im-
portant essentially, we use it in order to construct the CSIDH algorithm. We
use Lemma 10 for rejecting points whose order is a power of 2 in the Sampling
points calculation of Algorithm 3.

Lemma 10. Let p ≡ 3 (mod 8). Let P be a point on Ed such that w(P ) ∈ Fp

and the order of P is a power of 2. Then, w(P ) is 0 or ±1.

Proof. By Lemma 7, (πp−1)(P ) ∈ G4 or (πp+1)(P ) ∈ G4. As (πp−1)G4 = {0d},
(πp + 1)G4 = {0d, (0,−1)}, and π2

p − 1 = −p− 1, we have

4P = 0d, (0,−1).

Therefore, it is easy to check that

2P = 0d, (0,−1), (±1, 0), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

Hence, w(2P ) = 0 or w(2P ) =∞. Since

w(2P ) =
4w(P )((1 + w(P ))2 − 4w(P )/d)

(1− w(P ))2(1 + w(P ))2
,

w(P ) = 0, d−2±2
√
1−d

d , 1,−1. From Lemma 2, 1 − d is not square. Therefore,
w(P ) = 0,±1. ut



22 T. Moriya et al.

Algorithm 3 Evaluating the class group action on Edwards curves

Input: d ∈ Fp such that Edwards curve Ed is supersingular and a list of integers
(e1, . . . , en)

Output: d′ such that [le11 · · · lenn ]Ed = Ed′

1: while some ei ̸= 0 do
2: w ← 0
3: while w = 0 or w = 1 or w = −1 do
4: Sample a random w ∈ Fp

5: end while
6: w ← w2 (Theorem 4, 5)
7: w(P )← (w : 1)
8: Compute w(2P ) (Theorem 4)
9: (W : Z)← w(2P )
10: Set s← +1 if W is a square in Fp, else s← −1
11: Let S = {i | sign(ei) = s}
12: if S = ∅ then
13: Go to line 2
14: end if
15: w(P )← (W : Z), k ←

∏
i∈S ℓi

16: w(P ) = (W : Z)← w(((p+ 1)/4k)P ) (Theorem 4, 6)
17: if s = 1 then
18: w(P )← (Z : W ) (Theorem 4)
19: end if
20: for all i ∈ S do
21: w(Q)← w((k/ℓi)P )
22: if Q ̸= 0d then
23: Compute an ℓi-isogeny ϕ : Ed → Ed′ with kerϕ = ⟨Q⟩
24: d← d′, w(P )← w(ϕ(P )), k ← k/ℓi, ei ← ei − s
25: end if
26: end for
27: end while
28: return d (Theorem 7)

5 Evaluating the class group action on Edwards curves

In this section, we propose the method for evaluating the class group action
based on Edwards curves. The theorems proved in the previous section will be
used to construct the method. The algorithm is described in Algorithm 3. All of
its calculations are done over Fp.

The inputs of the algorithm are an Edwards coefficient d ∈ Fp and a list
of integers (e1, . . . , en). The output of this algorithm is an Edwards coefficient
d′ ∈ Fp such that Ed′ = [le11 · · · lenn ]Ed.

Sampling points (line 2-14 in Algorithm 3) To sample a point that belongs
to Ed[πp − 1] or Ed[πp + 1], we take a uniformly random element of Fp. Denote
this element by w. If w is 0 or ±1, we take a random element again. (We reject
any point whose order is a power of 2 by Lemma 10.) Then, we calculate w2.



How to Construct CSIDH on Edwards Curves 23

Let P be a point in Ed such that w(P ) = w2. By Theorem 4, if w(2P ) is square
in Fp, then there exists a point P ′ such that w(P ′) = w(2P ), p+1

4 P ′ = 0d, and
P ′ ∈ Ed[πp + 1]. If w(2P ) is not square in Fp, then there exists a point P ′ such
that w(P ′) = 1/w(2P ), p+1

4 P ′ = 0d, and P ′ ∈ Ed[πp − 1]. Thus, we calculate
w(2P ) by using the doubling formulas on Edwards curves and determine whether
w(2P ) is square or not. If w(2P ) is square, we can use w(2P ) as an element of
Ed[πp+1]. If w(2P ) is not square, we can use 1/w(2P ) as an element of Ed[πp−1].
If w(2P ) is square, we define S as a set of i such that the sign of ei is −1. If
w(2P ) is not square, we define S as a set of i such that the sign of ei is +1. If
S = ∅, we go back to the Sampling points calculation.

From Theorem 5, the probability of getting points in Ed[πp − 1] is equal to
the probability of getting points in Ed[πp + 1].

Scalar multiplication (line 15-19 in Algorithm 3) From Theorem 4, it
suffices to calculate w(p+1

4k (P ′)) instead of w(p+1
k (P )), where k =

∏
i∈S ℓi. To

calculate w(p+1
4k (P ′)) efficiently, we use Algorithm 4.

Algorithm 4 The Edwards ladder using P and 2P

Input: Ed, k =
∑ℓ−1

i=0 ki2
i with kℓ−1 = 1, (W0 : 1) = w(P ), and (W : Z) = w(2P )

s.t. P ∈ Ed

Output: (W ′ : Z′) = w(kP )
1: (W1 : Z1)← (W0 : 1) and (W2 : Z2)← (W : Z)
2: for i = ℓ− 2 down to 0 do
3: if ki = 0 then
4: (W1 : Z1)← 2(W1 : Z1) (doubling on Ed)
5: (W2 : Z2)← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
6: else
7: (W2 : Z2)← 2(W1 : Z1) (doubling on Ed)
8: (W1 : Z1)← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
9: end if
10: end for
11: return (W1 : Z1)

If w(2P ) is not square, the proof of Theorem 4 indicates that P ′ = 2P +Q,
where Q is a point at infinity. Since p+1

4k is odd and an odd multiple of Q is also

a point at infinity, w(p+1
4k (P ′)) = 1/w(p+1

4k (2P )).

Calculation of isogenies (line 20-26 in Algorithm 3) By Theorem 6 and
7, we can calculate isogenies by using the same strategy as the original CSIDH
algorithm. To do so, we can use the formulas on Edwards curves [18].

Output (line 28 in Algorithm 3) If the list of integers (e1, . . . , en) is the
zero vector, we output the Edwards coefficient d′ ∈ Fp.



24 T. Moriya et al.

Table 2. Computational costs on each CSIDH algorithm

Montgomery [21] Edwards (y-coordinate) Edwards (w-coordinate)

M 328,195 332,707 328,055

S 116,915 116,893 116,857

a 332,822 355,533 331,844

total 438,368 443,999 438,133

Remark 1. To determine whether w(2P ) is square or not, we only need to con-
sider W , where (W : Z) = w(2P ). We explain the reason below.

Recall the isogenies formulas on Edwards curves:

D′ = Dℓ ·
s∏

i=1

(Wi + Zi)
8, C ′ = Cℓ ·

s∏
i=1

(2Zi)
8.

As ℓ is odd, if D is not square, then D′ is also not square. At the beginning
of the algorithm, we let (D : C) = (d : 1). Hence, we can assume that D is
not square. Let the projective w-coordinates of P be (W ′ : Z ′), the projective
w-coordinates of 2P be (W : Z), and the projective coordinates of d be (D : C).
Z is not square, since

w(2P ) = (4W ′Z ′(D(W ′ + Z ′)2 − 4CW ′Z ′) : D(W ′ + Z ′)2(W ′ − Z ′)2).

Therefore, ifW is square, then w(2P ) is not square. Moreover, ifW is not square,
then w(2P ) is square.

6 Computational costs

In this section, we compare computational costs of our proposed CSIDH algo-
rithm and that of the algorithm proposed by Meyer and Reith [21], theoreti-
cally. Moreover, we show our result of implementation on three different CSIDH
algorithms: the algorithm on Montgomery curves proposed by Meyer and Re-
ith [21] (Algorithm 1), that on Edwards curves with y-coordinates (Algorithm
6 in Appendix Appendix C), and that on Edwards curves with w-coordinates
(Algorithm 3). The results are summarized in Table 2. In this table, “total”
means total numbers of multiplications on Fp, where we assume 1S = 0.8M,
and 1a = 0.05M.

6.1 Comparing computational costs theoretically

Our proposed CSIDH algorithm using only w-coordinates on Edwards curves
is as fast as (or a little bit faster than) the algorithm proposed by Meyer and
Reith [21]. In this subsection, we explain computational savings of our algorithm
relative to the algorithm of Meyer and Reith.



How to Construct CSIDH on Edwards Curves 25

On Edwards curves, the Sampling points calculation costs 1S for taking
a uniformly random element of (Fp)

2 and requires one doubling on Edwards
curves with Z = 1 (the cost of 4M+1S+5a) for determining the set which the
point belongs to. On the other hand, on Montgomery curves, Sampling points
calculation entails calculating Cx3 + Ax2 + Cx (the cost of 3M + 1S + 2a) for
determining the set which the point belongs to, where (A : C) is a projective
coordinates of a. Therefore, our algorithm saves a cost of −M − S − 3a per
Sampling points calculation.

The Scalar multiplication part entails multiplication by p+1
4k on Edwards

curves and multiplication by p+1
k on Montgomery curves. Therefore, per Scalar

multiplication, the proposed algorithm saves the cost of a doubling on Edwards
curves with Z = 1 and the cost of doubling on Edwards curves with Z 6= 1 (i.e.,
8M+ 3S+ 9a).

The probability that S = ∅ after performing the Sampling points calcula-
tion is at most 1

2 , by Theorem 5. Hence, we expect the proposed algorithm to
save at least

1

2
(−M− S− 3a) +

1

2
(8M+ 3S+ 9a−M− S− 3a) = 3M+

1

2
S+

3

2
a,

per Sampling points and Scalar multiplication calculation.
The difference between Calculation of isogenies on Edwards curves and

on Montgomery curves is only in calculating the isogenies. The computational
cost of calculating (2s + 1)-degree isogenies on Edwards curves is (6s + 2)M +
8S + (4s + 6)a and that of the two s-th powers, while the computational cost
on Montgomery curves is (6s + 2)M + 8S + (4s + 8)a and that of the two s-th
powers. Therefore, the proposed algorithm saves 2a per isogeny calculation.

From the above, we conclude that our proposed CSIDH algorithm using only
Edwards curves is as fast as or a little bit faster than the algorithm proposed by
Meyer and Reith [21].

6.2 Implementations

We measured average of computational costs of 50000 times, respectively. The
results are summarized in Table 2. Here, p was chosen as 4·ℓ1 · · · ℓ74−1, where ℓ1
through ℓ73 were the smallest 73 odd primes and ℓ74 = 587, and m was chosen
as 5. These are parameters proposed in [8]. Secret keys were randomly taken
for 50000 times. In our implementation, we did not use formulas to compute
isogenies in Õ(

√
ℓ).

As shown in Table 2, there is no big difference of computational costs among
the three different algorithms. The algorithm on Edwards curves with w-coordinates
is the little bit fastest one in our implementation.

Remark 2. Our implementation of the algorithm on Montgomery curves is based
on the algorithm proposed by Meyer and Reith [21]. There are some techniques to
make the CSIDH algorithm faster [20, 9]. We did not implement these techniques.
However, as far as we know, these techniques affect only a little or can be also



26 T. Moriya et al.

adapted to the our proposed algorithms. Therefore, even if we consider these
techniques, we can conclude that there is no big difference of computational
costs among the above three different algorithms.

7 Elligator like technique on Edwards curves

In this section, we propose an Elligator like technique on Edwards curves with
using w-coordinates. As far as we know, currently proposed constant-time al-
gorithms can be migrated to those on Edwards curves except for the part of
Elligator.

7.1 Construction

We introduce the following theorem.

Theorem 8. Let p ≡ 3 (mod 8). Let P be a point on an Edwards curve Ed

such that the w-coordinate w(P ) ∈ Fp, the order of P is not a power of 2. If
w(2P ) is square, there exists P ′ such that P ′ ∈ Ed[πp +1], w(P ′) = w(4P ), and
p+1
4 P ′ = 0d. If w(2P ) is not square, there exists P ′ such that P ′ ∈ Ed[πp − 1],

w(P ′) = w(4P ), and p+1
4 P ′ = 0d.

Proof. From Lemma 7, we have Podd ∈ Ed[πp ± 1]. From the proof of Theorem
4, we have w(2P ) = w(2Podd)

±1. Hence, from Lemma 5, if w(2P ) is square,
then 2Podd and 4Podd belong to Ed[πp + 1], and if w(2P ) is not square, then
2Podd and 4Podd belong to Ed[πp − 1]. From the proof of Theorem 4, we have
4P2power = 0d, (−1, 0). Therefore, it holds that w(4P ) = w(4Podd).

This completes the proof of Theorem 8. ut
From this theorem, it is sufficient to output a point Q such that χ(w(2Q)) =
−χ(w(2P )) from an input P , where the map χ : Fp → Fp is defined as χ(a) :=
a(p−1)/2.

We recall the doubling formulas on an Edwards curve Ed:

w(2P ) =
4w(P )(d(w(P ) + 1)2 − 4w(P ))

d(w(P )− 1)2(w(P ) + 1)2
=

4w(P )
(
w(P )2 + 2d−4

d w(P ) + 1
)

(w(P )− 1)2(w(P ) + 1)2
.

We see the polynomial w
(
w2 + 2d−4

d w + 1
)
is similar to the right-hand side of

the definitional equation of a Montgomery curve. Therefore, we get the required
map by considering Elligator on y2 = x3 + 2d−4

d x2 + x.
The outline of the construction is as follows. First, we take a random element

u from {2, 3, . . . , (p−1)/2}. Take the point P such that w(P ) = (2d−4)/(d(u2−
1)). Compute w(2P ), and determine whether w(2P ) is square or not. Let Q
be a point such that w(Q) = −w(P ) − (2d − 4)/d. Note that it holds that
χ(w(2Q)) = −χ(w(2P )). Finally, we output {w(4P ), w(4Q)}.

In [9], the constant-time projective Elligator was proposed. Our proposed
technique can also be changed to the constant-time projective one using the
same way in [9]. The result is shown in Algorithm 5. Although this technique
is not Elligator, we often call this technique “Elligator on Edwards curves” for
simplicity.



How to Construct CSIDH on Edwards Curves 27

Algorithm 5 Constant-time projective Elligator on Edwards curves

Input: D,C ∈ Fp such that ED/C is supersingular and an random element u from
{2, 3, . . . , (p− 1)/2}

Output: The projective w-coordinate of P ∈ ED/C [πp − 1] and the projective w-
coordinate of Q ∈ ED/C [πp + 1]

1: t← (2D − 4C)((u2 − 1)u2(2D − 4C)2D + ((u2 − 1)D)3)
2: ϵ← isequal(t, 0)
3: α, β, γ, δ ← u, 0, 1, 0
4: cswap(α, β, ϵ)
5: cswap(γ, δ, ϵ)
6: t′ ← t+ αD4(u2 + 1)
7: s← ((2D − 4C) +D(u2 − 1))2((2D − 4C)−D(u2 − 1))2 + γD4(u2 − 1)2

8: (W1 : Z1)← ((2D − 4C) + αD(u2 − 1) : D(u2 − 1))
9: (W ′

1 : Z′
1)← (−(2D − 4C)u2 − αD(u2 − 1) : D(u2 − 1))

10: (W2 : Z2)← (4t′ : s)
11: (W3 : Z3)← 2(W2 : Z2) (doubling on ED/C)
12: (W ′

2 : Z′
2)← ((−u2)t′ : (W ′

1 − Z′
1)

2(W ′
1 + Z′

1)
2)

13: (W ′
3 : Z′

3)← 2(W ′
2 : Z′

2) (doubling on ED/C)
14: ζ ← Legendre symbol(t′, p)
15: ϵ′ ← isequal(ζ,−1)
16: cswap((W3 : Z3), (W

′
3 : Z′

3), ϵ
′)

17: return (W3 : Z3), (W
′
3 : Z′

3)

7.2 Computational costs of Elligator on Edwards curves

In this subsection, we discuss the difference of the computational costs of our
new proposed technique (Algorithm 5) and Elligator on Montgomery curves (Al-
gorithm 2). Here, we consider Elligator used in constant-time CSIDH algorithms
that use the two torsion method [27, 9].

The first difference between these algorithms appears when computing t and
t′. Our proposal requires 1M + 2S + 3a more cost than that on Montgomery
curves. Moreover, we needs to compute an extra variable s in the line 7 in the
algorithm of Elligator on Edwards curves. Its cost is 2M+ 2S+ 3a.

The second difference appears when computing multiplications of P and Q
by 4. Algorithm 2 outputs x(P ) and x(Q); however, when we use these points
in the CSIDH algorithm, we needs to compute multiplications of these points by
4. Therefore, we compare the proposed Elligator algorithm with the algorithm
on Montgomery curves including computations of multiplications of P and Q
by 4. Note that the both cost of doubling formulas on Edwards curves and on
Montgomery curves are 4M + 2S + 4a. The cost of our proposed algorithm is
10M+ 5S+ 13a. On the other hand, the cost of that on Montgomery curves is
16M+ 8S+ 16a.

Consequently, our proposed algorithm saves the cost of 3M−1S−3a. There-
fore, our proposal is more efficient than Elligator on Montgomery curves. Since
the impact of Elligator on the whole CSIDH algorithm is small, the constant-



28 T. Moriya et al.

time CSIDH algorithm on Edwards curves is as fast as (or a little bit faster than)
that on Montgomery curves.

8
√
élu’s formulas on Edwards curves

In this section, we give the
√
élu’s formulas on Edwards curves. The rough com-

puting process of these formulas is in Appendix A. 4. This method is similar to
that on Montgomery curves (in Appendix A. 3).

In our analysis, we can use lower degree polynomials for computing
√
élu’s

formulas on Edwards curves than those on Montgomery curves. Hence, the com-
putational cost of computing those on Edwards curves is a little bit smaller than
those on Montgomery curves.

8.1 Formulas

Let P be a point of Ed, and let (W : Z) = w(P ). Let D/C = d. Let Q be
an order-ℓ point of Ed, and (W1 : Z1) = w(Q). Let (Wk : Zk) = w(kQ). Let
Ed′ = Ed/〈Q〉, and let ϕ be an isogeny ϕ : Ed → Ed′ with kerϕ = 〈Q〉. If we let
(W ′ : Z ′) be the projective w-coordinate of ϕ(P ), and let D′/C ′ = d′, then the
following equations hold (equations (14) and (15)).

W ′ =W ·
s∏

i=1

(ZWi − ZiW )2, Z ′ = Z ·
s∏

i=1

(WWi − ZZi)
2,

D′ = Dℓ ·
s∏

i=1

(Wi + Zi)
8, C ′ = Cℓ ·

s∏
i=1

(2Zi)
8.

Define the polynomial hS ∈ Fp[T1, T2] as hS(T1, T2) :=
∏

i∈S(ZiT1 − WiT2).
Then, these equations can be rewritten as follows:

W ′ =W · (hS(W,Z))2, Z ′ = Z · (hS(Z,W ))2. (16)

D′ = Dℓ · (hS(−1, 1))8, C ′ = Cℓ · (2shS(1, 0))8 . (17)

Here, S is a set {1, 3, . . . , ℓ− 2}. By using resultants, we can compute hS(α, β)
for some α, β in Õ(

√
ℓ) times.

Now, we explain the method to compute hS on Edwards curves using resul-
tants.

As in [5], let I = {2b(2i+ 1) | 0 ≤ i < b′}, let J = {1, 3, . . . , 2b− 1}, and let
K = S \ (I ±J), where b = b

√
ℓ− 1/2c, and b′ = b(ℓ− 1)/4bc (for b > 0). Define

polynomials F0, F1, and F2 in Fp[T1, T2, T3, T4] such that

(T − w(P +Q))(T − w(P −Q)) = T 2 +
F1(w(P ),w(Q))

F0(w(P ),w(Q))
T +

F2(w(P ),w(Q))

F0(w(P ),w(Q))
.



How to Construct CSIDH on Edwards Curves 29

In other words,

F0(T1, T2, T3, T4) = D(T1T3 − T2T4)2,
F1(T1, T2, T3, T4) = −2(D(T1T3 + T2T4)(T1T4 + T2T3) + (4D − 8C)T1T2T3T4),

F2(T1, T2, T3, T4) = D(T1T4 − T2T3)2.

Then, it holds that,

hS(α, β) =

 ∏
i∈(I±J)

Zi

 · hK(α, β)

∆I,J
· ResT (hI(T, 1), EJ(α, β, T )),

where ResT (·, ·) is the resultant of two polynomials in T ,

∆I,J = ResT (hI(T, 1),
∏
j∈J

F0(T, 1,Wj , Zj)),

and

EJ(T1, T2, T )

:=
∏
j∈J

(F0(T, 1,Wj , Zj)T
2
1 + F1(T, 1,Wj , Zj)T1T2 + F2(T, 1,Wj , Zj)T

2
2 )

=
∏
j∈J

(F0(T1, T2,Wj , Zj)T
2 + F1(T1, T2,Wj , Zj)T + F2(T1, T2,Wj , Zj)).

Therefore, by using resultants, we can compute the equations (16) and (17).

Denote hK(α, β) ·ResT (hI(T, 1), EJ(α, β, T )) by h̃S(α, β). Since
(∏

i∈(I±J) Zi

)
and ∆I,J do not depend on α and β, it is enough to consider h̃S(α, β) instead
of hS(α, β) to compute these equations. Furthermore, it holds that

h̃S(1, 0) = hK(1, 0) · ResT (hI(T, 1),
∏
j∈J

F0(T, 1,Wj , Zj))

= hK(1, 0) · ResT (hI(T, 1),
∏
j∈J

D(WjT − Zj)
2)

= hK(1, 0) ·D#I#J · (ResT (hI(T, 1), hJ(1, T )))2 .

Denote hK(1, 0) · (ResT (hI(T, 1), hJ(1, T )))2 by
˜̃
hS(1, 0).

From above discussions, we get the new formulas for computing isogenies on
Edwards curves as follows:

W ′ =W · (hK(W,Z) · ResT (hI(T, 1), EJ(W,Z, T ))
2,

Z ′ = Z · (hK(Z,W ) · ResT (hI(T, 1), EJ(Z,W, T ))
2,

D′ = D2#K+1 · (hK(−1, 1) · ResT (hI(T, 1), EJ(−1, 1, T ))8,
C ′ = Cℓ ·D4#I#J · (2shK(1, 0) · (ResT (hI(T, 1), hJ(1, T ))2)8.



30 T. Moriya et al.

Remark 3. There are some methods to compute resultants. Since hI is not a
monic polynomial, some methods give the value of a resultant multiplied by a
constant value determined by the degree of EJ(α, β, T ) (e.g., the remainder-tree
algorithm [15, §2. Method C] with using pseudo division, the scaled remainder-
tree algorithm [3] with using pseudo reciprocal). The following problems may
occur when using such a method. Although we compute projective coordinates,
the constant value affects the final computational result of Edwards coefficients.
It is because the degree of hJ(1, T ) is different from that of EJ(−1, 1, T ), and
the constant value multiplied by D′ is not same as the constant value multiplied
by C ′.

If we know these constant values, this problem is easily solved. This is the
case if we use the scaled remainder-tree algorithm. If we do not know, we can
avoid this situation by doing the following. First, we divide EJ(−1, 1, T ) into
degree 2b#J/2c and degree 2d#J/2e polynomials. Next, by adding terms with
zero coefficients to these polynomials and hJ(1, T ), we set degrees of these two
polynomials to 2d#J/2e. Finally, we compute resultants, respectively. In this
way, we can cancel out the effect of the constant values.

8.2 Analysis of the formulas

In this subsection, we explain the difference of two
√
élu’s formulas and analyze

the efficiency of our proposed formulas. Here, we use the techniques proposed in
[1] for Montgomery curves.

In [5], they use the scaled remainder-tree algorithm [3] to compute resultants.
It is the improved version of the remainder-tree algorithm [15]. Therefore, we
choose the scaled remainder-tree algorithm in our analysis.

The outline of these formulas are same; however, there are small differences
that affect their efficiency. In particular, the following difference is important in
efficiency.

The main significant difference is whether we compute
˜̃
hS(1, 0) (on Edwards

curves) or h̃S(1, 1) (on Montgomery curves). In order to compute h̃S(1, 1), it
is need to compute the product of #J polynomials of degree 2, and use the
scaled remainder-tree algorithm for the result polynomial of degree 2#J . On

the other hand, to compute
˜̃
hS(1, 0), it is need to compute the product of #J

polynomials of degree 1, and use the scaled remainder-tree algorithm for the

result polynomial of degree almost #J . Therefore, for computing
˜̃
hS(1, 0), we

use lower degree polynomials than those for computing h̃S(1, 1). It shows that

the computational cost of computing
˜̃
hS(1, 0) is a little bit smaller than that of

computing h̃S(1, 1).
Moreover, as we use the scaled remainder-tree algorithm, we need to care the

problem in Remark 3. We denote
∏

i∈I Zi by Z̃. First, we compute the Laurent
series of 1/hI in the variable T−1. In the natural method, we need to compute
a division of Z̃. To avoid this division, we consider a pseudo reciprocal. By this
computation, we get Ω/hI instead of 1/hI , where Ω is a constant value deter-
mined by hI and the degree of the other polynomial of input. The value Ω can be



How to Construct CSIDH on Edwards Curves 31

easily computed by considering the Laurent series of Ω/hI and Z̃. Next, we com-
pute #I values. By multiplying all these #I values together, we get (pseudo) re-
sultants. Here, the i-th value is the value multiplied by the conventional value and
1/Zi (and Ω). Therefore, the constant value in Remark 3 is Ω#I/Z̃. Thus, we get
constant values that come up when computing ResT (hI(T, 1), EJ(−1, 1, T )) and
ResT (hI(T, 1), hJ(1, T )), respectively. Multiplying these values properly yields
the correct result. This calculation does not occur in the case of Montgomery
curves; however, the impact of this computation is smaller than that of the
calculations in the above paragraphs.

Since the other differences have a small impact for their efficiency, we con-
clude

√
élu’s formulas on Edwards curves are more efficient than those on Mont-

gomery curves.

9 Conclusion and future work

9.1 Conclusion

We proved four important theorems (Theorem 4, Theorem 5, Theorem 6, and
Theorem 7) on Edwards curves and used them to construct a CSIDH algorithm
on Edwards curves with w-coordinates. Theorem 4 shows that if w(P ) and w(2P )
are square, then w(2P ) can be treated as a point in Ed[πp + 1], and if w(P )
is square and w(2P ) is not square, then 1/w(2P ) can be treated as a point in
Ed[πp−1]. Theorem 5 claims that the number of w(P ) such that w(P ) and w(2P )
are square is equal to the number of w(P ) such that w(P ) is square and w(2P )

is not square. Theorem 6 shows the probability that w
(

p+1
4ℓi

2P
)

represents a

point of order ℓi is almost 1− 1
ℓi
. Theorem 7 proves that an Edwards coefficient

d is unique up to Fp-isomorphism. From these four theorems, we extended the
CSIDH algorithm to that on Edwards curves with w-coordinates over Fp.

We compared complexities of the our proposed algorithm and the algorithm
proposed by Meyer and Reith. We showed that our proposed algorithm is as fast
as (or a little bit faster than) the one of Meyer and Reith. Moreover, we imple-
mented three different CSIDH algorithms (the algorithm on Montgomery curves
[21], that on Edwards curves with y-coordinates, and that on Edwards curves
with w-coordinates), and compared computational costs of them. There was no
big difference of computational costs among the three different algorithms. The
algorithm on Edwards curves with w-coordinates was the little bit fastest one in
our implementation.

Moreover, we construct Elligator on Edwards curves, which contributes the
efficiency of the constant-time CSIDH algorithm on Edwards curves. Theoreti-
cally, our proposed constant-time CSIDH algorithm is as fast as (or a little bit
faster than) that on Montgomery curves.

Furthermore, we proposed the new
√
élu’s formulas on Edwards curves. Those

on Edwards curves were a little bit faster than those on Montgomery curves.



32 T. Moriya et al.

Acknowlegements. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

Appendix Appendix A How to compute the calculations
and isogenies

Here, we explain how to compute the calculations and isogenies on Montgomery
curves and Edwards curves.

A. 1 Montgomery curves

The doublings formula (1) can be computed as

t1 ← X +Z, t2 ← X −Z, t1 ← t21, t2 ← t22, s← t1− t2, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A+ 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

If Z = 1, the doublings formula (1) can be computed as

t1 ← X + 1, t1 ← t21, s← 2 ·X, s← 2 · s, t2 ← t1 − s, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A+ 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

The addition formula (2) can be computed as

t1 ← X1 + Z1, s1 ← X2 + Z2, t2 ← X1 − Z1, s2 ← X2 − Z2, t← t1 · s2,

s← t2 · s1, X3 ← t+ s, Z3 ← t− s, X3 ← X2
3 · Z0, Z3 ← Z2

3 ·X0.

The formula for calculating ϕ(P ) (3) can be computed as

ti ← Xi + Zi, si ← Xi − Zi, ti ← ti · (X − Z), si ← si · (X + Z),

X ′ ←
s∏

i=1

(ti − si), Z ′ ←
s∏

i=1

(ti + si), X ′ ← X · (X ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (4) can be computed as

c← 2 · C, a← A+ c, d← A− c, a′ ←
s∏

i=1

(Xi + Zi),

d′ ←
s∏

i=1

(Xi − Zi), a′ ← (a′)4, d′ ← (d′)4, a′ ← as · a′, d′ ← ds · d′,

a′ ← a · (a′)2, d′ ← d · (d′)2, A′ ← 2 · (a′ + d′), C ′ ← a′ − d′.



How to Construct CSIDH on Edwards Curves 33

A. 2 Edwards curves

The doublings formula (8) can be computed as

t1 ← Y 2, t2 ← Z2, t3 ← C −D, t4 ← t2 − t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, t1 ← t1 · t2, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

If Z = 1, the doublings formula (8) can be computed as

t1 ← Y 2, t3 ← C −D, t4 ← 1− t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

The addition formula (9) can be computed as

t1 ← Y1 ·Z2, t2 ← Y2 ·Z1, s1 ← t1+ t2, s2 ← t1− t2, s1 ← s21, s2 ← s22,

s1 ← (Z0 − Y0) · s1, s2 ← (Z0 + Y0) · s2, Y3 ← s1 − s2, Z3 ← s1 + s2.

The formula for calculating ϕ(P ) (10) can be computed as

ti ← Z · Yi, t′i ← Zi · Y, s1 ←
s∏

i=1

(ti + t′i), s2 ←
s∏

i=1

(ti − t′i), s1 ← s21,

s2 ← s22, s1 ← (Z+Y ) ·s1, s2 ← (Z−Y ) ·s2, Y ′ ← s1−s2, Z ′ ← s1+s2.

The formula for calculating E′ (11) can be computed as

D′ ←
s∏

i=1

Yi, C ′ ←
s∏

i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds ·D′, C ′ ← Cs · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

The doublings formula (12), addition formula (13), and formula for calcu-
lating ϕ(P ) (14) can be computed similarly as the formulas on Montgomery
curves.

The formula for calculating E′ (15) can be computed as

D′ ←
s∏

i=1

(Wi + Zi), C ′ ←
s∏

i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds ·D′, C ′ ← (2 · 2 · 2 · 2 · C)s · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.



34 T. Moriya et al.

A. 3 Calculations of
√
élu’s formulas on Montgomery curves

In this subsection, we explain the method to compute ℓ-isogenies proposed in [5].
Although in [5], they wrote down the formulas using affine coordinates, we con-
sider the formulas using projective coordinates to estimate their computational
costs.

Let E be a Montgomery curve y2 = x3 + ax2 + x, and let A/C = a. Let G =
{Pi | i = 1, . . . , ℓ} be a finite subgroup of E, and let ϕ : E → E/〈G〉 be an isogeny
satisfying kerϕ = G. Denote x(Pi) by (Xi, Zi). Let hSet(T1, T2) be a polynomial
defined by hSet(T1, T2) :=

∏
i∈Set(ZiT1 − XiT2). Let S = {1, 3, . . . , ℓ − 2}, let

I = {2b(2i+ 1) | 0 ≤ i < b′}, let J = {1, 3, . . . , 2b− 1}, and let K = S \ (I ± J),
where b = b

√
ℓ− 1/2c, and b′ = b(ℓ− 1)/4bc (for b > 0). Define polynomials F0,

F1, and F2 in Fp[T1, T2, T3, T4] such that

(T − x(P +Q))(T − x(P −Q)) = T 2 +
F1(x(P ),x(Q))

F0(x(P ),x(Q))
T +

F2(x(P ),x(Q))

F0(x(P ),x(Q))
.

In other words,

F0(T1, T2, T3, T4) = C(T1T4 − T2T3)2,
F1(T1, T2, T3, T4) = −2(C(T1T3 + T2T4)(T1T4 + T2T3) + 2AT1T2T3T4),

F2(T1, T2, T3, T4) = C(T1T3 − T2T4)2.

Note that #S = 2#I#J +#K. From [5, Theorem 4.11], it holds that,

hS(α, β) =

 ∏
i∈(I±J)

Zi

 · hK(α, β)

∆I,J
· ResT (hI(T, 1), EJ(α, β, T )),

where ResT (f, g) is the resultant of polynomials f and g in Fp[T ], ∆I,J is
ResT (hI(T, 1),

∏
j∈J F0(T, 1, Xj , Zj)), and

EJ(T1, T2, T )

:=
∏
j∈J

(F0(T, 1, Xj , Zj)T
2
1 + F1(T, 1, Xj , Zj)T1T2 + F2(T, 1, Xj , Zj)T

2
2 )

=
∏
j∈J

(F0(T1, T2, Xj , Zj)T
2 + F1(T1, T2, Xj , Zj)T + F2(T1, T2, Xj , Zj)).

Therefore, by using resultants, we can compute the equations (5) and (6). Denote

hK(α, β)·ResT (hI(T, 1), EJ(α, β, T )) by h̃S(α, β). Since
(∏

i∈(I±J) Zi

)
and∆I,J

do not depend on α and β, it is enough to consider h̃S(α, β) instead of hS(α, β)
to compute these formulas.

We use the scaled remainder-tree algorithm to compute resultants. First, we
generate a product tree of polynomials {ZiT −Xi | i ∈ I}. Next, by using the
scaled remainder-tree algorithm for EJ(α, β, T ), we compute {EJ(α, β,Xi/Zi) |
i ∈ I}. Finally, we multiply all these values together to get the result.



How to Construct CSIDH on Edwards Curves 35

The formula for calculating ϕ(P ) (5) can be computed as

t1,j ← XjX, t2,j ← XjZ, t3,j ← ZjX, t4,j ← ZjZ,

t5,j ← 2At1,jt4,j , t6,j ← (t1,j + t4,j)(t2,j + t3,j),

h1,j ← (−2)(t6,j · C + t5,j), h0,j ← C(t1,j − t4,j)2, h2,j ← C(t2,j − t3,j)2,

EJ(X,Z, T )←
∏
j∈J

(h2,jT
2 + h1,jT + h0,j),

Set(X,Z) ← ResultantT (EJ(X,Z, T ), {ZiT −Xi | i ∈ I}),

h̃S(X,Z)←

 ∏
v∈Set(X,Z)

v

 ·(∏
k∈K

(ZkX −XkZ)

)
,

EJ(Z,X, T )←
∏
j∈J

(h0,jT
2 + h1,jT + h2,j) = Reverse(EJ(X,Z, T )),

Set(Z,X) ← ResultantT (EJ(Z,X, T ), {ZiT −Xi | i ∈ I}),

h̃S(Z,X)←

 ∏
v∈Set(Z,X)

v

 ·(∏
k∈K

(ZkZ −XkX)

)
,

X ′ ← h̃S(Z,X), Z ′ ← h̃S(X,Z), X ′ ← X · (X ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (6) can be computed as

t1,j ← (Xj + Zj)
2, t2,j ← (Xj − Zj)

2, t3,j ← C · t1,j , t4,j ← C · t2,j ,

t5,j ← A(t2,j − t1,j), h+,j ← t4,j , h−,j ← t3,j ,

h+,1,j ← t5,j − 2h−,j , h−,1,j ← 2h+,j − t5,j ,

EJ(1, 1, T )←
∏
j∈J

(h+,jT
2 + h+,1,jT + h+,j),

EJ(−1, 1, T )←
∏
j∈J

(h−,jT
2 + h−,1,jT + h−,j),

Set+ ← ResultantT (EJ(1, 1, T ), {ZiT −Xi | i ∈ I}),
Set− ← ResultantT (EJ(−1, 1, T ), {ZiT −Xi | i ∈ I}),

h̃S(1, 1)←

 ∏
v∈Set+

v

 ·(∏
k∈K

(Zk −Xk)

)
,

h̃S(−1, 1)←

 ∏
v∈Set−

v

 ·(∏
k∈K

(−Zk −Xk)

)
,

c← 2 · C, a← A+ c, d← A− c, a′ ← h̃S(−1, 1)2, d′ ← h̃S(1, 1)
2,

a′ ← a#I#J · a′, d′ ← d#I#J · d′, a′ ← (a′)2, d′ ← (d′)2,

a′ ← a#K · a′, d′ ← d#K · d′, a′ ← a · (a′)2, d′ ← d · (d′)2,
A′ ← 2 · (a′ + d′), C ′ ← a′ − d′.



36 T. Moriya et al.

A. 4 Calculations of
√
élu’s formulas on Edwards curves

The formula for calculating ϕ(P ) (16) can be computed as

tDC ← 2(D − 2C), t1,j ←WjW, t2,j ←WjZ, t3,j ← ZjW,

t4,j ← ZjZ, t5,j ← 2tDCt1,jt4,j , t6,j ← (t1,j + t4,j)(t2,j + t3,j),

h1,j ← (−2)(t6,j ·D + t5,j), h0,j ← D(t2,j − t3,j)2, h2,j ← D(t1,j − t4,j)2,

EJ(W,Z, T )←
∏
j∈J

(h2,jT
2 + h1,jT + h0,j),

Set(W,Z) ← ResultantT (EJ(W,Z, T ), {ZiT −Wi | i ∈ I}),

h̃S(W,Z)←

 ∏
v∈Set(W,Z)

v

 ·(∏
k∈K

(ZkW −WkZ)

)
,

EJ(Z,W, T )←
∏
j∈J

(h0,jT
2 + h1,jT + h2,j) = Reverse(EJ(W,Z, T )),

Set(Z,W ) ← ResultantT (EJ(Z,W, T ), {ZiT −Wi | i ∈ I}),

h̃S(Z,W )←

 ∏
v∈Set(Z,W )

v

 ·(∏
k∈K

(ZkZ −WkW )

)
,

W ′ ← h̃S(W,Z), Z ′ ← h̃S(Z,W ), W ′ ←W · (W ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (17) can be computed as

t1,j ← (Wj + Zj)
2, t2,j ← (Wj − Zj)

2, t3,j ← D · t1,j , t4,j ← D · t2,j ,

t5,j ← t1,j − t2,j , h0,j ← t3,j , h1,j ← tDC · t5,j + 2t4,j ,

EJ(−1, 1, T )←
∏
j∈J

(h0,jT
2 + h1,jT + h0,j),

Set(−1,1) ← ResultantT (EJ(−1, 1, T ), {ZiT −Wi | i ∈ I}),

h̃S(−1, 1)←

 ∏
v∈Set(−1,1)

v

 ·(∏
k∈K

(−Zk −Wk)

)
,

Set(1,0) ← ResultantT

∏
j∈J

(WjT − Zj), {ZiT −Wi | i ∈ I}

 ,

˜̃
hS(1, 0)←

 ∏
v∈Set(1,0)

v

2

·

(∏
k∈K

Zk

)
,

D′ ← h̃S(−1, 1), C ′ ← ˜̃
hS(1, 0), D′ ← (D′)4, C ′ ← (C ′)2,

C ′′ ← 2 · 2 · 2 · 2 · C, C ′ ← (D · C ′′)#I#J · C ′, C ′ ← (C ′)2,

D′ ← D#K ·D′, C ′ ← (C ′′)#K · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.



How to Construct CSIDH on Edwards Curves 37

Remark 4. The above formulas do not care about the problem explained in Re-
mark 3. If we want to do the actual calculation, we need to do some additional
calculations about the constant values in Remark 3.

Appendix Appendix B Proof of Theorem 1

In this section, we prove Theorem 1.

Theorem 1. Let p be a prime and p ≥ 3. The Edwards curve Ed defined over
Fp is Fp-isomorphic to the Montgomery curve,

EM :
4

1− d
Y 2Z = X3 +

2(1 + d)

1− d
X2Z +XZ2.

Proof. Define a rational map ψ : Ed → EM,

(X : Y : Z : T ) 7→ (X + T : Y + Z : X − T ).

ψ is a morphism, because all points except for (0 : −1 : 1 : 0) are simply regular,
and from the following equation, (0 : −1 : 1 : 0) is also regular.

(Z − Y )Z

X
(X + T, Y + Z,X − T ) = (Z2 − Y 2, XZ − dY T, (Z − Y )2).

ψ(0d) = (0 : 1 : 0) holds, so ψ is an isogeny defined over Fp.
Define a rational map ϕ : EM → Ed,

(X : Y : Z : T ) 7→ (X(X + Z) : Y (X − Z) : Y (X + Z) : X(X − Z)).

ϕ is a morphism, because all points except for (0 : 1 : 0) and (0 : 0 : 1) are simply
regular, and from the following two equations, (0 : 1 : 0) and (0 : 0 : 1) are also
regular.

1

X
(X(X + Z), Y (X − Z), Y (X + Z), X(X − Z))

=

(
X + Z,

bY 2 −X2 − aXZ − Z2

bY
,
bY 2 +X2 + aXZ + Z2

bY
,X − Z

)
,

and

1

Y
(X(X + Z), Y (X − Z), Y (X + Z), X(X − Z))

=

(
bY Z(X + Z)

X2 + aXZ + Z2
, X − Z,X + Z,

bY Z(X − Z)
X2 + aXZ + Z2

)
,

where b =
4

1− d
and a =

2(1 + d)

1− d
.

ϕ(0 : 1 : 0) = 0d holds, so ϕ is an isogeny defined over Fp.
As ψ ◦ ϕ = idEM and ϕ ◦ ψ = idEd

hold, Ed is Fp-isomorphic to EM. ut



38 T. Moriya et al.

Appendix Appendix C CSIDH on Edwards curves with
y-coordinates

In this section, we explain the CSIDH algorithm on Edwards curves with y-
coordinates. There is no difference essentially between this algorithm and the
original CSIDH algorithm [8]. The precise algorithm is as follows.

Algorithm 6 Evaluating the class group action on Edwards curves with y-
coordinates
Input: d ∈ Fp such that Ed is supersingular and a list of integers (e1, . . . , en)
Output: d′ such that [le11 · · · lenn ]Ed = Ed′

1: while some ei ̸= 0 do
2: Sample a random y ∈ Fp

3: y(P )← (y : 1)
4: Set s← +1 if (1− y2)(1− dy2) is a square in Fp, else s← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ←

∏
i∈S ℓi, y(P )← y(((p+ 1)/k)P )

10: for all i ∈ S do
11: y(Q)← y((k/ℓi)P )
12: if Q ̸= 0d (y(Q) ̸= (1 : 1)) then
13: Compute an ℓi-isogeny ϕ : Ed → Ed′ with kerϕ = ⟨Q⟩
14: d← d′, y(P )← y(ϕ(P )), k ← k/ℓi, ei ← ei − s
15: end if
16: end for
17: end while
18: return d (Theorem 7)

Sampling points (line 2-8 in Algorithm 6) We take a uniformly random
element of Fp. Let the element be y, and P be a point in Ed such that y(P ) = y.

We calculate (1 − y2)(1 − dy2). Here, 1−y2

1−dy2 is a square of x(P ), where x(P ) is

the x-coordinate of P . If (1−y2)(1−dy2) is square in Fp, then P ∈ ker (πp − 1),
and if (1− y2)(1− dy2) is not square in Fp, then P ∈ ker (πp + 1).

Scalar multiplication (line 9 in Algorithm 6) Next, we calculate P1 =
p+1
k (P ), where k =

∏
i∈S ℓi. The calculation uses the ladder algorithm which is

constructed in the same way as Montgomery curves [23].

Calculation of isogenies (line 10-16 in Algorithm 6) We calculate P2 =
k
ℓi
P1. The order of P2 is 1 or ℓi. The probability that P2 is not the identity

is almost 1 − 1
ℓi
. This fact can be proven in the similar way in [8]. Therefore,

with highly probability, we get a point of order ℓi. Then, by Theorem 7, we can



How to Construct CSIDH on Edwards Curves 39

calculate isogenies by using the same strategy as the original CSIDH algorithm.
To do so, we can use the formulas on Edwards curves [24, 9].

Output (line 18 in Algorithm 6) If the list of integers (e1, . . . , en) is the
zero vector, we output the Edwards coefficient d′ ∈ Fp.

References

1. Gora Adj, Jesús-Javier Chi-Domı́nguez, and Francisco Rodŕıguez-Henŕıquez. On
new Vélu’s formulae and their applications to CSIDH and B-SIDH constant-time
implementations. IACR Cryptology ePrint Archive, 2020:1109, 2020. https://ia.
cr/2020/1109.

2. Reza Azarderakhsh, Matthew Campagna, Craig Costello, LD Feo, Basil Hess,
A Jalali, D Jao, B Koziel, B LaMacchia, P Longa, et al. Supersingular isogeny
key encapsulation. Submission to the NIST Post-Quantum Standardization project,
2017.

3. Daniel J Bernstein. Scaled remainder trees, August 2004. https://cr.yp.to/

papers.html#scaledmod.

4. Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards curves. In International Conference on Cryptology in Africa–
AFRICACRYPT 2008, pages 389–405. Springer, 2008.

5. Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. In Proceedings of the Fourteenth Al-
gorithmic Number Theory Symposium–ANTS 2020, volume 4, pages 39–55. Math-
ematical Sciences Publishers, 2020.

6. Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 967–980, 2013.

7. Daniel J Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In International Conference on the Theory and Application of Cryptology
and Information Security–ASIACRYPT 2007, pages 29–50. Springer, 2007.

8. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In International
Conference on the Theory and Application of Cryptology and Information Security–
ASIACRYPT 2018, pages 395–427. Springer, 2018.

9. Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca
De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith. Stronger and faster
side-channel protections for CSIDH. In International Conference on Cryptology
and Information Security in Latin America–LATINCRYPT 2019, pages 173–193.
Springer, 2019.

10. Craig Costello and Huseyin Hisil. A simple and compact algorithm for SIDH with
arbitrary degree isogenies. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security–ASIACRYPT 2017, pages 303–329.
Springer, 2017.

11. Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic: The
case of large characteristic fields. IACR Cryptology ePrint Archive, 2017:212, 2017.
https://ia.cr/2017/212.



40 T. Moriya et al.

12. Christina Delfs and Steven D Galbraith. Computing isogenies between supersin-
gular elliptic curves over Fp. Designs, Codes and Cryptography, pages 425–440,
2016.

13. Harold Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, pages 393–422, 2007.

14. Reza Rezaeian Farashahi and Seyed Gholamhossein Hosseini. Differential Addition
on Twisted Edwards Curves. In Australasian Conference on Information Security
and Privacy, pages 366–378. Springer, 2017.

15. Charles M Fiduccia. Polynomial evaluation via the division algorithm the fast
fourier transform revisited. In Proceedings of the fourth annual ACM symposium
on Theory of computing, pages 88–93, 1972.

16. Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
Edwards curves revisited. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security–ASIACRYPT 2008, pages 326–343.
Springer, 2008.

17. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography–PQCrypto 2011, pages 19–34. Springer, 2011.

18. Suhri Kim, Kisoon Yoon, Young-Ho Park, and Seokhie Hong. Optimized method
for computing odd-degree isogenies on Edwards curves. In Advances in Cryptology–
ASIACRYPT 2019, pages 273–292. Springer, 2019.

19. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation, pages
203–209, 1987.

20. Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elligators: An
efficient constant-time implementation of CSIDH. In International Conference on
Post–Quantum Cryptography–PQCrypto 2018, pages 307–325. Springer, 2019.

21. Michael Meyer and Steffen Reith. A faster way to the CSIDH. In International
Conference on Cryptology in India–INDOCRYPT 2018, pages 137–152. Springer,
2018.

22. Victor S Miller. Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques–CRYPTO 1985, pages 417–426.
Springer, 1985.

23. Peter L Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of computation, pages 243–264, 1987.

24. Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas for isogenies on
alternate models of elliptic curves. Mathematics of Computation, pages 1929–1951,
2016.

25. Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. How to construct CSIDH on
Edwards curves. In Cryptographers’ Track at the RSA Conference–CT-RSA 2020,
pages 512–537. Springer, 2020.

26. National Institute of Standards and Technology. Post–quantum cryp-
tography standardization, July 2020. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization.

27. Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. A faster
constant-time algorithm of CSIDH keeping two points. In Advances in Information
and Computer Security–IWSEC 2019, pages 23–33. Springer, 2019.

28. Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
pages 120–126, 1978.



How to Construct CSIDH on Edwards Curves 41

29. Peter W Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

30. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, pages 303–332, 1999.

31. Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer Science
& Business Media, 2009.

32. Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A,
pages 305–347, 1971.

33. William C Waterhouse. Abelian varieties over finite fields. In Annales scientifiques
de l’École Normale Supérieure, pages 521–560, 1969.


